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Effect of band mixing on hole-tunneling times in GaAs/AlAs double-barrier heterostructures
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We examine the influence of band mixing on hole-tunneling times in GaAs/AlAs double-barrier het-
erostructures using the eight-band effective bond-orbital model. We find that mixing of heavy-hole and
light-hole states in the valence subbands can substantially reduce hole-tunneling times from the values
predicted by the Kronig-Penney model, which does not account for band mixing. These results are in
agreement with the experimental measurements of Jackson et al. [Appl. Phys. Lett. 54, 552 (1989)], indi-
cating that hole-tunneling times are much shorter than predicted by the Kronig-Penney model, and com-
parable in fact to electron-tunneling times. We also compare our calculation with an earlier phenomeno-
logical model for incorporating band-mixing effects in the calculation of hole-tunneling times.

I. INTRODUCTION

Resonant tunneling in double-barrier heterostructures
(DBH) has been a subject of intense investigation since its
original proposal by Tsu and Esaki.! Devices utilizing
quantum-mechanical resonant tunneling through quasi-
bound states in double-barrier heterostructures are of
great interest in the field of high-speed electronics. An
important area of application is in the fabrication of
high-frequency  oscillators, = where  double-barrier
resonant-tunneling diodes oscillating at a fundamental
frequency greater than 700 GHZ have recently been
achieved.”? As the performance of resonant-tunneling
diodes has improved, it has become apparent that their
high-frequency characteristics depend critically on the
quasibound-state lifetimes.> A number of theoretical*™®
and experimental’ !! studies of quasibound-state life-
times in double-barrier heterostructures have been re-
ported. In a recent experiment, Jackson et al.’ measured
quasibound-state lifetimes by studying the decay of elec-
tron and hole populations in GaAs/AlAs double-barrier
heterostructures. In this experiment, electrons and holes
created in the GaAs quantum-well region by photoexcita-
tion were assumed to relax rapidly to the lowest conduc-
tion subband and the highest valence subband, respec-
tively, and then escape from the quantum well by tunnel-
ing through the AlAs barriers. According to the
Kronig-Penney model, the highest valence subband is
heavy-hole-like. The holes should therefore escape from
the quantum well much more slowly than the electrons,
due to the large heavy-hole mass. Surprisingly, however,
in the samples studied by Jackson et al.,’ the electron-
and the hole-tunneling times were found to be indistin-
guishable. Jackson et al.® discussed effects, such as
diffusion and quantum-well charging, that may conspire
to make the electron and hole tunneling escape times ex-
actly equal, but it was felt that these effects alone were
not sufficient to explain the enormous discrepancy be-
tween the measured and the calculated heavy-hole tun-
neling times.

To explain the rapid hole-tunneling escape rates, Yu,
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Jackson, and McGill proposed a phenomenological mod-
el'2 based on the notion of band mixing.'>!* Tt is well
known that, while the zone-center quantum-well
valence-subband states are purely heavy-hole-like or
light-hole-like, the k70 states (k; being the component
of the wave vector parallel to the heterostructure inter-
faces, given in units of 27 /a throughout this paper) con-
tain mixtures of both heavy-hole and light-hole com-
ponents.'>!* The phenomenological model asserts that
the mixed-hole states should have tunneling escape times
that fall between the long heavy-hole-tunneling times and
the short light-hole-tunneling times. When averaged over
all populated k; states, the resulting hole-tunneling time
can therefore be substantially shorter than the time pre-
dicted by the Kronig-Penney model.

The key approximation used in the phenomenological
model is that 7(k;), the tunneling time for a hole state
with an arbitrary kl\' can be estimated from the zone-
center heavy- and light-hole tunneling times 79, and 79,
according to the amount of heavy- and light-hole charac-
ter contained in the quasibound-state wave function.
Since 79, and 79, can be computed easily due to the
decoupling of the heavy-hole and light-hole bands at the
zone center, this provides a relatively simple method for
estimating 7(k;).

