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We study the bulk-phonon-scattering contribution to the transport properties of a two-dimensional
electron gas formed at the interface of an ultrapure Al Ga& As/GaAs heterojunction. Assuming that
the electrons only occupy the lowest subband, we calculate the mobility as a function of temperature for
the temperature range T=1—300 K, within the variational-subband-wave-function model for carrier
confinement. Our work encompasses three physically distinct temperature ranges with respect to pho-
non scattering: the Block-Gruneisen (BG), equipartition (EP), and inelastic regimes. In the EP regime
we calculate (i) the individual and total scattering rates ~, ', and momentum relaxation rates ~, ', due to
deformation-potential and piezoelectric coupled acoustic-mode phonons, with screening of these rates
taken into account within the static random-phase approximation; (ii) the acoustic-phonon-scattering
limited drift mobilities p„ for different densities n, as a function of temperature T; (iii) the level of validi-

ty of Matthiessen s rule; and (iv) the dimensionless Hall ratio rH. In addition, we investigate in detail the
temperature dependence of the low-temperature mobility and find excellent agreement with experimen-
tal data for the linear coefficient 0;=dp '(T)/dT of the temperature dependence as a function of densi-

ty. We carry out similar calculations in the BG regime and compare the results with the corresponding
ones in the EP regime. Finally, to evaluate the mobility in the inelastic regime at high temperatures
above T=40 K, where the scattering from polar LO phonons becomes important, we compute the first-

order perturbation distribution P(E) as a function of the carrier energy E by directly solving the linear-

ized Boltzmann equation by an iterative method. We compare these results with the commonly used
closed-form approximations for P: the low-temperature relaxation-time approximation rLr, and the
high-energy relaxation-time approximation ~HE, and check their level of validity.

I. INTRODUCTION

A great deal of experimental and theoretical effort has
been focused on the transport properties of a two-
dimensional electron gas (2DEG) in high-mobility,
modulation-doped Al„Ga&, As/GaAs heterojunctions.
The fabrication of extremely pure samples with electron
mobilities higher than 10 cm /V s is now commonplace,
and mobilities in excess of 10 cm /V s have also been
achieved at low temperatures. ' Scattering mechanisms
which are responsible for limiting the mobility in hetero-
layers can be categorized as being either of the extrinsic
or intrinsic type. Extrinsic effects associated with
charged impurity scattering due to unintentional doping
of the bulk GaAs and the Al Ga, „As spacer layer can
in principle be reduced by improving growth and fabrica-
tion techniques. This is not the case for scattering from
the remote ionized impurities in the highly doped
Al Ga, As region, which is considered to be an intrin-
sic effect, since they are responsible for contributing the
electronic space charge which constitutes the 2DEG at
the heterointerface. In addition, at any finite tempera-
ture the electrons are unavoidably subjected to the intrin-
sic scattering effects due to the absorption and emission
of phonons. It follows that the inherent limit of the
highest achievable mobility in such structures is deter-
mined by the scattering from the remote ions, and the
relevant phonons. In principle, at least, it is the phonon

scattering which sets the ultimate limit on the highest
achievable theoretical mobility at any particular tempera-
ture.

In this paper we focus on a thorough understanding of
the transport properties, as determined by the bulk pho-
non contribution to the intrinsic scattering by phonons in
a GaAs-based 2DEG in the temperature range
T=1—300 K. With respect to phonon scattering, our
study encompasses three physically distinguishable tem-
perature ranges: (i) the Bloch-Griineisen (BG), (ii)
equipartition (EP), and (iii) inelastic regimes.

At low temperatures below T=40 K the electrons in
the GaAs channel are scattered via deformation-potential
(DP) and piezoelectric- (PE) coupled acoustic-mode pho-
nons. For typical carrier densities n, =10" cm, the
thermal energy ktt T (where kz is Boltzmann's constant)
is much smaller than the Fermi energy of the 2DEG. In
the EP regime, which begins approximately above T=4
K, the available acoustic-phonon energies are much
smaller than kz T so that the scattering is quasielastic,
and the equilibrium Bose occupation factor can accurate-
ly be replaced by a linear term in T. The evaluation of
the relevant scattering rates is greatly facilitated in the
EP regime since the absorption and emission rates be-
come equivalent, and quasielasticity allows us to
rigorously define a closed-form expression for the
momentum relaxation time. Most of the current work in
the field has been heavily focused in the EP regime from
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T=4 to 40 K, where the reciprocal mobility p
' exhibits

a simple linear dependence on temperature. The slope of
the curve determines the linear coefficient of the tempera-
ture dependence of the low-temperature mobility
a =dp '/d T, which contains important information
about the electron-phon on interactions operative in
heterojunctions. For temperatures below T=4 K, in the
BG regime where the acoustic phonon and thermal ener-
gies are comparable, it is expected that the transport
properties will be dominated by the remote ions. As a re-
sult, not as much detailed study has been focused on pho-
non scattering at extremely low temperatures. In the BG
regime the constraints of degeneracy and energy conser-
vation lead to a drastic reduction in the momentum re-
laxation rate at the Fermi energy, due to phase-space re-
striction for scattering via acoustic phonons. This results
in a much stronger dependence of the reciprocal mobility
on temperature. For high temperatures above T=40 K,
the inelastic scattering from the polar LO phonons begin
to play an increasingly important role in determining the
transport properties. This scattering mechanism is in-
elastic and nonrandomizing so that it is no longer possi-
ble to strictly define a universal momentum relaxation
time. In this case one must directly solve the appropriate
linearized Boltzmann equation.

