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Multiband treatment of quantum transport in interband tunnel devices
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We describe a method for computing transmission coefficients for multiband tight-binding band-
structure models. In this method, the transmission probability can be calculated simply by solving
a system of linear equations representing the tight-binding form of the Schrodinger equation over a
finite region of interest, with specially formulated boundary and inhomogeneous terms to account
for the effects of the incoming and outgoing plane-wave states. In addition to being efficient, and
simple to implement, our method is numerically stable in treating device structures with large active
regions, and therefore capable of modeling realistic band-bending effects. Using this method, we

examine transport properties in InAs/GaSb/A1Sb-based interband tunnel structures with a realistic
band-structure model. We compare our results with calculations obtained with a two-band model,
which includes only the lowest conduction band and the light-hole band. We find that while the
primary interband transport mechanism arises from the coupling between the InAs conduction-band
states and GaSb light-hole states, in device structures containing GaSb quantum wells, the inclusion
of heavy-hole states can introduce additional transmission resonances and substantial hole-mixing
effects. These effects are found to have a significant influence on the current-voltage characteristics
of interband devices.

I. INTRODUCTION

The nearly lattice-matched InAs/GaSb/A1Sb material
system has received considerable attention recently due
to the tremendous Qexibility it offers for heterostruc-
ture device design. As shown in Fig. 1, in which the
conduction- and valence-band edges for InAs, GaSb,
and A1Sb are plotted according to the currently ac-
cepted band offset values, 3 this material system of-
fers the possibility for type-I (GaSb-A1Sb), type-II stag-
gered (A1Sb-InAs), and type-II broken-gap (InAs-GaSb)
band alignments. Recently, several interband devices,
so called because they exploit the type-II broken-gap
band alignment between InAs and GaSb, have been
demonstrated. Various interband devices have ex-
hibited very high-peak current densities or large peak-
to-valley current ratios, making them extremely attrac-
tive for use in high-frequency oscillators, logic circuits,
and a variety of other digital and analog applications.
For example, a peak-to-valley current ratio of 20 (88)
at 300 K (77 K) has been reported in an InAs-A1Sb-
GaSb-A1Sb-InAs device, and negative difFerential re-
sistance (NDR) with peak current densities in excess
of 10 A/cm has been observed in a number of differ-
ent interband devices. In addition, GaSb-InAs-AlSb-
GaSb Stark effect tunneling transistors utilizing inter-
band transport properties have demonstrated high gains
at room temperature.

To date, most of the theoretical studies of inter-
band tunneling have used simple two-band models
which included only the interaction between the con-
duction and light-hole bands, and assumed that inter-
actions involving the heavy-hole and split-off bands are
negligible. Although this simple approach has been

fairly successful in explaining qualitative features ob-
served experimentally, it is somewhat unsatisfactory
due to the oversimplification of the valence-band struc-
ture. Recently, we reported brieRy on a more realistic
calculation in which we showed that the calculated trans-
mission coeKcients in interband tunnel structures can
be significantly altered when heavy-hole states are taken
into account. In this paper we give a detailed account
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FIG. 1. Conduction- (solid) and valence- (dashed) band
edges for the InAs/GaSb/A1Sb material system. The energy
gaps and band offsets allow the possibility of type I, type
II, and type II broken-gap band alignments. The indirect
conduction-band minimum is shown for AlSb.
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of the methods used in our calculation, and report on
the calculation of transmission coefficients and current-
voltage characteristics for several prototypical interband
devices.

To incorporate realistic valence-band structure in our
treatment of interband tunnel devices, we have used
the eight-band effective bond-orbital model developed
by Chang. This model is essentially a reformulation
of Kane's eight-band k p model in the tight-binding
framework. For tunneling calculations, the effective
bond-orbital model offers two advantages over the k p
model: (I) It is more efficient numerically since the
the matrix elements relating values of the wave function
in adjacent regions (hopping matrix elements) contain
simple algebraic expressions rather than transcendental
functions, and (2) it allows for a much simpler treatment
of boundary conditions at the heterointerfaces.

