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A one-dimensional quantum waveguide theory for mesoscopic structures is proposed, and the bound-
ary conditions of the wave functions at an intersection are given. The Aharonov-Bohm effect is quanti-
tatively discussed with use of this theory, and the reflection, transmission amplitudes, etc., are given as
functions of the magnetic flux, the arm lengths, and the wave vector. It is found that the oscillating
current consists of a significant component of the second harmonic. This theory is also applied to inves-
tigate quantum-interference devices. The results on the Aharonov-Bohm effect and the quantum-
interference devices are found to be in agreement with previous theoretical results.

I. INTRODUCTION

Since the Aharonov-Bohm effect was experimentally
verified by Webb et al.,! there have been many advances
in the physics of mesoscopic structures. The discussion
of the Aharonov-Bohm effect was based on the theory of
small normal one-dimensional rings,? and a generalized
many-channel conductance theory® proposed by Biittiker
et al.* Most of the initial work on electron transport in
small systems has dealt with metallic samples, in which
many transverse subbands were involved and the trans-
port was diffusive. More recently, advances in semicon-
ductor microtechnology have made it possible to fabri-
cate extremely high-mobility quantum wires with narrow
widths, in which only a few of the lowest subbands are
occupied and the transport is ballistic. The allowed
modes in the channel are then the “waveguide” modes.

The splitting-gate structure experiments>® verified the
waveguide characteristics of electron transport through a
wide-narrow-wide structure. Kirczenov’ made a detailed
quantum-mechanical calculation for this structure, and
explained the fine structure of the conductance plateaus
observed in the experiments. Datta and Bandyopadhyay?®
presented a simple theory for the Aharonov-Bohm effect
in semiconductor microstructures, assuming ballistic
transport. It was shown that in well-designed symmetric
structures it may be possible to attain large conductance
modulation in a magnetic field even if the transverse di-
mension of the structure is large, the aspect is poor, and
kg T exceeds the correlation energy. Many of the device
concepts based on the quantum-interference effect have
been proposed in the past few years.”!® Sols et al.!!
presented a theoretical study of semiconductor T struc-
tures that may exhibit transistor action. The calculation
showed that relatively small changes in the stub length
can induce strong variations in the electron transmission
across the structure. The performance of the device can
be improved by inserting additional stubs of slightly
different lengths. Obviously, for a full understanding of
the physics of mesoscopic structures of waveguide type,
the solution of the one-electron Schrodinger equation

,ﬁl
2m

VZ+V(r)

Y(r)=Ey(r) (1)

*

is necessary.

In this paper we present a one-dimensional quantum
waveguide theory for the mesoscopic structures of
waveguide type, and apply it to the Aharonov-Bohm
effect and other quantum-interference devices.

II. QUANTUM WAVEGUIDE THEORY
FOR MESOSCOPIC STRUCTURES

The starting point is the Schrodinger equation (1). We
assume that the width of the structure is narrow enough
compared to the length of the structure so that the ener-
gy spacing between the quantum energy levels produced
by the transverse confinement is much larger than the en-
ergy range of the longitudinal transport. Therefore, Eq.
(1) reduces to a one-dimensional equation with the coor-
dinate axis along the longitudinal direction of the struc-
ture.

One main problem is the boundary conditions at an in-
tersection crossed by more than two circuits. Let ¢; be
the wave function in the ith circuit; then, at the intersec-
tion, the continuity of the wave functions demands that

V=== =9, . @)
From the conservation of the current density we obtain
ay;
—=0, 3
2 o (3)

where all the coordinates x point to or point back to the
intersection.

The wave function in each circuit is the linear com-
bination of two plane waves with opposite wave vectors,

Yi(x)=ce™+c, e ** (4)
There are 2n unknown coefficients for the n circuits
crossing the intersection, among which the n coefficients
can be determined by the n equations (2) and (3); the oth-
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er half of the coefficients will be determined by the
boundary conditions at the other intersections or the con-
ditions at the input or output terminals. Hence the set of
equations (2) and (3) at all cross points is complete for
determining the wave function of the whole structure.