In the EP regime we calculate (i) the individual and to-
tal scattering rates ~, ', and momentum relaxation rates

~, ', due to DP and PE-coupled acoustic-mode phonons,
with screening of these rates taken into account within
the static random-phase approximation (RPA); (ii) the
acoustic-phonon-scattering limited drift mobilities p„ for
different densities n, as a function of temperature T; (iii)
the level of validity of Matthiessen's rule; and (iv) the di-
mensionless Hall ratio ra. In addition we investigate in
detail the temperature dependence of the low-
temperature mobility and find excellent agreement with
experimental data for the linear coefficient
a =d p '( T)Id T of the temperature dependence as a
function of density. We carry out similar calculations in
the BG regime and compare the results with the corre-
sponding ones in the EP regime. Finally, to evaluate the
mobility in the inelastic regime at high temperatures
above T=40 K, where the scattering from polar LO pho-
nons starts to become important, we compute the first-
order perturbation distribution P(E) as function of the
carrier energy E by directly solving the linearized
Boltzmann equation by an iterative method. We com-
pare these results with the commonly used closed-form
approximations for P—the low-temperature relaxation-
time approximation ~„~ and the high-energy relaxation
time approximation ~H~ —and check their level of validi-

ty. In all three regime we use the same theoretical model
based on the variational-subband wave function where we
assume that all the electrons occupy the lowest subband,
and that the important scattering is via bulk phonons.

II. BASIC TRANSPORT THEORY

The transport coefficients of a two-dimensional elec-
tron gas (2DEG) have been investigated by a number of
workers. In this section we review briefly the theoretical

model adopted in our calculation of the bulk-phonon-
scattering limited mobilities in the three temperature
ranges discussed earlier.

A. Boltzmann equation

d k'
I,[f]=—I IS(k,k')f (r, k, t)[1—f (r, k', t)]

(2m)

—S(k', k)f (r, k', t)

X[1—f (r, k, t)]], (2)

where S (k, k') is the differential scattering rate from state
~k) to state ~k'). For a uniform electric field in a homo-
geneous system, the Boltzmann equation in the steady
state becomes

—F =I, [f'] .
Ba

In equilibrium the carrier distribution is simply given by
the Fermi-Dirac occupation factor,

fo(E)=
exp [P(E —g) ]—1

(4)

where g is the chemical potential and P= I/ks T. In the
presence of an electric field, the distribution function f
experiences an axially symmetric perturbation which is
biased towards the field direction. In this case f may be
expanded in terms of Legendre polynomials P„(cosa),
where a is the angle between k and F:

f (k) = g f„(E)P„(cosa) .

For low electric fields we need only keep the first two
terms of the series so that

f (k) =fo — k cosa P(E),m* BE

where we have taken f, (E)= —(efilm *)k(Bf0 /BE)P(E)
to simplify the algebra. ' The isotropic effective mass of
the carriers is denoted by m *, the electronic charge by e,
and P(E) is the perturbation distribution which has units
of s . Using the principle of detailed balance,

S(k,k')fo(E)[1 —fo(E')]=S(k', k)fo(E')[1 —fo(E)],

Let f (r, k, t) denote the distribution function which
gives the occupation probability of the state ~k) by an
electron in a volume element dr at position r at time t.
The rate of change of f (r, k, t) with respect to time is
given for the familiar Boltzmann equation

Bf 1 BE Bf 1 Bf
Br XBk B. 4" Bk+'

where E is the electron energy, F is the force due to the
externally applied electric field, and A is the reduced
Planck constant. The last term is the collision integral,
which arises from electron scattering and is given by
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I

X P(E) —„P(E') S(k,k'}, (8)

where 0 is the angle between k and k'. Substituting Eq.
(8) into Eq. (3) we arrive at the linearized Boltzmann
equation, '

d k' I:1—fo«')]1=
(2~)' l: I —fo«)]

we can derive a simplified form for the collision in-

tegral, '-'

I,[f]=— k cosa
eAF

m'k, T
3 I

3 p E 1 p E

mode phonons and polar LO phonons. Consistent with
all previous work in the field, we assume that the phonon
modes in a heterojunction remain unaltered from those in
bulk GaAs. Although it may be an oversimplification of
the actual situation, we consider the interface phonons to
contribute insignificantly to the scattering of the elec-
trons. Taking k and k' to denote the 2D electron wave
vectors before and after scattering, respectively, by a bulk
phonon with 3D wave vector Q, with components (q, q, )

within and normal to the heterolayer, momentum conser-
vation in the x-y plane gives us that q = lk —k'l. In the z
direction, in place of momentum conservation we must
carry out an integration over the perpendicular corn-
ponent of the phonon wave vector q, . In particular, the
differential scattering rate between 2D electrons S„ is
simply calculated from the 3D transition rate S», from
the relation

k' 0
X P(E)— P(E') S(k, k') . (9) Sn = f lI (q, ) l'S&t&dq, ,

where I(q, ) is the overlap for intraband scattering,

(14)

B. Scattering theory in a 2DEG

The carriers in an Al Ga, As/GaAs heterojunction
are spatially confined along the normal direction with
respect to the interface, which we designate as the z
direction. As a result of the intrinsic internal field in the
heterojunction, there is no longer any translational in-

variance along z, so that the wave function of an electron
is given by

%„(r,z}=g„(z)exp(ik r), (10)

where we have assumed a parabolic energy band, and
m ' =0.067mp is the effective mass in GaAs. In what fol-

lows we assume that the electrons only occupy the lowest
subband (n=0}, and that the confinement profile is accu-
rately described by the variational wave function

go(z)=Q —,'b z exp( —,'bz), —

where b is a variational parameter given by
1/3

48~m 'e
depl 3p

epA

(12)

(13)

Here, ep=12.91 is the static dielectric constant in GaAs,
n, is the 2D sheet density, and nd, l is the depletion
charge per unit area in the channel.

