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A tight-binding theory of weak localization in the parallel and vertical conductivity of a semiconduc-
tor superlattice is presented. We take into account both the electron wave-function modulation in a su-

perlattice and a spatial distribution of impurities in the potential barriers. These features allow us to
perform realistic small-collisional-broadening calculations as quantum corrections to the Boltzmann
transport. We obtain the anisotropic-elastic-scattering time, even in the case of pointlike scatterers. The
anisotropy of our model differs from that considered by Bhatt, Wolfle, and Ramakrishnan. In particular,
the diffusion propagator in the z direction depends on an effective diffusion constant that consists of a
coherent band part and an incoherent hoppinglike part.

I. INTRODUCTION

Following the introduction of superlattices in 1970,'

surprisingly few fundamental studies, especially of weak-
localization effects, have been reported on these materi-
als. On the other hand considerable attention has fo-
cused on investigating superlattices for applications in
electronics and optics. Superlattices represent multiwell,
low-barrier, strongly anisotropic three-dimensional sys-
tems, resulting from an additional periodic spatial modu-
lation superimposed on the atomic lattice synthetically.
By carefully controlling parameters such as composition,
thickness, and number of layers during fabrication of su-

perlattices, important intrinsic properties such as energy
bands and effective masses can be readily modified.
These circumstances provide unprecedented opportuni-
ties to study unique charge transport characteristics,
which are inaccessible in other systems.

From the perspective of device applications the study
of superlattices is quite important, especially for high-
speed, high-mobility structures, perpendicular transport
devices, sequential resonant tunneling structures, ballistic
transistors, and superlattice avalanche photodetectors. A
wealth of applied work now exists on superlattice appli-
cations. On the other hand, with respect to physics, only
recently have several important results been obtained.
Stormer et al. observed the quantized Hall effect (QHE)
and a concomitantly vanishing magnetoresistance in a
GaAs/(Al, Ga)As superlattice. Less clear evidence of the
QHE in CdTe/(Hg, Cd)Te has been published by Rafol,
Woo, and Faurie. The work of Deveaud et al. estab-
lished experimentally the existence of well-defined Bloch
states along the superlattice growth axis. A positive mag-
netoresistance due to the suppression of antilocalization
in a CdTe/(Hg, Cd)Te superlattice has been studied exper-
imentally by Moyle, Cheung, and Ong. Recently, we
completed additional measurements and made extended
studies of negative magnetoresistance effects in a
GaAs/(Al, Ga)As superlattice. The geometry of the su-
perlattice that we studied and band calculations that we
have performed indicate the existence of Bloch states in

the z direction. These experimental results provide a
motive for the theoretical work described below.

From here on we will use the term "superlattice" for
structures that display coherent transport in the z direc-
tion. Structures that do not exhibit such a feature, like
those studied by Moyle, Cheung, and Ong and Englert
et al. can be analyzed, using two-dimensional (2D)
theory, as a stack of independent heterojunctions.

In this paper we will be principally concerned with the
weak-localization aspect of superlattice transport proper-
ties in the low collision limit. There exist few theoretical
studies of classical and quantum transport in superlat-
tices. Yang and Das Sarma introduced theoretically a
Bloch-type approach (as opposed to approaches that use
transmission coefficients) in the calculation of vertical
conductivity in superlattices. Szott, Jedrzejek, and Kirk
showed that the parallel conductivity has effectively a
Drude form.

A desirable starting point for low magnetic field quan-
tum corrections of transport in superlattices is three-
dimensional weak-localization theory of anisotropic
disordered electronic systems. A theory of negative mag-
netoresistance employing the restrictive assumption of an
anisotropic effective mass, developed by Kawabata, ' was
not meant to be and is not applicable to superlattices as
demonstrated experimentally and theoretically. A more
general theory using an anisotropic diffusion tensor was
constructed by Bhatt, Wolfle, and Ramakrishnan. " In
addition to an anisotropic-effective-mass tensor, they also
allowed the scattering amplitude to depend on direction.