A problem that arises in transport calculations incor-
porating realistic band structures is the need for a nu-
merically stable algorithm for calculating transmission
coefficients. A standard method for computing trans-
mission coefficients in heterostructures is the transfer-
matrix method. It is well known, however, that
the transfer-matrix method, when used in conjunction
with realistic multiband band-structure models, is nu-
merically unstable for treating device structures with ac-
tive regions larger than a few tens of A.~o When band-
bending effects are included in the calculations of current-
voltage characteristics, it is typically necessary to com-
pute transmission coefficients for structures considerably
wider than 1000 A. There are several numerically stable
methods for calculating transmission coefficients. 2'

Among them is a method by Frensley which uses an
approach similar to that of Lent and Kirkner in their
treatment of quantum waveguides. Frensley originally
used his method with the single-band envelope-function
model to calculate transmission coefIicients in tunnel
structures. We have generalized this method to multi-
band tight-binding models to treat band-structure ef-

fects in a wide variety of heterostructure tunnel de-
vices. We have implemented this method for the ef-
fective bond orbital model in our treatment of inter-
band tunneling in InAs/GaSb/A1Sb heterostructures, is

and hole tunneling2 in GaAs/A1As double barrier het-
erostructures. We have also implemented this method for
the second-neighbor sp tight-binding model in treat-
ing X-point tunneling29 in GaAs/A1As double barrier
heterostructures. The method has been demonstrated
to be numerically stable in our transmission coefIicient
calculations for device structures wider than 2000 A. In
addition, our analysis indicates that the computational
cost of this method is linearly proportional to the width
of the heterostructure. In fact, this method is as effi-
cient as the transfer-matrix method. Furthermore, our
method also has the advantage of being simpler to im-

plement than the transfer-matrix method.
In Sec. II of t his paper, we describe the meth-

ods we used to model interband tunnel devices. In
Sec. III, we present our analysis of several prototypical
InAs/GaSb/A1Sb interband tunnel devices. A summary
is given in Sec. IV.

II. METHODS

Section II A outlines the procedure used to model in-
terband tunnel devices, including the treatment of band-
bending effects, the choice of band-structure model, and
the calculation of current-voltage characteristics. We also
present a detailed discussion of the met, hod that we have
developed to compute transmission coefIicients for multi-
band tight-binding band-structure models. Although the
general formulation of the transmission coefFicient calcu-
lation resembles the transfer-matrix method to a certain
extent, the solution of the problem is very different.
Section II B discusses the formulation of the transmission
coefficient calculation, and Sec. II C presents a descrip-
tion and analysis of our solution.

A. General procedure

Our calculation of current-voltage characteristics con-
sists of four major components. First, band bending cor-
responding to the given doping profile and applied bias
is computed to give the energy-band profile. At the same
time, a suitable band-structure model is chosen to realis-
tically describe the materials comprising the heterostruc-
ture. Next, transmission coefficients are computed for
device profiles obtained from the band-bending calcula-
tion. Finally, current density is computed from the trans-
mission coefficients. Our calculation does not take into
account inelastic-scattering processes, nor does it require
self-consistency between the band profile and the wave
functions of the transmit ting states. The emphasis of
this calculation is to examine the role of realistic band
structures in describing the operations in interband tun-
nel devices.

The first step in our simulations of heterostructure de-
vices is to calculate the energy-band profile of the struc-
ture. We compute the energy-band profile by solving
Poisson s equation across the device, imposing a condi-
tion of charge neutrality over the entire device structure.
The Thomas-Fermi approximation is used to relate the
positions of the conduction- and valence-band edges at a
given point to the local carrier concentration, and the ef-

fects of finite temperature on the Fermi distribution are
included. For the band-bending calculations, a simple
parabolic band-structure model is typically assumed for
the conduction and valence bands. The actual numer-

ical calculation of the heterostructure band-edge profile
is performed by converting Poisson's equation to a finite-
difference equation and applying a relaxation algorithm
described by Press et al. The energy-band profile of a
typical InAs-GaSb-InAs device obtained from the band-
bending calculat, ion is shown in Fig. 2. In this example,
the width of the GaSb quantum well is 40 monolayers,
and the doping level in the InAs electrodes is n = 10
cm . The device is under a 100 mV applied bias.

To include band-structure effects properly, we use the
eight-band effective bond-orbital model, which incor-
porates spin-orbit interaction and accurately describes
the heavy-hole, light-hole, and split-off valence bands and
the lowest conduction band near the center of the Bril-
louin zone. The basis set contains eight effective bond
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FIG. 2. Energy-band diagram of an InAs-GaSb-InAs in-

terband tunnel structure under an apllied bias of 100 mV.