C. Acoustic-phonon scattering

where g„(z) is the electric subband wave function, k is

the 2D electron wave vector in the plane, and r=(x,y).
In this section we denote all 3D vectors and their magni-
tudes by capital letters, distinguishing them from the
strictly 2D ones. The corresponding energy of the state

4„ is given by

AkE„(k)=E„+
2m

I(q, )=f go(z)exp(iq, z)dz .

Substituting Eq. (12) into Eq. (15), we obtain

lI(q, )
b6

(b2+q2)2
(16)

It follows that as long as the 3D rates S», are known, it is
a straightforward task to evaluate the corresponding 2D
rates S».

The 3D differential scattering rate can be written in the
form

Snt = lC (Q)l 5(E,E') (17)

D A(Q}l'=
2pul

(eh, 4) Ru(
ICpE;((Q)l =

2pul

(eh, 4) fiu,
lc„,,(Q)l'= ' —~, (Q)

2pu,

(18a)

(18b)

(18c)

We consider the inelastic scattering from LO phonons in

a following section. Here, D is the DP constant,
h&4=1.2X10 V/cm is the applicable PE tensor corn-

ponent, p is the mass density, and u& (u, ) is the longitudi-

nal (transverse) velocity of sound in GaAs. The functions

A«(Q) are the dimensionless anisotropy factors for a
(001) heterolayer orientation in a crystal with zinc-blende

symmetry. Expressed in terms of the bulk 3D phonon
wave-vector components Q=(q, q, ), they are given by

where the matrix elements lCJ(Q)l for DP, longitudinal

PE, and transverse PE-coupled scattering are given by

In this paper we consider the scattering of electrons
arising from the absorption and emission of acoustic-

2 4

A(, )= (19a)
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8q4q2+q'
A(, )=i%qz

(

The factor b (E,E') is given by

b, (E,E') =Ng5(E E—'+ficog )

(19b)
The scattering of electrons from acoustic phonons may

be considered quasielastic since Ace& «Ez, where EF is
the Fermi energy. In the EP temperature range we have
that fico&/kz T« 1 so that N& -k~ T/%cog. Under these
approximations Eq. (22) takes the simplified form

+(N&+1)6(E E'—fico—g )8(E R—co&), (20)

where e(x) is the unit-step function. The first (second)
term corresponds to the absorption (emission) of an
acoustic phonon of wave vector Q, and energy
fico& =fiu«(q +q, )'~ . For low fields the phonon distri-
bution N(Q) is in equilibrium and is given by the usual
Bose occupation factor

'(E) =
(2m )

X fd k' fdq, (1—cos8}

iC (q, q, )i
X i(q, )i' ' b(E,E'),

e (,T)

(28)

1V
1

exp(Pficog ) —1
(21)

k' 0
X P(E) P—(E')

k

[Ci(q, q, )/
X I(q, )/ b(E,E'), (22)

e (q, T)

where j denotes the different acoustic-phonon-scattering
mechanisms under consideration. This equation forms
the basis of our analysis of the transport properties of a
2DEG. Note that we have introduced the effects of
screening on the bare scattering rates by dividing the
matrix elements C (q, q, ) by the dielectric function
e(q, T), of the 2DEG,

e(q, T)=1+ H(q)II(q, T) . (23)
E'pq

We use the Maldague formula to calculate the static finite
temperature polarizability, '

11 (q,
II(q, T, g)= dg' . (24)

4ks T cosh [(g—g') l2ks T]

The 2D version of the linearized Boltzmann equation
Eq. (9) is given by

1 2ir
d zk

[1—fo(E') ]1= fd k'fdq,

where A(E, E')= (2k& T /Ace~ )5(E E') —and
=2k (1—cos8). From Eq. (28) we see that for quasielas-
tic scattering the perturbation distribution P(E) is easily
calculated in a closed form. The solution obtained in this
way is called the relaxation time r, (E), since from Eq. (6)
we see that the collision integral can be written in the
form

pIc[f]= (E)
(29)

1

rDp(E)

3D m*bk&T
(1—cos8)d 8,16~ pg& p g q T

(30a)

9 (eh, 4) m'k&T

rpE. i(E) 32 27TR pgi

X f (1 cos8)f,(w)d8—,
0 qe (q, T}

(30b)

13 (eh, 4 } m *ks T

happ. , (E) 32 2M pii,

where r, (E)=P(E) is the characteristic time in which the
distribution f returns to its equilibrium form fo in the
absence of the external field F.

Substituting Eqs. (16), (18), and (19) into Eq. (28), we
obtain the following expressions for the relaxation time:

Here, IIp is the zero-temperature RPA polarizability
function of the 2DEG

X f (1—cos8)f, (w)d8,
0 qe (q, T)

(30c)

m*
IIO(q) = ' 1 —e(q —2kF ) 1—

'2
2kF

(25)

H (q) =f dz fdz'go(z)go(z')exp( —q~z —z'~ ) . (26)

where kF denotes the Fermi wave vector. The form fac-
tor H (q) associated with the subband wave function is
defined by

where fi (f, ) are the dimensionless form factors for the
longitudinal (transverse) acoustic-phonon modes associat-
ed with the piezoelectric coupling defined by

f,(w}= —f dz f dz' f go(z)go(z')

Substituting Eq. (13) into Eq. (27) we obtain

8+9w +3w
8(1+w)

where w =q!b.

(27}

+„~,(q, q, )
X

q 2+ q
2

X exp[iq, (z —z') ]dq, ,

(31a)
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f, (w) = —f dz fdz' f go(z)go(z')
1 1 +

r„,(E) rDp(E)
1 2

7PE.((E) APE. t(E)
(3&)

+„A,(q, q, )
X

q +q.

Xexp[iq, (z —z')]dq, .