In this paper we reexamine the problem by using a
realistic band-structure model that correctly treats the
coupling among the hole bands, the coupling of the hole
bands to conduction bands, and the spin-orbit interac-
tion. With this band-structure model, we calculate (k)
explicitly from the widths of the transmission resonances
for the double-barrier heterostructures. The purpose of
this calculation is twofold: (i) to determine if the funda-
mental assumption of the phenomenological model, that
mixed hole states have “mixed tunneling times,” is valid,
and (ii) to provide a more rigorous basis for the calcula-
tion of hole-tunneling times and obtain quantitatively
more accurate results. In Sec. II we describe our calcula-
tion and compare it with the phenomenological model.
The results are presented in Sec. III, and then summa-
rized in Sec. IV.
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II. METHODS

We discuss briefly the phenomenological model for
comparison with the calculation used in this work. In
the phenomenological model, the lifetime for a quasi-
bound valence-subband state with an arbitrary k; is es-
timated by examining the amount of heavy-hole-light-
hole mixing in its wave function. To obtain a quantita-
tive measure of hole mixing, the quasibound-state wave
function for the highest valence subband in the double-
barrier structure is approximated by the bound-state
wave function of the corresponding quantum-well struc-
ture (i.e., AlIAs-GaAs-AlAs), given by

[¥(k,2)) =3 F,(k,2)|/,m) , M

where {|J,m )} is the 4X4 Luttinger-Kohn Hamiltoni-
an'® basis set, with J=2 and m=—3,—11 and 1.
|2,£2) and |2,%1) are the zone-center heavy-hole and
light-hole states, respectively. F,, is the mth component
of the hole envelope function.

In the same way that a k70 quantum-well hole state
can be thought of as a mixture of zone-center heavy-hole
and light-hole states, the phenomenological model as-
sumes that the tunneling rate for a k70 quasibound-hole
state can be considered as an average of zone-center

heavy-hole and light-hole tunneling rates:

1 2, 1
~ F, - 2
S JIF,(k,2)] dy 2

In the above equation 79, and 79, are, respectively, the
zone-center heavy-hole and light-hole tunneling time;
they can be calculated using simple one- and two-band
models due to the decoupling of the heavy-hole state
from the light-hole and conduction-band states at the
zone center.

In this work, we determine the tunneling times by ex-
plicitly computing the hole transmission coefficients for
the double-barrier tunnel structures. The tunneling times
7(k,) are calculated from the full width at half maximum
(FWHM) of the transmission resonances using the rela-
tion

#

k)~ . 3)
" AEpwam(k))

To include the band-structure effects properly, we use
the eight-band effective bond-orbital model,'® which in-
cludes the heavy-hole, light-hole, and splitoff valence
bands and the lowest conduction band. This model, a re-
formulation of Kane’s eight-band k-p model!’ in the
tight-binding framework, provides a realistic description
of the relevant band structure needed for treating hole
tunneling in double-barrier structures. Computing hole
transmission coefficients using the effective bond-orbital
model requires some care. It is well known that the stan-
dard transfer-matrix method'®'® for computing transmis-
sion coefficients is numerically unstable when used in
conjunction with realistic multiband band-structure mod-
els.”® Recently, Frensley?! pointed out that by following
the approach taken by Lent and Kirkner?? in solving the
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two-dimensional (2D) effective-mass Schrodinger equa-
tion for quantum waveguides, and formulating the het-
erostructure tunneling problem as a system of sparse
linear equations, numerical stability can be achieved. For
our calculation of hole transmission coefficients, we have
generalized this method to multiband tight-binding mod-
els; the details are described elsewhere.?

For comparison with the experimental data by Jackson
et al.,’ we need to compute the average tunneling time
for a distribution of photoexcited carriers. This is done
by averaging (k) over all occupied k; states. Assuming
that the barriers are sufficiently thick so that the
transmission resonances are much narrower than the in-
tersubband spacing, the two-dimensional hole density in
the quantum well can be written as

dk
pPP=3 I#[l_f(En(k||)’“p’T)] ’ @

where n labels the valence subbands, E, (k) is the quasi-
bound hole state energy, u, is the quasi-Fermi level for
holes, T is the hole population temperature (which can
differ from the lattice temperature), and f is the Fermi-
Dirac distribution function. The average hole-tunneling
time is then obtained by averaging the hole-tunneling
rates over all occupied k| states:
1 1 dk, 1

=5 2 [ E ey DI O
Typically, the hole population only occupied the highest
valence subband, and the summation is taken over the
highest band only.