The width of the GaSb quantum vrell is 40 monolayers, and

doping level in the InAs electrodes is n=10 cm

orbitals per unit cell. Six of the orbitals are obtained
by taking linear combinations of p-like orbitals coupled
with electron spin; they form states with total angular
momentum of J =

& (J, = —2, —z, z, z), or J
(J, = —z, z). The remaining two orbitals are s-like or-
bitals with spin up and spin down. At the Brillouin-zone
center, the

( 2, + 2), ( 2, + z), [ z, + z), and (s, +2) orbitals
correspond to the heavy-hole, light-hole, and split-off va-
lence bands and the lowest conduction band, respectively.
The effective bond-orbital model provides a realistic de-

scription of the relevant band structure, and takes advan-

tage of the flexibility and efficiency of the tight-binding
method.

Having chosen a suitable band-structure model to work
with, transmission coeKcients are computed for device
profiles obtained from the band-bending calculation. The
general prescription for calculating the current density
from the transmission coefficient has been adapted from
the approach of Duke. Briefly stated, the method con-
sists of integrating over the Fermi distribution of the in-
cident electron population, including appropriate Fermi
factors for occupied states in the emitter and empty
states in the collector, and including appropriate veloc-
ity factors for the incident electrons. The total energy F
and the wave-vector component parallel to the device k~~

are taken to be conserved. The current density J is then
given by

i@) = ) C ion, kii), (2)

where ~oo. , k~~) is a planar orbital formed by taking Bloch
sums of tight-binding orbitals over the N~~ unit cells in
the o.th monolayer:

1
/o n, kp) = ) exp(ik~~ R~~) /R~~o'n).

Nll K

Writing the Schrodinger equation (H —E)~g) = 0 in the
planar orbital basis we obtain

H~, ~ gC~ i + H~, ~C~ + H~, ~+i C~+g ——0)

where C~ is a vector of length M,

(ci)
C2

(4)

can therefore be described in terms of bulklike plane-
wave states. In general, the objective of transmission
coefficient calculations is to relate the amplitude of the
incoming plane-wave states (from the left, in our case) to
the amplitudes of the transmitted plane-wave states (to
the right). In the tight-binding framework, the strategy is
to translate the amplitudes of the plane-wave states into
coefficients of tight-binding orbitals, and relate the coef-
ficients in the right and left regions through tight-binding
calculations. The additional basis transformation yields
much simpler hopping matrix elements, and allows the
computation to be performed much more eKciently.

We consider the heterostructure as a sequence of mono-
layers parallel to the heterointerfaces. Let M be the num-
ber of orbitals per unit cell in our tight-binding basis set
(M = 8 in our case). The basis orbitals may be written
in the form ~R~~on), where 0' is an integer monolayer
label (0 = 1,2, ..., N in the central region), R~~ speci-
fies the in-plane component of unit cell coordinate, and
n = 1, 2, ..., M labels the orbitals within a unit cell. Since
the in-plane crystal momentum, k~~, is a good quantum
number, the wave function may be written as

and H~ ~1 and H~ ~ are M x M matrices whose elements
are given by, respectively,

where V is the bias voltage applied to the device struc-
ture, and T(E, k~~) is the transmission coefficient. A
detailed description of the method we used to compute
transmission coefficients is given below.

(H ) = (ocr, k([ IHlo'n', k[()

(H~ ~)~ ~ = (O.o. , k(([(H —E)~urn', k()).

(6)

B. Formulation of transmission coefBcient
calculation

We divide the heterostructure into three sections as
shown in Fig. 2: a semi-infinite flat-band region on the
left, a semi-infinite flat-band region on the right, and a
central N-monolayer segment containing the heterointer-
faces. The left and right sections are chosen to be regions
with constant doping levels that are sufficiently far away
from the heterointerfaces so that the potentials and com-
positions are constant; the wave function in these regions

For convenience, we have suppressed the dependence on
k~~ and E in our notation.

We have assumed that for the band structure model
used, the interaction between two planar orbitals does
not extend beyond the nearest layer, i.e.,

H ~ = 0 for )cr —0'( ) 1.