Recently we introduced a weak-localization model
that explicitly used the band structure of a superlattice in
the z direction (a similar result was also obtained by Jiang
and Gong' ). The results of this model compared favor-
ably with the experimental results of Szott, Jedrzejek, and
Kirk. In the theoretical work we employed two com-
mon assumptions about quantum transport in heterojunc-
tions; namely, we assumed that there was no effect of the
superlattice structure on the scattering time and that the
distribution of impurities was uniform. Such approxima-
tions are considered unsatisfactory for mobility calcula-
tions.
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The aim of this paper is to provide a theoretical model
to interpret experiments that involve weak-localization
effects in superlattices, without the restriction of a uni-
form impurity distribution and the absence of wave-
function modulation within the superlattice. We employ,
however, the simplified assumption that scattering from a
single impurity is isotropic. Upon impurity averaging the
effective interaction (and the lifetime) becomes anisotrop-
ic in a form that goes beyond the assumption of Bhatt,
Wolfle, and Ramakrishnan, "which was that the scatter-
ing amplitude depended on the momentum difference be-
tween the electron Gnal and initial state. One of our main
endings is that the conductivity for superlattices still has
the diffusive form Ithat is, the dominant contribution to
the particle-particle diffusion propagator (PPDP) comes
from backscattering]. We consider this an important re-
sult. However, in contrast to the result of Bhatt, Wolfle,
and Ramakrishnan, "we have to distinguish between the
diffusion coefBcient D, that enters the classical expression
for conductivity, 0. ~D„and the effective diffusion con-
stant D, appearing in the PPDP. The D, we derive con-
sists of two parts. The 6rst part, previously derived, de-
pends on the width of the mi.niband. The other part has a
hoppinglike character and is mostly governed by the elec-
tron wave-function modulation within the superlattice.
A related work, pertaining to classical magnetoresistance
in superlattices, is planned to be published elsewhere. '

The paper is organized as follows. In Sec. II we intro-
duce the tight-binding Harniltonian for a superlattice.
We also calculate the impurity-averaged scattering prob-
ability W over a nonuniform impurity distribution and
taking into account a wave-function modulation. This
scattering probability is then used in Sec. III to derive the
scattering lifetime, the particle-particle diffusion propaga-
tor, and the weak-localization correction to conductivity.
In Sec. IV we present numerical results and discuss pos-
sible application of our model to the interpretation of ex-
perimental data. In the Appendix we derive analytically
the parameter b characterizing scattering anisotropy.

is the parallel momentum in the planes and n labels the
superlattice layers. The transfer along the superlattice
stack is restricted to nearest neighbors. Since we assume
the single-scattering approximation, we consider one im-
purity and then only at the end are all appropriate quan-
tities multiplied by the number of impurities. We consid-
er the basis functions to be the products of free waves in
parallel planes and Wannier functions localized on the
superlattice layers in the z direction with a period a,

1 ik r
(r, z) = —f (z n—a) e-

n L
(4)

('Pk „ l V; l%'I, +z ) = f*(Z; —na)—f (Z; —ma)
V

X e
1 /q(l R

L 2

and consequently the interaction part of the Hamiltonian
is

H„= g g f'(Z; —na)f(Z; —ma)
V

qll
n'm aL

+q +Hqll R,

A schematic representation of the superlattice is shown
in Fig. 1. Within a tight-binding approximation the wave
function speci6ed by the impurity position Z, is

These functions constitute a complete and orthogonal set,
however, they are not the eigenfunctions of Ho+ H, . The
eigenfunctions of Ho+H, that are used to construct H„
are the Bloch functions which will be expanded in terms
of the basis functions (4).

The scattering potential is assumed to be a 5 function
in con6guration space:

V,.(r, z) = V5(r —R; )5(z —Z; ) .