III. RESULTS AND DISCUSSION

Figure 1 shows the hole transmission coefficients for a
(001) symmetric double-barrier structure with well and
barrier widths of 21 and 10 monolayers, respectively.
Since both the incident and the transmitted states can be
in either the light-hole or the heavy-hole band, the
transmission coefficient has four components. In this
figure, we present only the hh-hh (heavy hole to heavy
hole) and the lh-lh (light hole to light hole) components.
Results for three different values of k are presented. For
k,= (0,0,0), the hh-hh and lh-lh transmission coefficients
peak at two distinct energies. Since heavy-hole and
light-hole states do not couple at k=0, the n=1 peak is
a pure heavy-hole resonance, while the n=2 peak is a
pure light-hole resonance. At k,= (0.015,0,0), both the
hh-hh and lh-lh transmission coefficients show the n=1
and n=2 resonances, indicating that, as a result of band
mixing, the quasibound states associated with these reso-
nances have both heavy-hole and light-hole characteris-
tics. Further away from the zone center, at k
=(0.03,0,0), the hh-hh curve shows both the n=1 and
the n=2 resonances, while the lh-lh curve terminates at
—0.049 eV, showing only the n=2 resonance. The ex-
planation is as follows: At a given k|, the lh-Ih transmis-
sion coefficient is obtained by considering the transmis-
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FIG. 1. Hole transmission coefficients for a (001) GaAs/AlAs
symmetric double-barrier heterostructure with Ly =21 (mono-
layers) and Lp =10 at three k; values. Solid and dashed lines
denote the hh-hh and lh-1h components, respectively.

sion properties of incoming light-hole states with the
same kH in the GaAs electrode. [In this case, this means
all GaAs light-hole states with k=(0.03,0,k,).] Since no
GaAs light-hole state with k”=(0.03,0,0) has energy
higher than —0.049 eV, the lh-lh transmission coefficient
is simply undefined for energy greater than —0.049 eV.
In Fig. 2 we plot the peak positions of the n=1 and
n=2 resonances as functions of k along [100]. For com-
parison, the GaAs bulk heavy-hole and light-hole bands
are also shown. Due to band mixing, the n=1 and n=2
quasibound-state subbands are highly nonparabolic, and
do not follow the same trends as either of the bulk bands
(as would be the case if band mixing were not taken into
consideration). In fact, the n=1 and n=2 subbands
cross the bulk light-hole band at k= (0.0263,0,0) and
k= (0.0352,0,0), respectively. The importance of these
crossings will become apparent when we discuss tunnel-
ing times. Here we comment briefly on their significance.
A resonance at a given k is constructed from bulk states
with k=k ,+k, [k,= (0,0,k,) in this case]. The bulk
light-hole band curve in Fig. 2 shows the energies of the
k,=0 states, which are the bulk GaAs light-hole states
with the highest energy at each given k. It should be
viewed as a boundary, below which lies a continuum of
light-hole states that can contribute to a resonance hav-
ing the same k;, but above which no light-hole states are
available. Since the resonance widths are typically very
narrow in the cases under consideration, if a resonance
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FIG. 2. Valence subband structure for a (001) GaAs/AlAs
symmetric double barrier heterostructure with L, =21 and
Lz=10 (solid lines). Bulk GaAs heavy-hole and light-hole
bands are also shown (dotted lines) for comparison.

level is above the bulk light-hole curve in Fig. 2, it cannot
contain significant contributions from the light-hole
states.

From the widths of the transmission resonances, we
can estimate the quasibound-state lifetimes using the un-
certainty principle. As seen in Fig. 1, a transmission res-
onance can be found in different components of the
transmission coefficient. We have verified that if a reso-
nance is seen in more than one component of the
transmission coefficient, then each of the components
yields the same resonance width AE gy . This confirms
that AEgpwym 1S an intrinsic property of the quasi-
bound-state, and does not depend on the choice of incom-
ing and outgoing states. Figure 3 shows the quasi-
bound-state lifetimes for the n=1 and n=2 quasibound
states calculated from transmission resonance widths
(solid curve). Since heavy- and light-hole states are
decoupled at the zone center, the n=1 and n=2 tunnel-
ing times at k;= (0,0,0) represent the pure heavy- and
light-hole tunneling times, respectively. The pure light-
hole tunneling time is found to be more than three orders
of magnitude shorter than the pure heavy-hole tunneling
time—shorter, in fact, than the electron-tunneling time
for the lowest conduction-band quasibound state. In
sharp contrast with the Kronig-Penney model, which
predicts that tunneling times are approximately indepen-
dent of k, our calculation shows a complex k; depen-
dence. Moving away from the zone center along [100],
the n=1 subband tunneling time rapidly decreases until
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FIG. 3. Hole quasibound-state lifetimes as functions of k|
along [100] for the first two hole subbands in a (001)
GaAs/AlAs symmetric double-barrier heterostructure. The re-
sults from the exact calculation and from the phenomenological
model are shown by solid and dashed lines, respectively.