The method can be modified appropriately to handle
more extended interactions.
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It is common to write Eq. (4) in the transfer-matrix
form,

H, H
1

where lk~ &., L) and lk~ &., R) are the bulk complex band
states in the left and right regions, respectively. Let I,
r, and t be column vectors of length M containing the
coefficients (Iz}, (r& ), . and (tz), respectively. I repre-
sents the known incoming states, while r and t describe
the reAected and transmitted components. By examining
Eqs. (10), (13), and (14), we find that I, r, and t can be
related to the layer orbital coe%cients by a simple basis
transformation:

[ki) = ) 8 lo.n, kii), (10)

the tight-binding coeKcients must obey the relation

B eked B

where d is the distance between monolayers, and I'~ is the
component of the crystal momentum along the growth
direction. This condition, together with Eq. (9), consti-
tutes the following eigenvalue problem:

where T is the single-layer transfer matrix.
The boundary conditions are such that we have a

known incoming plane-wave state from the left region,
no incoming states from the right, and unknown out-
going transmitted and rejected plane-wave states in the
right and left regions, respectively. Although this is most
naturally described in the plane-wave basis, it can be eas-
ily translated into the tight-binding basis following the
prescription given by Schulman and Chang. ~g We shall
describe this in some detail since it is relevant to the
formulation of our treatment. First, the available plane
wave states in the left and right regions can be found by
noting that for a Bloch state

l

c, D, I&l (D»
cg r)

DL, I &I

22 j (15)

~(Clv 1
~

DR (t) (DPi (16)

D and D are 2M x 2M matrices whose column vectors
are the eigenvectors obtained by solving Eq. (12) with
o = 1 and o. = N —1, respectively, and arranged in
the same order as the corresponding eigenvalues. We
subdivide each D;& matrix into four M x M matrices for
convenience.

In the transfer-matrix method, r and t are obtained by
relating Eqs. (15) and (16) to each other through the re-
peated application of transfer matrices described by Eq.
(9). Unfortunately, in using this method with realistic
multiband band-structure models, one always encounters
numerical instability problems for wide device structures.
Our experience in using the transfer-matrix method with
the effective bond-orbital model shows that numerical in-
stabilities typically set in as we consider structures wider
than a few tens of A.

—H iH
1 C. Algorithm for computing transmission coefticient

(12)(Bcr+1)

Solving Eq. (12) yields a set of 2M complex wave vec-
tors {kg &, j = 1, 2, ..., 2M), and their associated bulk
complex wave vector states. %e order the wave vec-
tors such that j = 1, 2, .. . , M corresponds to states which

propagate or decay to the right, while j = M + 1, M +
2, ..., 2M corresponds to states which propagate or decay
to the left. The boundary conditions can be described in
the bulk-state basis by choosing the proper form for the
wave function in the left and right regions:

In this work we introduce a different approach to cir-
cumvent the numerical instabilities encountered in the
transfer matrix method. The algorithm is essentially
a multiband generalization of the method of Frensley.
The idea is to eliminate the unknowns r and t and for-
mulate the problem as a system of linear equations with
only the tight-binding coeKcients as the unknowns.

Eliminating r and t from Eqs. (15) and (16), we obtain

L L —1 L L L —1 LC s
—Dq~D2~ C2 ——Dq )I —D )~D~2 D~~I)

and

R R —1—D~)D)) Cz & + C~ ——0.

M

l@;R) =) t, lk, , ;R), (14)
The above equations, together with Eq. (4), constitute a
system of MN linear equations which can be written in

the matrix form as
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(
H21
0
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12 22

H22
H32

0
H23
H33

0
H3q
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0
0

HN —1,N —2

0
N 1,—lv 1—HN 1,N — CN —1

( CN

t D~~I —D»D» 'D»Il
0
0

(19)

R —1t = D21 CN. (2o)

In turn, t can be used to compute the transmission coef-
ficient:

(21)

where vi(E, k~~, I ), and vz(E, k~~, R) are the group veloc-
ities of the incident and the transmitted bulk pane-wave
states, respectively.

The matrix equation above is simply the tight-binding
form of the Schrodinger equation for the central region,
with specially formulated boundary and inhomogeneous
terms to represent the effects due to the plane-wave states
traveling to and from the semi-infinite regions on the left
and the right. Since, other than the few special terms,
Eq. (19) contains just the Hamiltonian matrix elements,
the implementation of this algorithm is very simple.

