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%'e study the morphological equilibration of a Snite, facetted crystal by use of phenomenological

equations of motion. The relevant atomistic kinetic processes (edge transfer, kink attachment and/or de-

tachment, terrace hopping, and surface diffusion) are introduced progressively with special attention

given to a proper treatment of the latter. Unlike all previous work, the role of individual step motion

(including the effect of step-step interactions) is considered in detail. Approximate analytic results are
obtained for two- and three-dimensional model crystals and compared to the work of others. Numerical
results for the time dependence of the equilibration and the shape of the crystal during equilibration are
presented for a model two-dimensional crystal in various limits of the kinetic parameters. Characteristic
behavior is found when the different kinetic processes are individually rate limiting. Although each facet
remains flat on macroscopic scales, multiple-step generation is found to lead to interesting microscopic
step distributions and equilibration scenarios. The latter might be observable by appropriate micros-

copics.

I. INTRODUCTION

The problem of predicting the equilibrium shape of a
finite crystal has enjoyed sustained theoretical attention
for nearly a century' and continues to be an active area of
research up to the present day. Despite this impetus,
there have been relatively few laboratory studies devoted
to the problem. In part, this is so because the experi-
menter must grapple with various problems of kinetics
before any meaningful statements regarding equilibrium
can be made. Indeed, kinetic processes determine both
the shape of a crystal as it grows and the rate and manner
by which it ultimately achieves its equilibrium form. Cu-
riously, while there has been considerable work directed
to the morphological kinetics of crystal growth itself, the
kinetics of the transformation of a growth form to an
equilibrium form is virtually unstudied. For the particu-
larly interesting case of a facetted crystal, there are only a
handful of exceptions. Experimental work appears to be
confined to the metallurgical literature and existing
theoretical studies do not provide an explicit account
of the principal mechanism of mass transport, i.e., sur-

face diffusion. The purpose of the present paper is to
redress this situation and to provide a reasonably com-
plete discussion of the kinetics of morphological equili-
bration for the case of a finite, facetted crystal.

To appreciate the discussion to follow, it is important
to recognize that mass transport at the surface of a facet-
ted crystal is completely different from mass transport at
the surface of a nonfacetted crystal. The latter, which
corresponds to the case when the surface free energy (sur-
face tension) is an analytic function of crystallographic
orientation (an amorphous material or a crystal at a tem-
perature in excess of the relevant roughening' tempera-
tures), is well understood. " By contrast, when the mor-
phology of a surface is best regarded as a sequence of Hat
(low-index} terraces separated by monatomic steps, capil-
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where LM, is the chemical potential of the bulk and Q is
the volume of a particle. The gradient noted above exists

lary effects are much more difficult to treat. The only
problem completely analyzed to date is the morphologi-
cal equilibration of one isolated crystalline facet per-
turbed by a small-amplitude corrugation wave. ' ' In-
deed, our interest in the subject of this paper was
motivated by our efforts to generalize our previous re-
sults' to a corrugation wave of large amplitude which
exposes inequivalent facets.

We find it convenient to approach this class of prob-
lems from the point of view of nonequilibrium statistical
thermodynamics. ' Of course, by definition, the chemical
potential of a crystal in complete equilibrium is uniform
everywhere. But, if the shape of the solid does not con-
form to the equilibrium form, it must be the case that
chemical potential gradients exist which (by some form of
Fick's law) drive mass transport until morphological
equilibrium is attained. To be more precise, consider a
crystal in the shape of a parallelepiped (Fig. l} and sup-

pose that the Wulff plot' for this (fictitious) material is
such that the crystal possesses only two inequivalent
crystallographic facets with surface energies y& and y2
(see the Appendix). According to Gibbs, 's the average'
chemical potential for particles just beneath the surface
of these facets differs from that of particles deep in the
(infinite) bulk by a correction which depends upon the
finite size of the sample. For the geometry of Fig. 1 one
has
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FIG. 1. The crystal shape discussed in the text. The Wulff
plot of the fictitious material in question supports no facets
beyond those depicted.

because p, &@2 unless the linear dimensions I, and lz at-
tain their equilibrium values I„andl2, defined by

71 V2

l1 =12

In that case, the common chemical potential of the sys-
tem becomes, e.g.,

4Qy1
p=p +

/1

which will be recognized as a Gibbs-Thomson formula.
Regarding the kinetics, we will in this paper suppose

that mass transport occurs by surface diffusion exclusive-
ly rather than by bulk diffusion or evaporation and recon-
densation. According to Kern, this is a reasonable as-
sumption if one restricts attention to small (~ 100 pm)
crystallites. For definiteness, suppose that the relative
magnitudes of (1) and (2}are such that a transfer of atoms
occurs from sites just beneath the surface of the top facet
to sites just beneath the surface of the side facet in Fig. 2.
On each facet, these sites are to be identified with the so-
called kink sites of a monatomic step. ' The transfer pro-
cess then is xnediated by a number of distinct kinetic pro-
cesses: (i} exchange of atoms between terrace sites and
kink sites at a bounding "up step" (k ); (ii) exchange of
atoms between terrace sites and kink sites at a bounding
"down step" (k ); (iii) surface diffusion across a terrace
(D~); (iv) exchange of adatoms between terraces on the
same facet (a); (v) exchange of adatoms between terraces
on adjacent facets (P}. The quantities in parentheses
above denote overall Arrhenius-type rate constants asso-
ciated with each of these processes.