(31b)

After a contour integration we have

f, (w) =(—,
'

)f dz f dz'go(z)go(z')

X(3+3u —u )exp( —u),

f, (w)=( —,', )f dz f dz'go(z)go(z')

(32a)

1+6w+13w +2w
W

(1+w)

,(w)= 13+78w+72w +82w +36w +6w
13(1+w)

(33a)

(33b)

It is the relaxation time r (E) which is of relevance to
the transport properties, such as the mobility in a 2DEG.
As a result of the external dc electric field the distribution
function is deformed from f0, inducing a current density

j given by

(34)

X(13+13u —14u +3u )exp( —u),
(32b)

where u =q~z —z'~. Substituting for the wave function
go(z) we obtain'

where in the last term the degeneracy of the transverse
modes has been taken into account.

At this point it is important to make a clear distinction
between the relaxation time ~„which is of direct
relevance in evaluating the transport properties from the
scattering time ~, . These two characteristic times of the
system under consideration diff'er by the important
(1—cos8) factor. The scattering rate r, ' is given by
making the replacement (1—cos8)~1 in the integrand
for the formula for r~ given in Eqs. (30a)—(30c). Physi-
cally, the scattering time ~, simply gives the time between
scattering events between an electron and an acoustic
phonon. From a many-body-theory viewpoint ~, is sim-

ply related to the imaginary part of the single-particle
self-energy due to acoustic-phonon scattering, whereas
the relaxation time ~, is given by a two-particle current-
current correlation function which defines the conduc-
tivity of the system via the standard Kubo formula. '

Damping is introduced by dressing the Green s-function
propagators by the relevant acoustic-phonon self-
energies. The factor (1—cos8) is associated with the cor-
responding vertex corrections consisting of ladder dia-
grams which are required in order to obey the Ward iden-
tities. ' ' As a result of the (1—cos8) factor in the in-

tegrand for v, ', we see that it is the large-angle scatter-
ing events which contribute significantly to the relaxation
rate. Small-angle scattering events where cos0=1 make
a negligible contribution to ~, as one qualitatively ex-

pects since such events hardly impede the electrons.

Ju =, ( „,(E)), (35)

where

(.(E) ) =
rEE dE

Bfo

E dE
B o

BE

(36)

For the Hall mobility pH we have that

(.(E))„.„=

cl of r (E)E dE

wEE dEO

BE

(37)

To calculate the mobility limited by acoustic phonons in
a 2DEG we simply take

in a heterolayer. From the definition of the drift mobility

pD =j In, F, we obtain

D. Transport in the Bloch-Griineisen regime

In our discussion thus far, we have considered the qua-
sielastic scattering of electrons from acoustic phonons in
the EP regime where Ace& &&kz T. In this section we ob-
tain the relaxation times for lower temperatures in the
BG regime where Ace& =kz T. The fact that the
acoustic-phonon energies are comparable to k~ T gives
rise to a new, more complicated temperature dependence
of the relaxation rates via the statistical occupation fac-
tors, ' ' At low enough temperatures acoustic phonons
with wave vector q =2kF cease to be appreciably excited,
and no longer contribute to the relaxation rate. In the vi-

cinity of the Fermi energy, only phonons with small wave
vectors can contribute to the scattering rate. The transi-
tion into the BG regime roughly occurs at a temperature
given by k& Ta& =2kFfiuI For n, =(1 an. d 6) X 10"
cm, the transition temperature TB&=6.22 and 15.25

K, respectively. ' ' The transition into the BG regime
is characterized by a dramatic decrease in the relaxation
rate for E =EF, and correspondingly we expect a
stronger dependence of the reciprocal mobility on T.

In the BG regime instead of the EP form for h(E, E'),
we keep the full form as in Eq. (20). We still assume
quasielasticity so that we still obtain closed-form solu-
tions for the relaxation rates:
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7J '(E)=
3 2 f da(1 —cos8)f dq, ~I(q, )~

4 - -,Ic, (q, q. )l'
iti' (2m. )' o o e'(q, T)

1
X [Nti [1 f—o(E +fmg ) ]+(N(i+ 1)[1 f—o(E R—cog )]],

0

where the C 's are given by Eqs. (18a)—(18c). In the limit
fico& /kz T && 1, these relaxation rates approach the
equipartition results given in Eqs. (30a)—(30c). The drift
mobility in the BG regime can then be evaluated using
Eqs. (36) and (38).

E. Transport in the inelastic regime

As the temperature of the 2DEG is raised above T=40
K, the scattering from polar LO phonons starts to dom-
inate the transport properties of the 2DEG. The previ-
ous simplifications in the evaluation of the perturbation
distribution intimately associated with the quasielastic
approximation are no longer valid. For inelastic process-
es, ttt(E) is no longer obtainable in a simple closed form.
In particular, the solution is not given by simply multi-
plying the inelastic LO-phonon scattering rate by
(1—cos8). If inelastic processes are involved, the linear-
ized Boltzmann equation must be solved directly.

The matrix element for scattering from bulk polar LO
phonons is given by '

2m.e %coo
cLo(g) '=

E'p
(40)

2e cop
S„(k,k') = H(q)b(E, E'),

2g E'~ E'p
(41)

where b, (E,E') is given by Eq. (20) with ttico& =A'coo, in-
dependent of the 3D phonon wave vector Q. The corre-
sponding collision integral for LO-phonon scattering in a
2DEG is

where Scop=36.8 meV is the LO-phonon energy, and
e„=10.92 is the optical dielectric constant in GaAs. As-
suming the LO phonons to be dispersionless, using Eqs.
(14)—(16), (27), and (40), we obtain the 2D differential
scattering rate

I,[f]=—efiF t)fo e coo 1 1 1
k cosOm* ~E 2 „ceo1 —fo(E)

X f d k' ctt(E) ttt(E—') [1—fo(E')] A(E,E') .
k '

q
(42)

For a frequency of cop we assume screening effects to be small and ignore them; otherwise the problem would require a
dynamical screening calculation.