Equation (19) can be solved readily using numerical
algorithms from standard mathematical libraries; the
band matrix routines from LINPACK (Ref. 33) work quite
well for this purpose. The solution takes approximately
np(p+ 1) and n(2p+ 1) multiplications ~ for Gaussian
elimination and back substitution, respectively, where n
is the order of the matrix, and p is the number of upper
diagonals. In our case, n = NM and p = 2M —l, yield-
ing approximately 4M N multiplications. (Note: This
is without; pivoting; pivoting algorithms take 8M N op-
erations. ) A simple analysis shows that an efficient im-
plementation of the transfer-matrix method also has a
computational cost of 4M2N multiplications. Therefore,
the method presented here is as efficient as the t,ransfer-
matrix method, but with the added advantage of being
numerically stable and simple to implement.

Having obtained the coefficients of the layer orbitals,
it follows from Eq. (16) that the coefficients of the trans-
mitted plane-wave states are given by

We end this section by briefly comparing our method
with some of the other available methods. ' ' ~' The
methods of Wachutka and of Iko and Inkson are more
suited for use with k p and pseudopotential models.
We focus on the methods of Boykin, van der Wagt, and
Harris, s4 and of Schulman, ~s which are tailored for local-
orbital band-structure models. These two methods are
closely related, with the latter in a simpler formulation.
To avoid numerical instabilities associated with comput-
ing transfer matrices for wide device structures, in their
approach a tunnel structure is divided into short sub-
regions over which transfer matrices can be successfully
computed. The subregion transfer matrices are then used
to formulate a system of linear equations, which can be
solved to obtain transmission coefficients in a numeri-
cally stable manner. In a sense, their method can be
considered a hybrid between the transfer-matrix method
and our method. But since the purely linear-systems ap-
proach that we use is comparable to the transfer-matrix
method in efficiency, our method is at least as eKcient
as the hybrid approach, and considerably easier to im-
plement.

III. RESULTS AND DISCUSSION

In general, two-terminal interband tunnel devices can
be classified according to their terminal types: (1) two
n-type electrodes, (2) two p-type electrodes, and (3) one
n-type and one p-type electrode. The three categories
are schematically illustrated in Fig. 3 by, respectively, (a)
the InAs-GaSb-InAs structure, (b) the GaSb-InAs-GaSb
structure, and (c) the InAs-GaSb-A1Sb-GaSb structure.
As shown in Fig. 3, the conduction band of InAs overlaps
in energy with the valence bands of GaSb, leading to the
possibility of interband transport. We choose the InAs
conduction-band edge as the origin of the energy scale,
placing the GaSb valence-band edge at 0.154 eV. Below
we present results for each of the three device structures
depicted in Fig. 3, with emphasis on transport in the
broken-gap energy range between the InAs conduction-
band edge and the GaSb valence-band edge (0—0.154 eV).
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FIG. 3. Schematic energy-band diagrams for (a) the InAs-

GaSb-InAs interband tunnel structure, (b) the GaSb-InAs-
GaSb structure, and (c) the InAs-GaSb-AlSb-GaSb structure.
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FIG. 4. Transmission coefficients for the InAs-GaSb-InAs
structure calculated for a series of k~~ values using the effective
bond-orbital model (solid lines), and using a simple two-baud
model (dotted lines). The width of the GaSb quantum well is

30 monolayers, and k values labeling the plots are given in

units of 2~/a.

Figure 3(a) shows a schematic energy-band diagram

for the InAs-GaSb-InAs structure. In contrast to a dou-

ble barrier heterostructure, in which resonant tunnel-

ing occurs via quasibound states localized by the barri-

ers, quasibound hole states in the InAs-GaSb-InAs struc-
ture are formed in the GaSb layer due to the imperfect
matching of InAs conduction-band and GaSb valence-
band wave functions at the two InAs/GaSb interfaces.
Consequently, resonant transport in this device can oc-
cur despite the absence of classically forbidden barrier
regions. %e refer to this as resonant transport rather
than resonant tunneling since no classically forbidden re-
gions are involved.

In Fig. 4 we show the transmission coeKcients over the
broken-gap energy range for an InAs-GaSb-InAs struc-
ture under fiat-band conditions at several different val-
ues of k~~. In addition to the transmission coe%cients
calculated using the eight-band effective bond orbital
model (indicated by the solid lines), we have shown,
for comparison, the results obtained with a simple two-
band model in which only the lowest conduction band
and the light-hole band are included (dotted lines). At

k~~ = 0, the two-band and the eight-band results are
qualitatively similar, yielding a single light-hole transmis-
sion resonance peak which we designate as LH1. Since
the formation of the quasibound state does not involve

any barriers, the transmission resonance width is rather
large —AE 30 meV, corresponding to an intrinsic qua-
sibound state lifetime of 20 fs.