In what follows, we do not confront this most general
formulation of the equilibration problem right away.
Rather, various kinetic processes (representing different
levels of approximation) are introduced progressively. In

FIG. 2. An expanded view of a convex (exterior) corner of
the parallelepiped shown in Fig. 1 which reveals the step struc-
ture of the facets. Although shown as straight, the step edges
should be regarded as densely populated by kinks. The kinetic
processes depicted are surface diffusion (Ds), exchange of atoms
between terrace sites at an "up step" (k+), exchange of atoms
between terrace sites at a "down step" (k ), exchange of ada-
toms between terraces on the same facet (a), and exchange of
adatoms between terraces on adjacent facets (P}.

that way, one gains a better appreciation not only of their
relative importance but also of the mathematical formal-
ism we employ. Direct comparisons with previous stud-
ies are facilitated as well. Accordingly, Sec. II both in-
troduces our methodology and solves the problem analyt-
ically at three different levels of approximation for the
three-dimensional geometry of Fig. 1. For reasons to ap-
pear below, we turn to a two-dimensional geometry in
Sec. III and numerically study the complete kinetics of
morphological equilibration. Section IV summarizes our
results, discusses some limitations of our approach, and
suggests a few directions for future research.

II. ANALYTIC RESULTS IN 3D

A. Edges

The simplest approximation one can imagine for the
problem at hand completely ignores the terrace-step-kink
structure of the free surfaces. Instead, one envisages a
homogeneous transfer of mass by the "flow" of an
infinitesimally thin (dl2) layer of material from each of
the top and bottom surfaces of Fig. 1 "over the edges" to
forxn a uniforxn coating (dl &) on each of the sidewall sur-
faces. Although all of the aforexnentioned atoxnistic pro-
cesses are avoided, one nevertheless can associate an ele-
mentary rate A with this imagined process. Then, ac-
cording to Keizer's formulation of the kinetics of non-
equilibrium processes, ' the time variation of the average
number of particles just beneath each surface can be writ-
ten as
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dN1 2l1=A
dt a

P2
exp

k, T
P1—exp

k, T
(5)

For future reference, please note carefully the depen-
dence of the exponential decay constant on the equilibri-
um crystal dimensions.

for each of the sidewalls (hereafter collectively denoted
"facet-1") and B. Kinks and edges

dN 4l,=A
dt a

P1 P2

k T k T

l, l2 dl,
dN1 = l1 dl2

and dN2 =

The factors of 2 arise because particles from each pair of
parallel facets contribute to the change in one linear di-
mension. The Fick's-law character of the resulting equa-
tions of motion is seen most directly if we consider the
limit where f„fz&&k Torso that the size-dependent part
of the above exponentials can be linearized. The result is

2nAe" '"&'
2

dt k~ T alz

for the top and bottom facets (hereafter collectively
denoted "facet-2"). In these expressions, p, and ltzz are
given by (1) and (2) and the perimeter factors 41, /a and

21, /a (a is the lattice constant) count the number of "re-
action centers" for the transfer process. They differ be-
cause there is no mass transfer between equivalent side
facets. Conservation of total mass is respected since

dN2 dN1
+2 =0.

dt dt

The time variation of the geometrical dimensions of
the parallelepiped are obtained directly from (5) and (6)
using the fact that

dn1 P1

d
A1nk1 exp

kdt k~T
P1—exp

k~T

and

2 P2+A12 exp
al2 k~ T

P1—exp
k, T

(12)

dn2 P2 P2
=A2nk2 exp —exp

dt k~T k~T

A more realistic description of morphological equili-
bration is obtained if we take explicit account of the fact
that mobile atoms adsorbed on terraces are the true
agents of mass transport. These adatoms appear by de-
tachment from kink sites on one facet, migrate to an ad-
jacent facet, and then disappear by attachment to a kink
site on the second facet. This is the picture adopted by
Bermond and Venables in their study of this problem.
Note that neither the spatial distribution of kinks nor the
mechanism of adatom migration is specified at this level
of approximation.