reaching a minimum at k”= (0.0263,0,0); the trend is re-
versed as the tunneling time increases after the minimum.
At the minimum, the tunneling time is more than 500
times shorter than the zone-center pure heavy-hole time.
The n=2 subband tunneling time curve also exhibits
large variations; it follows a generally increasing trend
with k;, although a local minimum is found at k,
=(0.0352,0,0). We shall show that the seemingly com-
plex behavior of the tunneling time curves is, in fact, con-
sistent with the simple idea that resonances with more
light-hole characteristics have shorter tunneling times.
We focus our attention on the =1 curve. The initial de-
creasing trend in this curve is simple to explain. At k,
=(0,0,0), heavy-hole and light-hole states do not couple
for symmetry reasons, and the n=1 resonance has a long
heavy-hole-like tunneling time. With increasing k,, the
n=1 resonance gains light-hole characteristics, resulting
in the shorter, more light-hole-like tunneling times. The
minimum at k”= (0.0263,0,0) and the subsequent in-
crease in the n=1 curve may seem puzzling at first.
However, noting that the minimum occurs at exactly the
same k; value where the n=1 subband crosses the bulk
light-hole band (see Fig. 2), we are led to the following ex-
planation. Recall that after the crossover, the n=1 reso-
nance rises above the energy range of available bulk
light-hole states, and does not contain significant light-
hole contributions. Therefore, we can attribute the in-
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crease in tunneling time beyond k”= (0.0263,0,0) to the
loss of light-hole characteristics.

We have attempted to show that tunneling times de-
pend critically on whether the quasibound states are
heavy-hole-like or light-hole-like. But thus far we have
only discussed the character of the quasibound states in a
very qualitative manner. Here we will try to obtain a
more quantitative description. In computing transmis-
sion coefficients, we specify an incoming plane wave with
a fixed energy E;,, and calculate the wave function to ob-
tain the coefficients of the outgoing plane waves. In the
case of resonant tunneling, the wave function in the quan-
tum well can also reveal information about the quasi-
bound state involved in the resonant tunneling process.
We can decompose the wave function in the quantum
well in terms of GaAs bulk complex band states. Let C jhh
and C }h be the coefficients of the bulk heavy-hole and
light-hole band states, respectively. The relative contri-
butions from the bulk heavy-hole and light-hole bands
can be obtained by forming the following ratios:

St

= , 6
S St S ©
fameh g %)
" St S "

where Sy, =3;|C"?> and S;,=3;|C">~. We have
found that if the energy of the incoming state E,  is
within approximately AEgwyym of the resonance peak en-
ergy, fi, and f}, are insensitive to E;,. They are also in-
sensitive to the type of incoming state—we obtain the
same answer for both heavy-hole and light-hole incoming
states. This is taken as an indication that f}; measures
the property of the quasibound state, and not of the in-
coming state. It is very important to note that the quan-
tities f};, and fj, only measure the contributions from
the heavy-hole and light-hole bands relative to each oth-
er, since the quantum-well wave function can contain
contributions from evanescent states as well as the
heavy-hole and light-hole states. Thus, f};, =0 should not
be taken to mean that the quantum-well wave function
contains heavy-hole band contributions exclusively. Fig-
ure 4 shows f; for both the n=1 and n=2 resonances as
functions of k; along [100]. The n=1 (n=2) subband
shows no light (heavy) -hole contribution at the zone
center, but becomes increasingly light (heavy) -hole-like
as k; increases along [100]. Each curve show a cutoff of
fin as the hole subband energy drops below the bulk
GaAs light-hole band. The behavior of the f}, curve are
consistent with the qualitative arguments we presented
earlier.

Comparing Figs. 3 and 4, it is apparent that the hole-
tunneling time is strongly related to the quasibound-state
composition. Specifically, quasibound states with more
light-hole contributions are found to have shorter tunnel-
ing times. This result validates the fundamental assump-
tion used in the phenomenological model, that the quasi-
bound mixed-hole states have lifetimes that fall between
the long pure heavy-hole state lifetimes and the short
pure light-hole state lifetimes. To make quantitative
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FIG. 4. The relative light-hole contribution (see text) in the
wave functions of the first two hole quasibound states as func-
tions of k; along [100].