Substituting Eq. (42) into Eq. (3), the 2D Boltzmann equation can be written in the form of a difference equation cou-
pling ttt(E) with ctt(E+Rcoo), '

1=So(E)P(E) S,(E)ctp(E +R—coo) S,(E —A'coo)P—(E Acoo),— (43)

where So(E) denotes the sum of the in-scattering and out-scattering contributions of the quasielastic processes due to
acoustic phonons, and the out-scattering contribution from the LO phonons. The other terms S,(E) and S,(E) denote
the in-scattering contributions from the inelastic-scattering processes due to the LO phonons. After some algebra we
obtain

m *cope
So(E)=

bA

m cope
S,(E)=

bA

+(No+1)[1 fo(E —iricoo)]I (—E)]+ 1

7tot
' 1/2E +%cop J (E)No [1 fo(E +tricoo)]—1 1

eo 1 fo(E)—

[No [1 fo(E +A'coo) ]I+(E)—
eo 1 —fo(E)

(44b)

1/2E %copm *cope
S,(E)= —— (No+ 1)[1 fo(E —A'coo)]e(E —fico())— J (E) , (44bR' e eo 1 —fo(E)

where 1/7, 0,(E) is given by Eq. (38), No = 1/[exp(pt)icoo) —1],and the angular integrals I+(E) and J+(E) are given b—y—
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I-(E)=f dO
1+(—", )u+(E, O)+( —,')u+ (E,O)

u+(E, O)[1+u+(E,O)]
(45a)

and

1+(—', )u+(E, O)+( —,')u+(E, O)J+(E—) = dOcosO
0 u+(E, O)[1+u+(E,O)]'

(45b)

The functions u+(E, O) are defined by

p+ (E,O) = [2E+ficoo 2+—E (E+Acoo)cosO]
2712

$2$ 2

1/2

(46)

A great deal of literature on solving Eq. (43) in bulk systems exists when the relaxation-time approximation is no
longer valid. Many techniques have been applied such as the variational, matrix, and Monte Carlo methods. ' The
most sophisticated theoretical work in this regime has been carried out by Vinter, ' ' who uses numerical wave func-
tions and includes the effect of multisubbands and solves the Boltzmann equation by a combination of matrix and itera-
tive techniques. In this paper we adopt the iteration method first formulated by Rode. For a given value of the
electron energy E =E; + I%coo, where 0 & E, & %coo and I =0, 1,2. . . , we set S,(E)=S,(E)=0 so that the zeroth-order
solution of P(E; + Ificoo) are given by

p' '(E; + IA'F00) =S() '(E; + Itic)0),

P'o'(E;+(I+1)A'coo) =So '(E; +(I+1)A'co )0.

lory repeatedly carrying out a Ritz iteration of Eq. (43), it follows that in the (n+ 1)th iteration we have that '

P'"+"(E,+Ificoo)=SO '(E, +fIico o)[1 +S( E; +AI'coo)P'"'(E; +( I+1)R coo)

+S,(E; + Ih'coo)$'"'(E;+ ( I —1)ficoo) ] .

(47a)

(47b)

(48)

rtr(E)=SO '(E) . (49)

If the electron energy E is much larger than %coo, as is the
case at high temperatures, we can make the replacement
P(E+A~o)~P(E), and we arrive at the high-energy
relaxation-time approximation

1

So(E)—S,(E)—S,(E)
(50)

The relaxation times ~~~ and ~HE are simply the 2D ver-

The iteration is terminated for a given value of E when
P'"+"(E) converges to within some preset tolerance.
Note that in this method degeneracy is properly taken
into account, and we completely bypass the use of
Matthiessen. 's rule Once the values of P(.E) are obtained
in this way, the mobility can be calculated from Eqs. (35)
and (36), with r(E) replaced by P(E).

Although strictly speaking no closed-form expression
exists for the perturbation distribution when inelastic-
scattering processes are involved, a relaxation time may
be obtained within certain approximations. For the case
of low temperatures the in-scattering term via phonon ab-
sorption S,(E) is negligible due to the scarcity of pho-
nons with energy Amo, and the corresponding emission
term S,(E) is negligible since there are only a few elec-
trons with a phonon quantum of energy. Therefore, at
low enough temperatures it is justified to ignore the in-
scattering terms in determining P(E), which gives us the
low-temperature relaxation-time approximation

sion of the Frohlich relaxation-time approximations
for LO-phonon scattering, including the quasielastic
scattering from acoustic phonons.

RKSUL'KS AND DISCUSSION

A. Relaxation and scattering rates
in the equipartition regime

Using the theoretical model outlined in the preceding
section we calculate the scattering rates ~, ' and relaxa-
tion rates ~, ' due to acoustic phonons, as a function of
the electron energy E, in the EP regime. The relevant
rates have been obtained in Eqs. (30a)—(30c). Our result
for the individual DP and total PE rates are given in
Figs. 1(a)—1(d), for n, = 1 X 10"and 6 X 10"cm, at two
different temperatures T=20 and 40 K. We take D=12
eV and set the depletion density to n&, &

=5 X 10' cm
Unlike the case for scattering from remote ionized impur-
ities' where the transport relaxation time ~, can be
greater than the scattering time ~, by orders of magni-
tude, due to the long-range nature of the electron-
impurity interaction, we see that v., /v, =1, since the
screened electron —acoustic-mode phonon interactions
are of relatively short range.