III. RING WITH TWO LEADS

To illustrate the application of the above theory, we
consider the structure of a ring with two leads as shown
in Fig. 1(a) in the absence of magnetic field. The two
arms of the ring have different lengths L, and L,. We in-
troduce the local coordinate system for each circuit such
that the direction is along the electron-current direction
and the origin is taken at the intersection of the upper
reaches. For the input circuit, the coordinate origin is
taken at the intersection of the lower reaches. The choice
of the coordinate origin is noncritical; it only affects a
phase factor on the wave function.

In the local coordinate system, the wave functions in
the circuits 1-4 shown in Fig. 1(a) can be written as

t/}l___eikx_'_ae—ik)«: ,
¢2=C1eikx+czeaikx ,
w3:d1eikx+dze~ikx ,
¢4=geikx

where we assumed that an electron with wave vector k
enters in circuits 1 and departs from circuits 4, thus the
coefficients a and g are the reflection and transmission
amplitudes, respectively.

The boundary condition equations (2) and (3) for the
wave functions (5) can be written at the 4 and B points,

l1+a=c,+c,,
l1+a=d,+d,,
l—a=c¢,—c,+d,—d,, ©
ikL —ikLy
+cje =g,
ikL ikL
die *+de ‘=g,
ikL —ikL ikL —ikL
cre’ T—cye '+die" P—dye =g
(a)
2
JL 9
I A 3
D——L—
3 L2
3
l:@ ; jL 5 ¢
=L D
FIG. 1. Various configurations of the mesoscopic structures:

(a) ring with two arms; (b) quantum-interference transistor; (c)
quantum-interference device with two drains; (d) quantum-
interference device with two gates. s, g, and d represent the
source, gate, and drain, respectively.
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FIG. 2. |g|? as functions of kL for different k AL in the struc-
ture shown in Fig. 1(a) without magnetic field.

From Eq. (6) we obtain

a:L(_8+3eikL+3e-ikL_’_eikAL_*_e*ikAL) ,

L
cl__AL(Z 3e~1kL+elkAL)
L
c 2 (- 2+elkL+e ikAL)
2= AL P "
dl_%(z 3e‘lkL_‘_e—zkAL) ,
L
dzz_Az_(_2+eikL+eikAL) ’
L
g——i‘%sm k% cos kA£ .
where
L=L,+L,, AL=L,—L,,

(8)
—q__,ikL_q,—ikL ik AL ,—ik AL
A, =8—e 9e +e +e .

From Eq. (7) we obtain the current proportional to

|g|zzz_j[1_cos(kL )][1+cos(k AL)],
L

=4{[4—5cos(kL)+cos(k AL)]*+[4sin(kL)*]} .

It is expected that the conductance will change periodi-
cally as L is changed for a fixed AL, or as AL is changed
for a fixed L. The former result cannot be obtained if we
simply consider the overlap of two plane waves. The |g|
as a function of kL for fixed kK AL and as a function of
k AL for fixed kL are shown in Figs. 2 and 3, respective-
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FIG. 3. |g|* as functions of k AL for different kL in the
structure shown in Fig. 1(a) without magnetic field.
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ly. From the figures we see that the oscillations of |g|*
with k AL are better than that with kL.

IV. AHARONOV-BOHM RING

The structure of the Aharonov-Bohm ring is the same
as that in Fig. 1(a). In the magnetic field, the Schrodinger
equation (1) is replaced by
2

1 + V(r)

2m

Y(r)=EY(r) , (10)

*

P+<A
C

where A is the vector potential of the magnetic field B,
A=VXB. (11)

As the magnetic field B is perpendicular to the ring
plane, according to the Gauss theorem the vector poten-
tial A is along the ring direction, and its magnitude

A=—, (12)

where ®=RB-S is the magnetic flux through the ring sec-
tion area S, and L is the ring round length.