To be quantitative, let n1 and n2 denote the areal den-
sity of adatoms on the two inequivalent facets and let A„
A2, A, 2, and A2, denote, respectively, the elementary rate
constants for adatom-kink kinetics on facet-1, adatom-
kink kinetics on facet-2, adatom transfer from facet-1 to
facet-2, and adatom transfer from facet-2 to facet-1.
Again following Keizer, ' we find' that

dl2 2gA ~c "a 4
k, T

4 P1 P2+A21 exp —exp
al1 k~T kqT

(13)

Using (3) and the conservation of volume (V =l flz
=1

&, lz, ), these two can be written in the form

dl 802A c 8

1 (1 1), —
k~TV a

dl2

dt

Pc/kg T

lz (lz z, ).
k~ TVa

(10)

Although these equations are exactly solvable, the solu-
tion assumes a simple form only when the initial crystal
dimensions (l&„lz,) are not far from their equilibrium
values. In that case one finds

where nk, and nkz denote the uniform (and presumed
constant) areal density of kinks on the two facets and P,
and P2 are the chemical potentials of mobile adatoms on

the facets. The latter are given by the standard' expres-
sion

P; — 6;+kgTln
n,-

n&
(14)

where c., is the magnitude of the binding energy of an

adatom to a terrace site on the ith facet and n& is a
temperature-dependent constant.

To simplify the notation, we shall suppose henceforth
that @1=F2=c. ' Then, making use of the fact that

A, z=Az& =A, we rewrite (12) and (13) as

I, —l„
10 le

24~2A i"c "a
=exp t

kg Tal 2e l1e
(15)= —k, (n, n„)— —(n, nz), —

al2ng

2 2e

l20 l2e
1/2 1/2

24~2A ~c a

2
t ~

k~ Tal 1e l2e

4
(n2 —n, )

al, ng

n2 = —kz(nz nz, )——
in terms of lumped rate coefficients

(16)
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(17) where
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(26)

(27)

and equilibrium adatom concentrations

n„=ngexp

n2 =ng exp

p +s+f (

k~T

p, +s+fz
I, z

(18)

The complete kinetics of equilibration is obtained from
(19) once (15) and (16) have been solved. Although this
generally requires a numerical approach, a steady-state
solution can be obtained analytically in certain limits. In
particular, one verifies readily that if n1 =ri 2 =0,

dl& 2Q(nz, —
n&, )

dt
(20)

dl2

dt

where

4Q(nz, n„)—
'T2

l2 angl2+ —+
k, kz 11 2P

l, 2 angl)—+ +
k) 1z kz 2P

(21)

(22)

Linearizing the size-dependent part of the exponentials in
(18) and proceeding as in the passage from (9) to (10), we
obtain

dl1

dt

24ng P2 (P + )/k T 3 3e ' (1, —1„},
8 1+1

(23)

2 g Y (I c+E)/kg T 3/2 3/2e ' (lz —lz, ) . (24)
k T+Vl, r,

Again, a particularly simple exact solution is obtained if
the initial crystal shape does not differ too much from the
equilibrium form. In that case, one finds

1, —1),=(1„—1„)exp
6y2~

11,l2e %1
(25)

It is crucial to observe that n 1, and n2, depend explicitly
on the facet sizes through the factors f, and fz [cf. (1)
and (2)]. In fact, it is precisely this factor in the first term
of (15) and (16) that induces each facet to either grow or
etch in the direction perpendicular to itself. The second
term merely transfers mobile species from one facet to
the other without directly affecting the solid. According-
ly, the crystal dimensions evolve as

l1 ] dl2
=k&(n& n„)—, =kz(nz —nz, ) . (19}

and r„and rz, denote the time constants (22) evaluated
at the equilibrium crystal dimensions.

It is satisfying to note that if interfacet particle transfer
is rate limiting, i.e., P « k &, kz, the time constants simpli-

fy such that (25) and (26) reproduce (11) exactly. On the
other hand, different dependences for the facet size decay
rates on the equilibrium crystal dimensions emerge if, in-
stead, the kinetics of adatom attachment and detachment
to and from kinks on either of the inequivalent facets is
rate limiting. For example, l, approaches its equilibrium
value at a rate which depends on the factor 1&,lz, (1z, ) for
the case of slow kinetics on facet-1 (facet-2). Similarly, lz
approaches its equilibrium value at a rate which depends
on the factor 1&, (1&,1z, ) for the case of slow kinetics on
facet-1 (facet-2}. Although these results agree with those
of Ref. 7 in the corresponding limit, we have reserva-
tions concerning their results in the general case.