For kII g 0, transmission coefficients calculated using
the eight-band model exhibit a set of heavy-hole reso-
nances not present in the two-band calculation. The
heavy-hole resonances are considerably narrower than
the light-hole resonance, indicating that the coupling be-
tween GaSb heavy-hole states and InAs conduction-band
states is much weaker than that between the GaSb light-
hole and InAs conduction-band states. The LH1 reso-
nance is in general well approximated by the two-band
model, although the eight-band model LH1 peak position
decreases in energy more rapidly with increasing k~~. The
nonparabolic dispersion in the GaSb quantum-well band
structure caused by heavy-hole —light-hole mixing is also
evident in the position of the HH2 peaks as a function of
I' .

In Fig. 5 we show the probability densities (squared
magnitude of the envelope function) near the GaSb quan-
tum well for selected resonant transmitting states. The
states shown have kII

—(0.01, 0, 0) and energies corre-
sponding to the resonance peaks labeled HH1, HH2, and
LH1 in the third panel of Fig. 4. For all three cases,
the probability densities away from the GaSb quantum-
well region are constant and consist predominantly of s
components as expected for conduction-band plane-wave
states in the InAs regions. In the GaSb quantum-well re-
gion, the probability densities consist mostly of the J =

2
(heavy-hole and light-hole) components, and strongly re-
flect the nature of the quasibound states involved in the
resonant transmission process.

The probability density of the HH1 state in the GaSb
quantum well is dominated by the J, = +—components.
The HH2 state shows large J, = +

&
components with

a single node in the center of the GaSb well, which is a
strong signature of the n = 2 heavy-hole state. However,
the HH2 state also contains smaller but significant J, =
6

&
components with no nodes, which is characteristic of
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have kII = (0.01, 0, 0) and energies corresponding to the reso-

b l d HH1 HH2 and LH1 in Fig. 4. The GaSb
quantum well is located at layers 31—60. The (~, ~) an e

d d l' The two J = — components are
insignificant and are not shown. Note that different vertica
scales are used in the three panels of this figure.

the n = 1 light-hole state. The LH1 state exhibits similar
J = +-' components are thecharacteristics, except that J, =

largest. This indicates that both the states which we

l d HH2 and the LH1 contain mixed characteristicslabe e an
o t en= if h = 1 light-hole and the n = 2 heavy- q
bound states. The mixing of the HH2 and the s ae LH1 states
can be readily understood in terms of the symmetries of

p, -i ee
orbitals; both states therefore have overa p, —ll

like wave functions with respect to t e cen er o ie
quan um we,t well resulting in the mixing of the states.

In Fig. 6 we show calculated current-vo age c
teristics for t e n s- ah I A -G Sb-InAs structure. Results fram

h
'

ht-b d nd the two-band calculations are
shown. The eight-band result predicts somewhat ig er

d t d peak voltage, and exhibits a
s oulder at 150 mV above the peak. We attribute t is

culation includes only elastic tunneling currents; in an ac-

tribute to the current, the heavy-hole shou doulder would e
interpreted as a part of the valley current.

FIG. 6. Current-voltage character'racteristics for the InAs-
sin the effective bond-GaSb-InAs structure calculated using e

usin a simple two-band modelorbital model (solid lines), and using a sim
' esj. The width of the GaSb quantum we isI' h I A I t d30 monolayers. The doping leve in t e n s

17 ~3n=10 cm

B. CaSb-InAs-GaSb

Fi ure 3(b) shows the GaSb-InAs-GaSb structure.
This device is based on the same pr' 'p

GaSb-InAs device, relying on the barrier-less resonant

between the GaSb electrodes via the InAs conduction-
band states. It may be regarded as the p-type ver-

h I As-GaSb-InAs device. Figure 7 shows the
= (0.01, 0.01,0) transmission coefficients sn t e ro-