Inserting (12) into Eq. (10), we obtain the one-
dimensional Schrodinger equation,

1

2
+Vix)
2m*

i dx oL P(x)=E¢(x) . (13)

The wave function ¥(x) is still a plane wave with wave
vector k, its eigenenergy
2

€@ | (14)

U 7L

which should be equal to the energy of the injected elec-
tron, #*k%/2m*. Thus we have
ed

ki=k+—. 15
! ficL (15)

For the electron moving in the opposite direction to the
A, we obtain the wave vector of the electron

ed

k,=k— .
2 ficL

(16)
The wave functions in the circuits 1-4 shown in Fig.
1(a) are written as

I/}l=eik)c_+_ae—ikx ,
ik, x —ik,x
J— 1 2
PY,=cie ' +cye R
ik x )

1/)3=dleik2x+d2€ i )
¢4=geikx ’
where the k, and k, are given in Egs. (15) and (16), re-

spectively. Similarly, we can write down the boundary-
condition equations at the 4 and B points, and obtain
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S
A,

—ik AL ik, AL —iAk L iAk L
1 e 2 |+e 2

+ )

—(ky+ky) e

X(e—ik2L1—ik1L2+eik1L1+ik2Lz) ‘ ‘

- | AK L
;=2 | A ke, +hyde T
k
—(1+k, +kye b7k l :
c2=% e—ik'M’—(kl-i-kz)eiAkL2
k
(ke — ke b Ly
(18)
dlzf_ e Lk ke M
k
—(14k, +ky)e HF27eh ]
dzzzz— eiszL_(k1+k2)e—iAkLl
k
__(l_kl_kz)eilel+ikzL2]
g=2(k1+k2) LIk Ly Hiky Ly ik Ly =ik Ly =ik L
Ay
4okl ik Ly ik Ly
_pila ik Ly ik Ly
where
ky k,
Klz_];. , Kzz‘l: , Ak=k,—k,,
(19)
AkzeiklAL+eik2AL+(kl+k2)2(e—-iAkL1+eiAkL2)

—(1tk, +ky)e 2k

— (1=, —ky)2e1F1 Tk
Under the approximation

L,=L2=§, K,~K,~1, (20)
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FIG. 4. |g|®> as functions of ¢ for different kL in the
Aharonov-Bohm ring.

Egs. (18) and (19) can be simplified, and give
64

|g12=_2(1—coskL )(1+cosy) ,
k
A} =4[(144dcosy—5coskL >+ (4sinkL)*],  (21)
P
kL=-22
=4 2 fic

From Eq. (21) we see that the |g|? changes periodically as
@ is changed with the period

o=re (22)
e

This is the basic result of the Aharonov-Bohm effect,
which is in agreement with the results of Datta and Ban-
dyopadhyay.® The |g|? as functions of ¢ for several kL
values are shown in Fig. 4. From the figure we see that
the wave shape is good for kL close to zero (except for a
factor of 27n; in the following and in figures we will use
this abbreviation), but is bad for kL close to 7, indicating
that there are components of higher harmonics. Com-
paring Fig. 4 with Fig. 3, we found that the oscillations
of |g|? with @ and k AL are very different. The difference
comes from the A in Eq. (21) and A? in Eq. (9): in Eq.
(9) the factor of the cos(kAL) term is 1, while in Eq. (21)
the factor of the cosg term is 4; the slight change of the
cosg will influence A, and hence the |g|?, dramatically.

By using the Fourier transform we can calculate the
nth harmonic component of the |g|?,

1 27
I,=— [ "lglcos(ng)dg (23)
From Egs. (9) and (21), I,, can be written as
for cos(ng) (24)
T o cos¢7+Q

FIG. 5. Squared amplitudes of wave functions in two arms of
the Aharonov-Bohm ring for kL =0.27. Curves 1, 2, 3, and 4
represent |c, |%, |c, |2, |d, |2 and |d, |, respectively.

where P and Q are complex constants. Let z=¢'?; the in-
tegral in Eq. (24) can be calculated by the complex vari-
able integral of z along a unit circle in the complex plane.
The results are

1 pr2r cosp _ _4a
T fo cosp+Q ¢ a—B"’ @3)
2 cos2 _ a’+p
fo —LCOS¢+Q p=2|=20+5 =, 6

where a and B are roots of the algebraic equation
2242Q0z+1=0,

and |a| <1, |B| > 1.

The calculated I, and I, for the k AL oscillation [Eq.
9)] and the @ oscillation [Eq. (21)] are shown in Table I
for different kL values in the range O—7. From the table
we see that for the kK AL oscillation the I, is only one-
tenth of the /,, and the magnitudes of I, and I, are basi-
cally unvaried in the whole range of kL. For the ¢ oscil-
lation the I, decreases, and the ratio of I, to I, increases
as kL increases from zero to m. Physically, the large I 2
component comes from the fact that the waves move in
opposite directions with different wave vectors k, and k,
[Egs. (15) and (16)].