C. Steps and kinks and edges

This section presents our most complete account of the
kinetic processes that contribute to morphological equili-
bration. Compared to the discussion above, we (i) correct
the assumption of a uniform distribution of kinks by
properly associating them with monatomic steps, and (ii)
explicitly treat the transport of adatoms by surface
diffusion. In such a treatment, the steps acquire a dy-
namics of their own (they advance or recede across a
facet as adatoms attach or detach from them). To simpli-
fy this aspect of the problem, we shall assume that the
density of kink sites along each step is sufficiently great
that every point along the step may be regarded as a
source or sink for adatoms. For the geometry of Fig. 2,
this renders the problem one dimensional. Moreover,
once step dynamics are admitted into the problem, it is
necessary to take account of the well-established fact that
adjacent steps generally repel one another due to elastic
and/or entropic effects. This phenomenon is included
most conveniently' ' as an additive correction to the
chemical potential for atoms just at the step. Thus, e.g. ,
for a step labeled i on the "top" facet-2 of Fig. 2 one
writes in place of (2)

4Qy1
Pz=P, + +Pz'(&), P, ',(&)=rz

1

1 1

3 3
W; W;

(28)

where I 2 is a constant characteristic of facet-2 and w,. is
the width of the ith terrace. In principle, the surface en-
ergy y& in (28) should be renormalized to account for the
presence of steps on the facet. The correction, however,
is proportional to the linear step density (see, e.g., Ref. 11
and the Appendix) which must nevertheless remain small
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Ba Ba=Ds
2 +QRk5(x —xk),

Bx
(29)

where Ds is the surface diffusion constant and the Rk are
expressions like those on the right-hand sides of (12) and
(13). The latter describe the rates of kinetic processes
that are now localized at step and edges located at abso-

to guarantee the validity of our model, which assumes
that each facet is macroscopically flat. Finally, of course,
it is necessary to verify that the presence of step-step in-
teractions does not alter the equilibrium crystal shape
from that presumed above. A demonstration that this is
indeed the case (for a 2D crystal) may be found in the
Appendix.

As in the preceding section, we focus on the concentra-
tion of mobile adatoms. However, since we now propose
to take account of surface diffusion, this quantity varies
in space as well as in time. The appropriate generaliza-
tion of formulas such as (12) and (13) is a so-called
reaction-diffusion equation of the form

lute positions xk.
Although (29) (and an initial condition) completely

specifies the problem, this equation is difficult to deal
with directly due to the presence of the 5 functions. On
the other hand, it is readily established that (29) is com-
pletely equivalent to an ordinary diffusion equation

Bn 82n

Bx
(30)

valid on each terrace supplemented by two "jump"
boundary conditions obtained by integrating (29) over an
interval (x„—5, x„+5)once for each of the two steps
that bounds that terrace.

To be more specific, consider as an example an arbi-
trary step i somewhere on facet-2 of Fig. 2 and suppose
that the only kinetic processes operative are the attach-
ment and detachment of atoms to and from the step from
both bounding terraces. In that case, the integration not-
ed above yields (in the limit 5~0}

Bn2 dn2
Ds

Qx x. Qx x.

pz(x;+ )
P

A, p, (x; ) p&+ exp —exp
a kBT B

(31)

where A2 (A2 ) denotes the elementary rate for adatom
attachment and detachment to and from a step on facet-2
from a lower (upper} bounding terrace. Although not
obvious from the present discussion, it can be shown us-
ing the methods of Ref. 14 that (31}actually breaks into
two equations —each confined to quantities evaluated on
one side of the step. Consequently, expressing the chemi-
cal potentials in terms of adatom concentrations using
(14) and (18},the full boundary conditions for (30) associ-
ated with each step can be written

~M nN
Ds

&
13"M(xo ) ~"N(xo } Ds-

Bx xp xp

(34)

where the integers M and N, respectively, identify the ter-
races of facet-1 and facet-2, which meet at xo. The inter-
facet transfer coefficient is defined by

facets meet. Denoting the position of one such edge by
xo, the appropriate equations are

7l. '(s)/k T

Qx x,.

-c/k TB

an&
(35)

+a[n;(x,+)—n, ,(x; )],
'( )/k

Ds =—kz [n;,(x, ) —nz, e ' s
]X.

(32)

—c, /kB TA+
e

an&

—c,/kB TAk2= e
an&

(33)

and introduced the notation n; to denote the adatom con-
centration on the ith terrace (all such quantities are un-
derstood here to belong to facet-2).

To compete the roster of kinetic processes listed in the
Introduction, we need only write boundary conditions
analogous to (32) for an edge where two inequivalent

+a[n, ,(x, ) n;(x,+)]—,
where we have included the effect of adatoms hopping
directly over the step with the terms proportional to the
kinetic coefficient a. In addition, we have defined the
lumped kinetic coefficients

Consistent with our earlier choice of c, =@2=c, the sur-
face diffusion constants of the two facets are taken equal.

We now have all the ingredients required to complete
our description of morphological equilibration. Howev-
er, the reader will have noticed that the origin of the steps
required to effect mass transport has so far been left un-
stated. To correct this omission, return to the three-
dimensional geometry of Fig. 1. Long ago, Gibbs noted
that, in equilibrium, the very loosely bound atoms at the
edges of such a crystal often will be absent due to thermal
fluctuations. In a nonstatistical treatment such as ours,
this implies that we may presume the presence of a single
monatomic step along every edge. To exploit this fact,
we analyze a simple problem wherein no more than one
step is present (on each facet) during the equilibration
process. Although somewhat artificial, this model has
the virtue that it can be solved analytically so that direct
comparison can be made with our own previous results
(and those of others}.