Using Eq. (35) for the drift mobility we calculate the
reciprocal of the acoustic-phonon limited mobility as a
function of temperature for different values of the
deformation-potential constant in Fig. 2, and different
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rier distribution for the Hall mobility pH, we evaluate the
dimensionless Hall ratio rH =pDIp~ as a function of T
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20

(a)

FIG. 6. Linear coefficient of the temperature dependence a
as a function of the electron sheet density n, . The solid lines are
the theoretical curves for three different values of the
deformation-potential constant D. These curves are extrapolat-
ed to lower densities by the dashed lines. The dotted line is the
theoretical curve for D= 13.5 eV, for a vanishing depletion den-

sity without any temperature-dependent effects. Results report-
ed by Mendez, Price, and Heiblum (Ref. 27) are plotted by ~;
other data points are from Harris et al. (Ref. 43).

the temperature range T=4—40 K. For n, =1X10"
cm the Hall ratio exhibits a maximum of =1.07 for
T=15.5. We see from Fig. 4 that for the density and EP
temperature range investigated in this paper, rH =1.
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electron —acoustic-phonon interaction are determined
from the transport properties.

B. Temperature dependence
of low-temperature mobility

For carrier densities n, =(1.0—6.0) X 10" cm it is
experimentally observed that in the EP temperature
range T=4—40 K the reciprocal mobility increases
linearly with temperature,

1 +cxT1

P Po

The slope a increases with n, independently of the zero-
temperature mobility pp, for high-mobility samples with

po ) 10 cm /V s. In a typical Al„Ga, As/GaAs
modulation-doped semiconductor the electron wave func-
tion is mainly confined in GaAs so that the influence of
alloy disorder scattering can be considered negligible.
Interface-roughening scattering also plays a minor role
due to the smoothness of the interface in high-quality
heterojunctions. In this section we investigate in detail
the contributing factors to the linear coeScient a of the
temperature dependence in the EP regime.

If the scattering from ionized impurities is independent
of the temperature in ultrahigh-mobility samples for
T&40 K the need to quantify the ionized impurity
scattering is eliminated, so that the temperature depen-
dence of p can solely be attributed to the acoustic pho-
nons. Adopting the theoretical model outlined in the
preceding section, a reasonable agreement of the temper-
ature dependence of p with experimental results ' is
obtained only by assuming a value of D =12—13.5 eV,
which is significantly greater than the generally accepted
value ' in bulk GaAs (D=7 eV). Some other studies
which completely or partly ignore screening effects,
suggest that the temperature dependence of p is satisfac-
torily explained using a value of D =7—8 eV. Undoubt-
edly, the extensive investigation of the mobility in a
2DEG is partly motivated by the controversy surround-
ing the exact value of the DP constant in GaAs.

Enhanced values of D have also been independently in-
ferred from an analysis of energy relaxation data in GaAs
heterojunctions. We comment here that in the
power loss context there exists a possibility that the value
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mental data is obtained at low temperatures with D=7
eV.

A claim has also been made that the PE coupling con-
stant is also enhanced in heterolayers. Harris et al. "
study the acoustic-phonon-scattering process in
ultrahigh-mobility GaAs heterojunctions over a much
wider range of carrier densities than in previous works.
In their ultrapure samples, scattering by both remote and
background ionized impurities is significantly reduced so
that the temperature dependence of p of T=4—40 K is
expected to be dominated by acoustic phonons. ' For
low electron densities, n, below =2X10" cm, they
find that a simple extrapolation of the existing theoretical
models ' does not show good agreement with their ex-
perimental results (see Fig. 6). Their measured values of
a are clearly larger than the extrapolated theoretical re-
sults at lower carrier densities. They suggest that the
discrepancy arises from the fact that the piezoelectric
constant h, 4 in a 2DEG is =50% greater than in bulk
GaAs. We find, consistent with earlier claims, ' ' that
to explain the experimental results of Ref. 42, one re-
quires an enhanced value of D, but our calculations clear-
ly show that a corresponding ad hoc enhancement of h &4

to explain the low-density data is unnecessary. We find
that the temperature-dependent effects arising from
screening and thermal averaging over the carrier distri-
bution become increasingly important at lower densities,
and it is incorrect to simply extrapolate the high-density
results which do not include these temperature-
dependent effects. For high carrier densities above
=2X10" cm, the temperature dependence of screen-
ing in the temperature range 4—40 K is rather negligible,
and the static polarizability Il(q, T) =IIO(q) is simply the
zero-temperature polarizability function for the 2DEG as
given in Eq. (25), calculated in the RPA. For low values
of n„ the temperature dependence of II(q, T) becomes
rather significant. As T increases, II(q, T) for q =2k+ de-

creases, thereby reducing the effect of screening by the
2DEG and increasing the value of the acoustic-phonon
limited mobility p„.

We numerically evaluate p„ in the temperature range
T=4—40 K for a range of carrier densities

n, =(0.3—6.0)X10" cm . We keep both the tempera-
ture dependence of screening and the effect of thermal
smearing of the electron energy [see Eqs. (24) and (36)].
We also estimate their relative importance at various den-
sities. If both the temperature-dependent effects in the
evaluation of (r(E) ) are suppressed, it follows from the
equipartition of electron-phonon scattering that p,, is
strictly linearly proportional to T. The crucial point is
that an approximate linear dependence is preserved even
in the presence of these two effects in the temperature
and density range of interest in this section.

The combined and isolated effects of the temperature
dependence of p,, '( T) are shown in Fig. 5 for
n, = 1 X 10" and 6 X 10" cm . The solid lines represent
the theoretical calculations which include both the
temperature-dependent screening and thermal averaging
over the distribution, whereas the thin solid lines exclude
both effects and are, therefore, strictly linear in T. As ex-

pected, at the higher density n, =6X 10" cm, the
temperature-dependent effects are not very significant.
At high n„ thermal averaging over energy is completely
negligible and the effect of the temperature dependence of
screening is noticeable only at higher temperatures T) 20
K. At the lower density, both temperature-dependent
effects are rather important, with the temperature-
dependent screening effect being stronger than the
thermal averaging effect.