comparisons with the phenomenological model, hole-
tunneling times calculated using Eq. (2) are also shown in
Fig. 3 (dashed lines). To be consistent with our current
calculation, the quantities needed for computing tunnel-
ing times in Eq. (2), such as 7% and F,,, are all taken
from the eight-band effective bond-orbital-model calcula-
tion; this ensures that the results from the two calcula-
tions agree at k“ =0. Comparing the two calculations, we
see that the phenomenological model predicts that the
n=1 subband tunneling time decreases monotonically
with k,, while the exact results shows a minimum at
k, = 0.0263. This is because the phenomenological mod-
el uses the zone-center hole basis set, and does not take
into account the fact that the bulk GaAs light-hole band
drops below the n=1 hole subband beyond k, =0.0263.
For k, < 0.0263, the phenomenological model predicts
n=1 (n=2) subband tunneling times which are longer
(shorter) than the exact calculation. Since band mixing
decreases the n=1 subband tunneling times from the
pure heavy-hole tunneling time, and increases the n=2
tunneling times from the pure light-hole tunneling time,
our results indicate that the phenomenological model un-
derestimates the effect due to hole mixing. However, the
general conclusion of the phenomenological model, that
band mixing effects sharply reduce the hole-tunneling
time in the first subband compared to the pure heavy-
hole tunneling time, is confirmed by these calculations.
Figure 5 shows the tunneling time calculated for the
n=1 state as function of k; along [100] and [110] for
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FIG. 5. Hole quasi-bound-state lifetimes for the n=1 sub-
band as functions of k; along [100] and [110]. Results for well
widths of 9, 15, and 21 monolayers are shown.
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FIG. 6. Average hole-tunneling escape time for a (001)
GaAs/AlAs symmetric double-barrier heterostructure as a
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lustrated.
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FIG. 7. Average tunneling escape time for electrons (dashed
line) and holes (solid line) as functions of barrier width. Well
width is 21 ML and the 2D hole density in the quantum well is
10" cm™2. The pure heavy-hole quasi-bound-state tunneling
time is shown by the dotted line. Experimental tunneling times
are shown as closed circles.

several well widths. The dependence of the hole-
tunneling time on k; is found to be qualitatively similar
for all well sizes, although tunneling times are shorter for
narrower wells. In addition, the calculated hole-
tunneling time is found to be fairly isotropic for
lk,| $0.03.

In Fig. 6 we plot the average hole-tunneling time as a
function of hole concentration and hole temperature. At
low hole temperatures and concentrations, only the n=1
subband states very near the zone center are populated.
Since these states are almost entirely heavy-hole-like in
character, the resulting averaged tunneling time is rela-
tively long. At higher hole temperatures or concentra-
tions, states with more light-hole character are also occu-
pied, leading to shorter mean hole-tunneling times. Note
that at 100 K, the average hole-tunneling time actually
increases slightly with increasing hole concentration due

to the occupation of states with |k”| >0.0263.

Figure 7 shows the calculated average electron- and
hole-tunneling times as functions of barrier width. The
GaAs well width is 21 monolayers, and the 2D hole den-
sity in the quantum well is 10!! cm 2. Experimental tun-
neling times taken from Jackson et al.’ are also shown.
Since the electron- and the hole-tunneling times were
found to be indistinguishable,’ the data points represent
both electron- and hole-tunneling times. To illustrate the
influence of the band-mixing effects, pure heavy-hole tun-
neling times are plotted for comparison. The tunneling
times, as expected, are found to increase exponentially
with increasing barrier width, although hole-mixing
effects reduce the rate of increase in the hole-tunneling
time. Comparing our calculation with the Kronig-
Penney model, we find that incorporating band-mixing
effects can reduce hole-tunneling times by more than two
orders of magnitude, bringing them much closer to
electron-tunneling times, and in much better agreement
with experimental values.

IV. SUMMARY

We have examined the effect of band mixing on the
average hole-tunneling times for GaAs/AlAs double-
barrier heterostructures using the eight-band effective
bond-orbital model, which includes the heavy-hole,
light-hole, and splitoff valence bands and the lowest con-
duction band. The calculation shows that, at sufficiently
high hole temperature or concentration, mixing of
heavy-hole and light-hole states in the valence subbands
can decrease the average hole-tunneling times by more
than two orders of magnitude from the values predicted
by the Kronig-Penney model. In agreement with report-
ed experimental observations, our model brings the hole
tunneling times much closer to the electron-tunneling
times. These results support the basic conclusions of an
earlier study on the same subject using a phenomenologi-
cal model. However, we find that the phenomenological
model underestimates the effect of band-mixing on hole-
tunneling times, and fails to predict the more complex k,
dependence of hole-tunneling times as seen in our calcu-
lation.
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