The crystal morphology during mass transfer always
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where

a (n2, n„)—
~D~

(37)

Kl K2 1 wl +sl
P Ds

a (L&+w&+s& )
Ds

(38)

with

appears as shown in Fig. 3. The step which forms the
perimeter of the single (shrinking), square, monatomic is-
land on facet-2 originated as the equilibrium step noted
above. The single (growing) island on facet-1 is presumed
to have formed instantaneously and symmetrically to
proviide a sink for adatoms diffusing from facet-2. Both
processes are imagined to repeat when required. We fur-
ther suppose that adatoms diffuse along straight lines be-
tween escape and capture from steps. In that case, the
stead. y-state solution to (30) takes the form

n;(x)=a;+b;x, x; &x &x,+;

on every facet. We ignore, for the moment, the fact that
this approximation is invalid whenever either island is
small compared to the corresponding facet size.

Since multiple steps never occur, step-step interactions
(28) are absent. Moreover, by symmetry, the adatom
population is uniform (b;—:0) on those terraces which
form the tops of the islands. The boundary conditions
(32) and (34) then permit calculation of the coefficients in
(36) f'o r the single remaining terrace on each facet (labeled
by widths to, and s, in Fig. 3). For the problem at hand,
it turns out that the corresponding coefficients are equal
on the two terraces for the second term in (36). The com-
mon value is

dx; dn;

so that

ni —l

dx x,
(40)

dw,
2

ds, 2 2w,

d
—a'Dsb

d
a'Ds 1

l
b.

dt di 1

(41)

The factor in parentheses arises because the mass trans-
ferred from the islands of facet-2 in Fig. 3 is presumed to
distribute uniformly along the steps of facet-1. Observe,
however, that to the extent that this factor may be
neglected,

d—(w +s )=0
dt

(42)

and ~ may be replaced by the constant ~p obtained from
(38) by replacing to, and s, with, e.g., their initial values.
The terrace widths themselves evolve as linear functions
of time.

To facilitate comparison with our previous results, we
make a continuum approximation to (41) by reassigning
the mass lost by the islands of facet-2 to a thin layer re-
moved uniformly from the area of that facet. The mass
gained by facet-1 is treated similarly. The explicit rela-
tion is

dl,
dt

4a dsl dl2

l, dt '
dt

8a dsl

l, dt
(43)

From these, one readily obtains (in the limit 2w, /1, « 1)

(39)

Now, by mass conservation, ' ' ' the velocity of any step
in Fig. 2 is

dl, 80y2a 3 3

dt 1,12 V
(44)

e,

A similar equation holds for l2. If finally, as a sim-
plification, we suppose that kl =kl and k2 =k2 so that

SI

7p=a

kl 1+
1+kl /a k2 1+ I+k2/a

1 lo + lo+—+
Ds

(45)

SI the late stage evolution of l&(t) obeys

12r2& a t
1, —1„=(1„—1„)exp

ll, l2, lge vo
(46)

FI(x. 3. Same as Fig. 1 except that there is a single island (of
monolayer height) on each facet. During equilibration, the
square island on each face of facet-2 shrinks and the rectangular
island on each face of facet-1 grows.

To appreciate this result, suppose first that surface
diffusion is very fast (Ds ~ oo) and that the direct transfer
of particles between terraces belonging to the same facet
is very slow (a~0). In that case, it is easy to check from
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(45) that in each of the three limits discussed at the end of
Sec. II B, i.e., P or k, or kz rate limiting, (46) reduces to
(25) exactly. Or, more precisely [noting the difference in
the definitions of k;—and k; in (33) and (17), respectivelyj,
this equivalence occurs if the kink densities in (17) are
chosen as

2l1, /a 4l
„

/a

le 2e l ]e
(47)

These values are precisely those required to distribute
uniformly over each facet the total number of kinks
present on that facet in Fig. 3 at the very beginning of the
equilibration process. In the case when a~~, i.e.,
terrace-to-terrace transfer is the fastest of all processes,
one sees that the rates of kink-mediated equilibration are
exactly doubled.