We make a linear fit of the thick solid lines (which in-
clude both temperature-dependent efFects) in the temper-
ature range T =20—40 K, where we expect EP to be val-
id, and identify its slope with the experimentally mea-
sured temperature coefficient, a=de, , '(T)ldT. The re-
sults of our theoretical calculation of a(n, ) for the densi-

ty range n, =(0.6—6.0)X10" cm are given in Fig. 6
for three different values of D. Assuming a value

nd, ~=5X10' cm for the depletion density, the op-
timal value for D is slightly less than 12 eV. We extrapo-
late the results down to lower densities by the dashed
lines, since for small n, /nd, ~

ratios the variational wave
function may not be sufficiently accurate. Although the
theoretical curve for a(n, ) which ignores both
temperature-dependent effects agrees fairly well with the
experimental data at high densities above n, =3X10"
cm, the fit becomes increasingly poor at lower densi-
ties. The temperature dependences arising from screen-
ing and thermal averaging significantly augment p,, at
high temperatures, increasing the temperature coefficient
a as the density is decreased, giving rise to the nonmono-
tonic behavior of a(n, )seen in .Fig. 6. Our claim is that
this explains the rather curious minimum in a(n, ) ob-
served in the experimental data of Harris et al.

In Fig. 7 we show the individual temperature depen-
dences of the reciprocal mobility limited by the
deformation-potential and piezoelectric-coupled
acoustic-mode scattering. Their sum is compared to the
total acoustic-phonon-scattering-limited mobility to
check the validity of Mat thiessen's rule. (A similar
analysis was carried out by Stern for silicon inversion
layers including Coulomb and surface-roughness scatter-
ing. ) At high densities and low temperatures,
Matthiessen's rule holds extremely well, but at low densi-
ties and high temperatures it does not work as well
(where we observe the expected inequality), although the
effect on a is small (less than 10%). Finally in Fig. 8 we

show the density dependence of the acoustic-phonon-
scattering-limited mobility itself for four different tem-
peratures. The maximum in p„(n, ) for a given tempera-
ture arises from a competition between the screening
effect which dominates at lower n, (and tends to increase
p„with increasing n, ), and the matrix element effect
which dominates at higher n, (and tends to decrease with

p„with increasing n, ). Both of these effects go down
with increasing temperature, producing a very weak
density-dependent p„at higher T. We point out that the
results shown in Fig. 8 apply only when impurity scatter-
ing has been completely eliminated. In real systems there
will be an additional n, dependence of p arising from
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screening effects associated with the charged impurity
scattering.

C. Relaxation rate and mobility
in the Bloch-Griineisen regime

We compare the BG relaxation rate Eq. (39) with the
EP rate Eq. (28) for the DP coupled scattering by acous-
tic phonons in Figs. 9 and 10 for n, =(1 and 6)X10"
crn for temperatures T=1, 10, 20, and 40 K. The BG
and EP results tend to diverge as the temperature is
lowered. In particular, the BG relaxation rate shows a
characteristic dip in a narrow region around the Fermi
energy EF. Comparing Figs. 9(a)—9(d) and 10(a)—10(d),
we see as expected that the transition into the BG regime
manifests itself in the relaxation time ~, at a higher tem-
perature for higher densities, in accordance with the
rough estimates of TBG given earlier. The same general
features are exhibited for the BG and EP relaxation rates
for the piezoelectric-coupled scattering, as can be seen in
Figs. 11(a)—11(d).

For n, =(1 and 6) X 10"cm, we calculate the mobili-

ty in the BG regime which is plotted in Fig. 12, and com-
pare it with the EP results of the preceding section. The
reciprocal mobilities as determined by the BG relaxation
rates are shifted downwards slightly from the EP curves
since EP tends to overestimate the Bose factor for acous-
tic phonons. We observe the characteristic stronger
dependence of p,, ' on T at low temperatures especially at
higher densities as shown in Fig. 13(a). At high tempera-
tures the expected quasilinear behavior of the EP regime
is recovered. For low temperatures we extract the
effective exponent y for the temperature dependence of
the reciprocal mobilities T~ from the log-log plot in Fig.
13(b) for densities n, = ( 1 —10)X 10" cm . It is clearly
evident from this graph that p,, ' enters into the strongly
T-dependent BG regime at higher temperatures for
higher densities n, . By employing a linear fit of the low-
temperature portion of the curves we obtain the following
values for the effective exponent y. For
n, =(4—10)X10" cm, we have that y=4.5. As the
density is lowered, the value of y decreases slightly for
the particular temperature range under investigation.
We obtain y =4.3, 4.0, and 3.2 for densities
n, =(3,2, 1)X10"cm, respectively. We conclude that
the asymptotic value of y in this model is probably
y=4.5. Using a power counting method based on the
strong screening approximation and Matthiessen's rule,
and setting the perpendicular Fourier transform of the
electron density to unity for small q„ it is easy to show'
that the reciprocal mobility becomes the sum

p,, '=c, T +cz T . The relevant prefactors have been de-
rived by Stormer et al. ,

' who have experimentally ob-
served the transition into the BG regime. Our results for
the lower densities (especially for n, =1X10"cm ) in-
dicate that the transition into the BG regime has not
been fully completed even for temperatures as low as
T= 1 K. For T( 1 K, however, the overall temperature
dependence of mobility (in ultrapure heterojunctions) is
extremely weak (and the background impurities in GaAs
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most likely contribute to this temperature dependence).
For this reason we did not extend our calculation below 1

K.
D. Perturbation distribution function and mobility

in the inelastic regime

We solve for the scattering rate P(E) by an iterative
procedure as described in Sec. II. In Figs. 14(a)—14(c)
and 15(a)—15(c) we show the perturbation distribution