II
=

aSb-InAs-GaSb structure
under flat-band condition. Since both the incident an
the transmitted waves can conta' in either li ht-hole or
heavy- o e s a es,h l t t the transmission coefficient has four

t We denote the four components ycomponen s. e
B-HH. In allCB-LH, LH-CB-HH, HH-CB-LH, and HH-CB- . n a

four components we observe ethe CB1 resonance corre-
d to the lowest quasi-bound states in the InAsspon ing o e
. The LH-CB-LH component provides the dominalayer. e

~ ~

cient due tocontribution to the total transmission coe cien
aSb li ht-hole bandtl t ong coupling between the Ga ig —xo elesro

nd the InAs conduction band. The LH-C B-HH and thean e n
HH-CB-LH components each contribute eq ye uall to the

lin almost 20'%%uo. The HH-transmission coeKcient, tota ing a
l hCB-HH component is quite small, a gthou h it shows t e

CB2 resonance not seen in the ot er pcorn onents due to
the fact that the CB2 resonance lies above eove the available
GaSb light hole states at this kII value.
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FIG. 7. TTransmission coefficients calculated for the GaSb-
nAs-GaSb structure for (a) an incident GaSb light-hole state

and (b) an incident GaSb heavy-hole state. The width of the
lnAs quantum well is 60 monolayers, and k = ~~0.01 0 0

o e hat dtÃerent vertical scales are used in (a) and (b)

C. InAs-GaSb-AlSb-GaSb

0.04 0.08
Energy (ev)

0.1 2 0. 1 6

InAs-GaSb-AlSb-GaSb transmission coe%cients

well is 25 m
for a series of kII values. The width of th G Sbi o e a quantum
we is 25 monolayers, and the width of the AlSb layer is 3
monolayers. Both the two-band model results (dotted lines),
and the eight-band model results (solid lines for LH transmit-
ed, dashed lines for HH transmitted) are shown

In the final example we examine an interband device
which has one n-t e el- yp lectrode and one p-type electrode.
T xe most basic device of this typ

' t '
1pe consis s simply of an

mterface between n-type InAs and p-type GaSb, which
can be thought of as a heterojunction Esaki diode. Sub-
stantial improvement in the performance of this device
can be obtained by inserting a thin A1Sb barrier layer on
tee GaSb side of the interface, as depicted in Fig. 3(c),
orming a GaSb quantum well and thereby inducing res-

onances for achieving enhanced tunneling. In Fi . 8
show the transmission coefFicients for the InAs-GaSb-

~ ~

A1Sb-GaSb device under flat-band condition for kII values

two-band model (dotted lines) and the eight-band model
(so id lines for transmitted LH states and dashed lines
or transmitted HH states. ) The widths of the GaSb

quantum well and the AlSb barrier are 75 A and 9 A,
respectively. At k~~

——0, the light-hole transmitted com-

this case the two-b-band model result approximates the
eight-band result reasonably well. For k~~

&~0 a small
~ ~

e . oz
~~

0,

found in addition to the light-hole transmitted corn o-
ic s i provides the dominant contribution. For

smi e compo-

wide peaks and a single narrow

transmitting states, the narrow peak is identified as the

HH1 resonance, while the two wide peaks are found to be
resonances corresponding to LH1-HH2 mixed states. Be-
cause of the strong hole-mixing effects, the calculation for

e compares veryiis structure using the two-band model corn ar
unfavorably to the more realistic eight-band model cal-
culation. An additional feature in the InAs-GaSb-AlSb-
GaSb structure is the lack of inversion symmetry. As
a result s littinp

' '
g of Kramers degeneracy is expected.

This can be seen at kII
——(0.015, 0, 0), where the larger

ispersion makes the splitting clearly observable for the
two higher peak structures. Note that no such splitting
is seen for the symmetric InAs-GaSb-InAs structure at
comparable kII values (see Fig. 4).

Figure 9 shows the current-voltage characteristics for
an n s-GaSb-A1Sb-GaSb structure calculated using the
two- and the eight-band models. The peak current den-
sity in the eight-band J-V curve is more than three times
higher than the two-band peak. At first it may be tempt-
ing to attribute this large discrepancy to additional cur-
rents due to heavy-hole resonances. A more careful anal-
ysis shows that this is false. In a d' d 'th I A

a termina snals, a transmission resonance contributes to
the elastic tunneling current only if it lines up with both
the InAs electron Fermi sea and GaSb hole Fermi sea in

the two electrodes. As a result of this rather stringent
curren in

~is ype o device is very sensitive to the positions of
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