A noteworthy result is found from the foregoing if sur-
face diffusion is rate limiting. In that case, the overall ex-
ponential time constant in (46) is proportional to the
geometric factor 1„/z,(to„+s„).This may be compared
to the analyses of Bermond and Venables and Kern,
both of whom find a time constant that varies as l1, l 2, .
In fact, it may be argued that these agree given that both
of these authors essentially choose the rate coeScient we
call A proportional to Ds. On the other hand, we have
had to make some rather drastic approximations in order
to make these comparisons possible. For example, the
quantity m1, +s1, is not truly a constant but changes
each time a new step is created. This is significant be-
cause the full richness of our approach becomes evident
only if we retain the discrete nature of the steps
throughout the entire time evolution of the facets. Un-
fortunately, to do so we must abandon the case of a
three-dimensional crystal treated so far in order to
guarantee that none of our results are tainted by the very
approximate treatment of the diffusion problem em-
ployed above. As it happens, we are able to treat the case
of a two-dimensional crystal essentially exactly. In our
view, the interesting results that emerge more than com-
pensate the attendant retreat from direct experimental
relevance.

expression (37) for b is unchanged except for the
redefinition of f, and fz in (18) implied by (48). In our
numerical implementation of (49), the island on facet-2
shrinks while the one on facet-1 grows. At the moment
the former disappears, we create a step at each edge of
facet-2 to insure that there is always exactly one island
there. Similarly, at the moment the island on facet-1
grows to cover the entire face, we create a new island
atop it at the center. A discrete change in I, or lz {by 2a)
is recorded only at these moments.

The time histories l, (t) and l~(t) obtained from the
foregoing are compared most usefully to those obtained
by integrating the corresponding continuum equations of
motion:

dl1 4a ds1 4~72a 2 2
~ (l, —1„),

dt 12 dt
(50)

dl2

dt
4a ds

l1 dt
4uy, a

(lq —I
&OA

(51)

625.0

Typical results are shown in Fig. 4 for three choices of
the lumped kinetic parameter L&. As can be seen from
(38), this quantity is a length which may be thought of as
the distance an adatom can diffuse in the time required
for the slowest of the remaining kinetic processes to
occur. Here (and below) we choose y, =yz so that the
equilibrium crystal shape is a square (see the Appendix).
The solid and dashed lines, respectively, denote the exact
and continuum kinetics. For the latter, it is necessary to
assign a value to the quantity tc„+s„in (45). For
reasons to appear momentarily, we have chosen the value
1, 13. Observe that for large values of L& (compared to
the crystal dimensions) the approximate solution slightly
overestimates the equilibration time while for small
values of L& it is underestimated.

III. NUMERICAL RESULTS IN 2D

dN1 d$1
S~ Sdt dt

(49)

without approximation so that (42) is exact as well. The

Only very minor changes in the formalism of the
preceding section are required for a crystal comprised of
only the front face (area 3 =1, lz) of Fig. 1. Thus, while
(1) and (2) are replaced by

2Q@2 2Qy,
P1 Pc+ y ~ P2 Pc+

l2 1

the entire discussion of the one-dimensional diffusion
equation and its boundary conditions carries over with-
out change. It is instructive to begin with a reexamina-
tion of the single-step model introduced just above. In
two dimensions, one readily verifies that

500.0

400.0
0.0 40.0

t (arb. units)

80.0

FIG. 4. The variation of facet lengths as a function of time
(equilibration curves) for the single-step model. The solid lines
correspond to the exact, discrete step kinetics [Eq. (49)]. The
dashed lines correspond to the solution of the approximate con-
tinuum equations (50) and (51). The number on each curve is
the numerical value of the parameter L~.
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The specific choice noted above for evaluation of the
continuum model was made because, if w„+s1,is set
equal to (1, +l2)/6, (50) and (51) exactly coincide (when

surface diffusion is rate limiting) with equations of
motion derived for this problem by Yu and Hackney. In
that work, the chemical potential is presumed to vary
across a facet in a manner determined by (i) a well-
known" relation between the Laplacian of the chemical
potential and the normal velocity of a surface element
and (ii) the requirement that the normal velocity be con-
stant across the entire facet. Although the very fact of
facet growth by discrete step propagation clearly reveals
the approximate nature of these assumptions, their ap-
proach provides additional insight into the nature of the
continuum limit of single-step kinetics.

Of course, the single-step model artificially precludes
the possibility of multiple-step generation on one (or
both) facets. In reality, both step formation at a crystal
edge and island nucleation on a crystal terrace are ac-
tivated processes whose probability depends upon the
concentration of adatoms at the point in question. Rela-
tive to the equilibrium adatom density, undersaturation
promotes the former while supersaturation stimulates the
latter. If, say, interfacet adatom transfer is very fast, it is
reasonable to expect a rapid depletion of mobile species
in the immediate neighborhood of an edge of facet-2.
Creation of a new step (or steps) at that point provides a
source of adatoms which tends to bring the population
back to its equilibrium value. A similar scenario of island
nucleation events tends to relieve a surfeit of adatoms on
the terraces of facet-1.