'(E) for n, =(1 and 6)X10" cm at T=20 and 300
K. For low temperatures we see that P '(E) coincides
with the EP result for the relaxation rate due solely to
acoustic phonons and with the low-temperature and
high-energy relaxation rate approximations exactly over

that portion of carrier energies which determines the
transport coefficients of the 2DEG [see Figs. 14(b) and
15(b)]. However, as T is increased the distribution is no
longer degenerate and a larger energy range is sampled
for the thermal averaging necessary to determine the
transport properties. In this case [see Figs. 14(c) and
15(c)] the oscillatory bumps in the perturbation distribu-
tion P '(E) start to contribute, and an appreciable reduc-
tion in the mobility takes place. The oscillatory behavior
is due to the fact that P(E) is coupled to P(E+Aruo). We
note that the high-energy relaxation rate ~HE approaches
the iteration result for large E. A comparison of the mo-
bility limited by LO and acoustic phonons calculated via
the iterative scheme and the closed-form relaxation rate
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FIG. 14. The perturbation function P (E) (thick solid line),
low-temperature relaxation rate ~LT' (dashed line), and high-
energy relaxation rate vHE (dotted line) due to quasielastic
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LO phonons for n, =1X10"crn: (a) T=20 K; (b) enlarge-
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Flax. 15. The perturbation function P '(E) (thick solid line),
low-temperature relaxation rate ~&~ (dashed line), and high-
energy relaxation rate ~HE (dotted line) due to quasielastic
scattering from acoustic phonons and inelastic scattering from
LO phonons for n, =6X10" cm: (a) T=20 K; (b) enlarge-
ment of the low-energy part; (c) T=300 K. The thin solid line
is the total relaxation rate due to acoustic phonons v;, '. D= 12
eV and n d,» =5 X 10' cm
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approximations are given in Fig. 16(a) and 16(b). We see
that at room temperature the low-temperature relaxation
rate ~LT' underestimates the true mobility by about a fac-
tor of 2. The high-energy relaxation rate overestimates
the true mobility ~HE but the deviation from the iterative
value is much less.

IV. CONCLUSIONS

In summary, we have presented a detailed investigation
of the phonon-scattering rate and phonon-scattering-
limited mobilities in an Al Ga&, As/GaAs heterojunc-
tion in the temperature range T=1—300 K. We con-
sidered the quasielastic scattering from the DP and PE-
coupled acoustic phonons, and the inelastic scattering
from the polar LO phonons. Our calculations were based
on the following model and approximations: (1) the elec-
trons were assumed to occupy only the lowest subband;
(2) the subband wave function in the z direction was ap-
proximated by the standard variational wave function; (3)
we assumed the bulk phonons to be the only phonons
contributing to scattering; and (4) the DP and PE-
coupled acoustic-phonon-scattering rates were calculated
with full wave vector and temperature-dependent static
screening of the electron-phonon interaction included in
the RPA.

In the EP regime we carried out a detailed investiga-
tion of the linear coefficient of the temperature depen-
dence of the low-temperature mobility a. In excellent
agreement with experimental results we showed that the
curious minima in a(n, ) can be explained with an
enhanced value of the DP constant, without a corre-
sponding arbitrary enhancement of the PE constant, by
taking into account the temperature-dependent effects of
screening and thermal broadening at low carrier densi-
ties. In the BG regime we computed the relaxation rates
and explicitly showed the drastic reduction that occurs at
the Fermi energy at low enough temperatures. As a re-
sult, the calculated reciprocal mobilities exhibited a
stronger dependence (the effective exponent increasing
from 1 in the EP regime to about 4.5 in the BG regime)
on the temperature T than the corresponding EP mobili-
ties. For high temperatures the perturbation distribution
was calculated by solving the linearized Boltzmann equa-
tion via the Ritz iteration method of Rode. The direct
solution was compared with the closed expressions of the
approximate relaxation times at low temperatures ~„T
and high energies v.

HE to check their level of validity.
The calculations presented can be extended and im-

proved upon in a number of ways. A quantitatively more
accurate model can be constructed by using numerical
subband wave functions, and including the effects of in-
tersubband scattering which certainly become impor-
tant at room temperatures and high carrier densities.
The possible contribution of interface phonons to elec-
tron scattering, and the effects of dynamical screening
of the LO phonons, can also be considered.

It has been found that for the total average energy-loss
rate of a 2DEG in a Al, Ga& As/GaAs heterojunction
at low temperatures, the inclusion of the renormalized
LO-phonon contribution to the standard acoustic-
phonon theory with the bulk value for D is in close agree-
ment with the experimental data for high densities. If
these low-energy modes of the renormalized LO phonons
are important in the context of energy relaxation, it is
then natural to speculate whether they also contribute
significantly to the momentum relaxation of the electron.
It is possible that such an analysis (which must incorpo-
rate complicated vertex corrections) may reconcile the
DP constant value in the corresponding transport prob-
lem.

Our calculated results for the temperature and density
dependence of the phonon-scattering-limited electronic
mobility are in excellent quantitative agreement with the
available experimental results, ' establishing the basic
validity of the model. The value of the DP coupling con-
stant needed for this excellent agreement between theory
and experiment is around 12 eV, which is consistent with
earlier theoretical claims. ' Real systems obviously al-
ways contain impurities which contribute to scattering as
well. In ultrahigh-mobility samples one can rather accu-
rately extract the phonon scattering contribution to the
electronic mobility by extrapolating the inverse mobility

p
' to zero temperature and subtracting out the zero-

temperature contribution pQ ', assuming that

p
' =po '+p h'( T) with our calculated results of this pa-

per applicable to the phonon part p h'. For lower mobili-
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ty samples (p ( 10 cm /V s), impurity scattering starts
contributing significantly to the temperature dependence
of mobility and this separation (or the zero-temperature
extrapolation) fails to give the correct phonon-
scattering-limited mobility. %e expect our theoretical re-
sults to be widely applicable to high-mobility heterojunc-
tions.
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