The squared amplitudes of waves in the upper and
lower arms of the ring |c,|% [c,|? |d,|? and |d,|* as
functions of ¢ for kL =0.27 and 7 are shown in Figs. 5
and 6, respectively. From the figures we see that in the
case of the good oscillation kL =0.2, the |c,|? and |d,|?
are large, and the |c1 |2 exceeds 1, indicating that the elec-
tron makes a cyclotron motion in the ring. In the case of
kL =, the |¢,|* equals |d,|? and |c,|? equals |d,|? the
electrons in the two arms move parallel to the output
lead.

TABLE I. Harmonic components I, and I, of |g|? as functions of kL for the k AL and @ oscillations.

kL 0.05 0.10 0.15 0.20 0.30 0.40 0.50
k AL I, 0.5329 0.4945 0.4523 0.4167 0.3615 0.3279 0.3168
I, 0.0584 —0.0390 —0.0603 —0.0604 —0.0489 —0.0403 —0.0375
@ I, 0.4631 0.5520 0.5566 0.5073 0.3229 0.1393 0.0645
I, 0.2524 0.1343 —0.0198 —0.1630 —0.3195 —0.2993 —0.2581
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FIG. 6. Same as Fig. 5 but for kL =7.

V. QUANTUM-INTERFERENCE DEVICES

The quantum-interference transistor”!® as shown in

Fig. 1(b) differs from the ordinary field-effect transistor
(FET) in that the gate lies outside the classical path of the
electrons. Conductive oscillations as a function of the
gate potential have been observed in such a structure.
The wave functions in the circuits 1-3 [Fig. 1(b)] can be
written as

¢l=eikx+ae—ikx ,
Y,=csin[k(x—L)], 27
l/)3=geik)c .

Applying the boundary condition Egs. (2) and (3), we ob-
tain

1+a=—csin(kL) ,
lta=g, (28)
1—a+iccos(kL)=g .

From Eq. (28) it is easy to obtain

i cos(kL)
2sin(kL)+icos(kL) ’

_ 2sin(kL)
& Jsin(kL)+icos(kL)

The |g|? as a function of kL is shown in Fig. 7 (dashed
line). It can be seen that the wave shape is in good agree-
ment with the experimental single-mode results.” It
should be noted that this structure [Fig. 1(b)] is not the
special case of the ring with two arms [Fig. 1(a)], taking
L,=0and L,=2L. In circuit 2 connecting the gate, the
electronic wave function is a standing wave with the zero
point at the gate. Therefore, the wave shapes for the two
oscillations (Figs. 3 and 7) are completely different.

As a development of the interference device, we con-

29
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FIG. 7. |g|? as functions of kL for different kD in the first
drain of the structure shown in Fig. 1(c). The dashed line is the
|g|? in the structure shown in Fig. 1(b).
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sider the structure with two drains controlled by one gate
as shown in Fig. 1(c), and the two drains apart from a dis-
tance D. The wave functions in the circuits 1-5 can be
written as

Yy =™ +ae kx|

¢2=cleik"+c2e_ik“ ,

Yy=dsin[k(x —L)], (30)
'/’4:gleikx >

¢5=829ikx-

Similarly we obtain,

a=— -1 {[2sin(kL)+i cos(kL)Je =P
AD

+i cos(kL )e*P} |

g, =—sin(kL) , 31)

g2=—A2—{[2 sin(kL)+i cos(kL )]e ~*P
D

—icos(kL)e*P} |

Ap=3[2sin(kL)+i cos(kL))e ~*P—i cos(kL )e'P .
The |g,|? and |g,|? as functions of kL for three kD values
are shown in Figs. 7 and 8, respectively. From Fig. 7 we
see that in the drain near to the gate, the current oscilla-
tions are nearly the same, independent of kD, and their
magnitudes are about half of that in the single-drain
structure (dashed line). In the drain far away from the
gate, the current oscillations critically depend on the kD,
and they have opposite phases for the cases of kD =0 and
0.5m7.