As it happens, the computations required to evaluate
the adatom concentrations needed above are precisely
those required to calculate the step kinetics. Namely,
solution of the diffusion equation (30) (in steady state)
subject to reaction-type boundary conditions at the steps
(32) and edges (34). The (symmetric) geometry under
consideration is shown in Fig. 5. If, for the sake of clari-
ty, we use the variable y to denote the spatial position on
facet-l, the appropriate generalization of (36) is

X1

facet-2

X.i-1

WI

X X
1 XN

&M

0

S ~

vJ

facet-1

FIG. 5. Side view of Fig. 2 in two dimensions.

p2(s)
P

B

1+1(

P (56)

Ds
d~ (&1 +F1 )+sj

1

Dsa
(di+1+d —1)

1

pj+'(s)

B
(57)

on facet-1. The b's and d's are determined (from the
boundary conditions) by solution of the coupled linear
equations:

Ds + Dsa
b; (a2 +a'z )+w; — (b;+, +b, , )

2 2

n;(x)=a;+b;x, 0&i &N, . x; &x &x,.+, (52) and

for the adatom concentration on the terraces of facet-2
and

n (y) =c +diy, 0 &j& M, yj+1&y &yi. (53)

w, =a Ds(b2 —2b1),

w, =a Ds(b, +, 2b, +b, , ), 2&—i &N 1, —

wiv —a s(be 1 biv )

(54)

for the terraces of facet-1. Again, by symmetry,
ho=do=O on the topmost terraces. From (40), the ter-
race width velocities can be written

where

a a a
bX —1+ dM

P1 (s)
+Dz ' n„exp

p2 (s)
2e P k 7

(58)

on facet-2 and

s, = —a Ds(d2 —2d1),

s = aDs(d +, —2d +d— , ), 2 &j & M —1,
sM

—— aDs(dM 1
—dM )—

(55)

a
(L~+w~+sM )

S
(59)

and L& is as defined in (38).
The boundary conditions also determine all the a's and

c's in (52) and (53), but we will need only two of them to
compute the rates of step creation and island nucleation.
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1
A2=

&2e
b

a2 DS
N ~ +NN

2

&Ds
bx

2

tuz (s)
+exp

k~T

and at the center of the topmost terrace of facet-1 7

n (y) =co =A, n „,,
where

aDs p, I(s)
d t +exp

ni, k~T

In particular, at the point xo on terrace Xof facet-2 7

n(xo }=Q~+&Nxo =Aznz

where

(60)

(61)

(62)

(63)

limit ourselves to one particular choice of th ese quantities
~ ~

which permits modest step generation on facet-2.
As for the case of the single step, it is convenient to or-

ganize the results according to the magnitude of the pa-
rameter L&. When L~ is large, each of k&, P, and kz can
be individually rate limiting. This is illustrated in Fig.
6(a). The first two cases are seen to be identical to one
another and to the previous smooth single-step results.
By contrast, when atom detachment from steps is difficult
on facet-2 (kz small), equilibration occurs by a two-step
process: a brief period of very large morpholo ical
change followed by a long interval of slow approach to
the final equilibrium crystal dimensions. The same gen-

625.0

So defined the quantities k, and A.2 measure the relevant
supersaturation and undersaturation. We have verified
analytically for the single-step case and numerically oth-

erwise) that A, , ~ 1 and 0 (A,z 1 as expected.
The number of steps present on any facet at a given

time depends on all the kinetic coefficients, the strength
o the step-step repulsion, and the size of the crystal.
Nevertheless, to develop some feeling for the factors
w ich promote step proliferation, it is useful to consider
the form taken by (61) for the case of a single step on
each facet with a=0:

500.0

(a)

n

n„s,+Ds(1/k, +1/P)
co)+D~/k2

(64)

400.0
0.0

625.0.

10.0 20.0
t (arb. units)

30.0

From this one sees, for example, that small values of s,
increase the relative undersaturation at the edge of the
crystal and hence increases the probability for creation of
a new step there. In other words, the rate of step
creation on facet-2 increases when a layer on facet-1 is
about to complete. Our numerical results confirm this
prediction —even when many steps are present. Note
also that when L~ is large the quantity in the second set
of large parentheses in (64) approaches 2 and the under-
saturation depends only on the crystal dimensions
(through n„and nz, ).

Of course, the precise magnitudes of undersaturation
and supersaturation required to trigger the activated pro-
cesses of interest depend, e.g. , on temperature. Conse-
quently, we use the parameters A,

&
and A, z to control the

nucleation process. That is, during the evolution of the
system, a new step is created at the edge of facet-2 when-
ever the computed value of A, 2 falls below A.z. Similarly, a
new island is nucleated at the center of facet-1 whenever
the computed value of A.