The matrix element of this potential has the following
form:

II. TIGHT-BINDING MODEL
FOR A SUPERLATTICE

A. Hamiltonian

f (Z; —na) = %0 for n =n;, n;+l
=0 otherwise,

We assume a structure in which the miniband is de-
scribed by a tight-binding model. The total Hamiltonian
consists of three parts:

H =Ho+H, +0„- .

Ho is the kinetic energy of free electrons in the planes
perpendicular to the superlattice growth,

/

I

/

f(z — n, a)

I

I

p, (z,) f(z - (n, + l)a)

Ho —X Xeo(kll)c il'~cI,
kll n

n, a (n,+l)a

0, allows for tunneling,

H, =g g t„~cI, „ck I,
~, m

(3)

and H„ is responsible for electron-impurity scattering.
klan

FIG. 1. Schematic representation of a superlattice. Solid line
represents the bottom of conduction band (potential profile).
Dashed line depicts an impurity distribution, whereas the dot-
dashed line visualizes a wave function f(z —n;a) The full.
point refers to the z coordinate of an impurity. n;a is the center
of a potential well and (n; + —')a is the center of a barrier.
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where n;a & Z; & (n; + 1)a. This approximation takes
into account only interlayer interactions mediated by the
wave functions on the nearest-neighbor sites.

H„=g g V;(n, m)e ' 'cl, „cl, +q +H. c. ,
II'qll ~'m

where

V, (n, m)= z(If+ I'5...,.~,, +If I'&,,, +i&,, +&
V

a

+f+f-~...,
5 ., +1

+f' f+5...-, +if .,
} ~

Here f+ are defined as

f~=f(+—,'a+z;),

where z, =Z; —( n; +—,
' )a and Iz; I

& & /2.
Next we Fourier transform creation and annihilation

operators from the coordinate space to the momentum
space in the z direction to represent H„ in a basis that di-
agonalizes Ho+ H„ thus

—ik na
c = —Te ' cV'N—

k

with k, =2~1/Na where l =0, 1, . . . , N —1. This brings
H„ to the final form

(12)

with

V;(k„p, )=—g V;(n, m)e
n, m

' ' (f+f e* +f-' f+e'* +-If+I'+lf I'e ' '')
' ' (f++f e* )'(f++-f e-

a+I, 2

B. Impurity averaging and consequently

We assume that the total distribution function of im-
purities factors into independent distributions in the
parallel and z directions,

p(R; i Z,. ) = pll(R, . )p (Z,. ) . (14)

Here the following definition of (F, ), is employed:
(n,.+1)a

(F, ),=g f p, (Z;)F,(Z;)dZ;
n,.

(15)

We use a standard uniform R distribution pii(R; ) =const
in the parallel direction. To preserve symmetry of a su-
perlattice, a periodic z distribution p, (Z;+na) =p, (Z; ) is
chosen. At this juncture the normalization conditions

fdR, pii(R, )= f dZ, p, (Z, ) =1 pertain to one impurity in

the system. With these assumptions for an arbitrary
function that is a product of functions of parallel and per-
pendicular coordinates F(R;,Z; ) =F1(R;)F,(Z; ), the cor-
responding product factors out:

(F)—:f dZ; dR;p(R;, Z; )F(R;,Z;)= (Fii )ii (F, ), .

(F, ),=—g F&(n; )f P(z,. )F2(z;)dz, ,—a/2
n,.

where P(z; ) =Np, ( —,'a +z; ) is normalized in one superlat-
tice period

f dz p(z;)=1 .—a/2

ign, .aIf F,(n;)=e ' where Q=2nl/Na, 1=0,1, .. . . , N —1,
ign, , a

then (1/N)g„e ' =5&0. Here Umklapp processes are

neglected. Similarly for Fii(R;)=e " ', (F~i)ii=5
II

We are now in a position to calculate the impurity-
averaged scattering probability 8', illustrated in Fig. 2, as

Pi

a/2
p, ( —,'a +z, )F,((n, + —,')a +z,. ).dz, (16)—a/2

n,.
Pz iP4

F,((n;+ —,
' }a +z, )=F,(n, )F2(z;), . (17)