Finally, we consider a double-gate structure as shown
in Fig. 1(d); the two stubs are apart by a distance D, and
the lengths L, and L, of the stubs are controlled by the

gate voltages. The wave functions in the circuits 1-35 are
written as

o 02w
=3
—05
kD=0
OO | 2 3 4
kL/m

FIG. 8. |g|? as functions of kL for different kD in the second
drain of the structure shown in Fig. 1(c).
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¢1=eik"+ae —ikx ,

Y,=bsink(x—L,),

Yi=ce®+c e x| (32)
Y,=dsin[k(x—L,)],
¢5=geka .
We obtain
a=—-2 [sin(kL,)cos(kL,)e*P
DL
+cos(kL )sin(kL,)e ~*P
+cos(k,L)cos(kL,)sin(kD)] ,
g= AZL sin(kL )sin(kL,) , (33)

Ap; =[4sin(kL,)sin(kL,)+2i cos(kL, )sin(kL,)

+2i sin(kL | )cos(kL,)]e ~*P

~+2i cos(kL | )cos(kL,)sin(kp) .

For comparison with the theoretical results of the ideal
two-dimensional electron waveguide model,!' we calcu-
lated the transmission probability |g|? for the single- and
double-gate structures with the same parameters as in
Ref. 11. Of course, the width effect is neglected in our
model. We take the electron effective mass m * =0.05m,
electron energy E =~0.08 eV, and the separation between
two stubs D =95 A. In Fig. 9 the |g|? for the structures
of a single stub, two identica! stubs, and two stubs with
length difference AL=10 A are given, respectively.
From the figure we see that they are qualitatively in
agreement with the two-dimensional theoretical model
results for the structure with equal width.!! In the case of
single stub, the transmission valley is narrow, while in the
case of two identical stubs the valley becomes broader.
In the case of two stubs of different lengths, there appears
an additional peak at the transmission valley, and the val-
ley is broadened further. It is found that the peak height
is sensitive to the kD, and the |g|? as functions of kL * for
kD =3.0, m, and 3.3 are shown in Fig. 9(9), correspond-
ing to wave lengths A=200, 190, and 180 A, respectively.
From the figure we see that if kD =1, there is a strong
resonant peak at the transmission valley; if kD deviates
from m, the resonant peak decreases greatly. There are
some differences between our pure one-dimensional re-
sults and the two-dimensional results. Except for the
wave form of |g|?, in the one-dimensional case the oscilla-
tion period is unchanged, while in the two-dimensional
case the period changes from one period to another due
to the width effect. In the above calculation we have as-
sumed that the electron wave has a wave node at the
gate, hence in the stub the wave function has the form of
sin[k(x —L)], where L is the length of the stub. As a re-
sult, the transmission probability |g|? is zero as kKL ap-
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FIG. 9. |g|? as functions of L for the structures of (a) a single
stub, (b) two identical stubs, and (c) two stubs with length
difference AE, =10 A. In case (c) L* refers to the shorter one,
k=0.0347 A, D=95 A. (d) |g|* as functions of kL* for
kD =3.0, 7, and 3.3.

proaches zero. If we assume that the electron wave has a
wave peak at the gate, then the wave function in the stub
has the form of cos[k(x —L)]. All the above results
change with sinkL replaced by —coskL, and coskL re-
placed by sinkL. This means that the kL shifts by 7/2
relative to the original one, and the |g|? does not equal
zero as kL approaches zero. This case is shown in Fig. 9.

VI. SUMMARY

In summary, we have presented a one-dimensional
quantum waveguide theory for the waveguide-type
mesoscopic structures. We have given the boundary con-
ditions of the wave functions at the intersections, which
guarantee the continuity of wave functions and the con-
servation of current densities. With this theory we have
discussed quantitatively the Aharonov-Bohm effect, giv-
ing the reflection, transmission, and other wave-function
amplitudes in the ring as functions of the magnetic flux,
the arm lengths, and the electronic wave vector. It is
found that the oscillating current consists of a significant
component of the second harmonics, especially as kL ap-
proaches 7. The quantum waveguide theory was also ap-
plied to investigate the quantum-interference devices.
The conductance oscillations as functions of kL and kD
in the case of single-gate, double-drain, and double-gate
structures are discussed.

The one-dimensional quantum waveguide theory,
though neglecting the width effect, gives the main results,
which are in agreement with the experiments and the re-
sults of more precise theory. It may be useful in analyz-
ing complex systems with many intersections and
branches.
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