&
exceeds A,

&
. Our model evident-

ly contains many independent parameters. As it hap-
pens, the calculated value of A, , from (63) is always very
close to 1 so that 1a, unless A,

&
is nearly unity, very few steps

are generated on facet-1. Conversely, A,z from (61} de-
pends strongly on the choice of parameters so there is
much more dynamic range for A,z. In what follows we

500.0

400.0.
0.0 28.0

t (arb. units)

56.0

FIG.G. 6. (a) Equilibration curves when either k, , P (same solid
line for both), or k~ (dashed line) is rate limiting for a (fixed)
value of the parameter L large compared to the crystal dimen-
sions. A large common value has been assigned to all other ki-
netic parameters; (b) Same as (a) except that the value of Lz, is
chosen comparable to the crystal dimensions for the cases when
either k, , P (same solid line for both), or k2 (short-dashed lines)
is rate limiting. The curve labeled D& corresponds to Ly&

chosen very small compared to the crystal dimensions. For the
latter, the time of equilibration is scaled by 1/Dz to facilitate
comparison with the other curves.
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FIG. 9. Similar to Fig. 8 except that the strength of step-step
repulsion is five times stronger.
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bration scenarios. The latter might be observable by elec-
tron and scanning tunneling microscopics.

The principal limitation of the present work was the
(self-imposed) restriction to a crystal exhibiting only two
crystallographically inequivalent facets. Although gen-
eralization to include additional facets is possible in prin-
ciple, it is not straightforward within our phenomenologi-
cal approach. Computer simulation of lattice models
(beyond nearest-neighbor interactions) is ideally suited to
deal with this particular problem. On the other hand,
they are not easily adapted to treat long-range step repul-
sion effects of the sort considered herein. We conclude
that there is considerable room for further theoretical de-
velopment.

Eg(t) (arb. units)
ACKNOWLKDGMKNTS

FIG. 10. Similar to Fig. 8 except that the strength of step-
step repulsion is ten times weaker.

The number and distribution of steps in the foregoing
scenario depends strongly on the magnitude of the repul-
sion between the steps. Figures 9 and 10 are comparable
to Fig. 8 (k2 rate limiting) except that the step repulsion
[controlled by the parameter I in (28)] is chosen to be
Qve times stronger and ten times weaker, respectively.
For the case of strong repulsion, the number of steps
present is small and, as might be expected, distributes it-
self more uniformly across the facet. Conversely, for the
case of weak repulsion, many steps are generated and the
(fast) first step tends to push the entire bunch toward the
center of the facet. On the other hand, the number densi-

ty of steps here becomes large and thus invalidates our
basic assumption that the facet is macroscopically flat. A
proper treatment of this regime requires a more sophisti-
cated analysis.

IV. SUMMARY AND CONCLUSION

In this paper, we have addressed the question of the
morphological equilibration of a facetted crystal by use of
phenornenological equations of motion. The relevant
atomistic kinetic processes (edge transfer, kink attach-
ment and/or detachment, terrace hopping, and surface
diffusion) were introduced progressively with special at-
tention given to a proper treatment of the latter. Unlike
all previous work, the role of individual step motion (in-
cluding the effect of step-step interactions) was taken seri-
ously. Approximate analytic results were obtained for
two- and three-dimensional model crystals and compared
to the work of others. Numerical results were presented
for the two-dimensional case. Characteristic behavior is
found when the various kinetic processes are individually
rate limiting. The form of equilibration was observed to
depend on the numerical value of an effective length L
(compared to crystal dimensions) which depends upon
the kinetic rate constants. Although each facet remains
flat on macroscopic scales, multiple-step generation leads
to interesting microscopic step distributions and equili-

APPENDIX

As discussed by Mullins" in the context of a nearest-
neighbor bond-breaking model on a square lattice in two
dimensions, the surface energy

y(8) =yo(cos8+sin8) 0 & 0 & ~/2 (A1)

repeated symmetrically in all four quadrants of the polar
angle 0 leads trivially to a square equilibrium crystal
shape with (in our notation) y, =y2=yo. In that case,
Gibbs's formula' for the average chemical potential
beneath each Hat facet reduces exactly to (48).

Now consider the introduction of steps onto such a
facet such that the surface is inclined from perfect flat-
ness by only a small angle 0. The surface energy per unit
(projected) area of the ffat surface now takes the form'2'

f(~)=y(~)&i+tan'~=yo+yol~l+glf)l'+ ' ' ', (A2)

where the cubic term (g)0) arises in part from an
amendment to (63) which takes account of step-step in-
teractions of the form described by the quantity p'(s) in
(28). The effect of these interactions on the equilibrium
crystal shape is well known. If the point x =z =0
denotes the center of the two-dimensional crystal, the top
surface profile is

(A3)
zo, ~x

~
& x'o

zo —(2/3 )(hp/g)'~ (x —xo) ~, ~x~ )xo,

xp =zp =pp/Ap and Ap is the pressure difference
between the crystal and the medium with which it is in
equilibrium. From equilibrium thermodynamics, ' the
latter is precisely equal to 2&p/l, in our case, so that the
crystal begins to curve away from the flat facet at
xp=l, /2, i.e., just at the corner. Thus, the equilibrium
crystal shape remains a square.
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