For functions of interest within the single-impurity ap-
proximation,

FIG. 2. A double scattering amplitude W from a single im-

purity () with pointlike potential V. Averaging over the im-

purity distribution (consistent with the superlattice structure)
restores momentum conservation, p, +p, =p3+ p4.
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W=X, , ( V, V, )

Nimp V
Pl+P2~P3+P4 2N2L 44a NL

In the thermodynamic limit N, L ~ ao

(19)

2
nimp V

3 b(»+p2 p3 p4)g(pl~p2~p3 p4}(2' )'
(20)

where the average impurity density is n; p
N' p/QNL

In contrast to the isotropic 30 system, 8' contains an
angle-dependent part

g'(P1~P2~P3~P4) g (P lz~P2z P3z&P4z)

4
=a, +2a2 g cos(p;, a)+2a3[ cos[(p„+p2, )a]+ cos[(p„—p„)a]+cos[(p„—p4, )a]] . (21)

Coefficients a; represent various impurity averages where

(22)

W, (s, u, v)=n; „V b, (s) +b 2(s)cos
2

X b, (s) +b 2(s) cos
2

(24)

obtained with the use of the distribution symmetry

P( z;)=p(z; }

III. TRANSPORT PROPERTIES

and

W2(s, u, v) =n; „V b 3 (s) cos cos2 2 ua Ua

2
(2&)

A. Scattering time
Coefficients b; are functionals of impurity distributions:

It proved to be advantageous to divide W into two
parts [the momentum conserving 5 function with (2n. )

omitted]:

b, (s) = [a, +2a 3 cos(sa) ]'~

4a2 cos(sa/2)
b2(s) =

b, s
(26)

2W=n; „V g(p„, . . . ,p4, )

Wl(p lz p2ztp lz p2z&p3z p4z }

b3(s)=2 a3—
4a2 cos (sa/2)

' 1/2

b, (s)

+ W2(pl +p2 p1 p2 p3 p4 (23)
We now turn to the calculation of the self-energy (see

Fig. 3) which in the Born approximation reads

X(p, e„)= 3n; ~V ~ b, (p, +q, )+b2(p, +q, )cos —(p, —q, )

2

+ b 3 (p, +q. ) cos —(p, —q, )

2

.Go(q, e„), (27)

p, 8,

Go(k, e„)

p, g

where

1
Go(q, c.„)= .

Ie„q
and

kq=sq e~ eq eq +ee

(28)

(29)

FIG. 3. The self-energy in the Born approximation.
e =w[1 —cos(q, a}] .qII

II 2m
II
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2' is the width of the miniband. Note that G0 instead of
the full Greens function is consistent with the single-
impurity approximation.

Further calculations are performed for the case when
the Fermi energy is greater than 2w (above the top of one
miniband in the z direction}.

The scattering lifetime ~ is momentum dependent, viz. ,

—S —P
1

2S+p —,'S+q

w, p

W&

;

~&&8///lZlii

' 'I

and

70

2mg~~(sF)n; V b((0)
aR

(31)

b(0)=((f +f )'&
P '

4(f',f &,

((f2 +f2 )2&

bz(0)b=
b, (0)

(32)

In Eq. (31}g~~(e(;) is the projected density of states per
spin, which in general reads

1 = —21mX(p, i0+)=—[1+b cos(p, a)], (30)
1

r(p) 70

where

FIG. 4. Diagrammatic representation of the Bethe-Salpeter
equation for the PPDP components C;,

B. Di8'usion propagators

C(s, p, q, e„,co() = g C,,(s,p, q, e„,co(),
i j =1,2

where by definition

C; (s,p, q, e„,co()=C;.(s, e„,co()U;(s, p)U (s, q) .

(34)

(35)

Quantum correction to the conductivity is governed by
the PPDP. '

Taking advantage of the special form of the scattering
probability W one can express the PPDP as the sum of
four contributions:

d Ic

g,~(e, k, )=f,'5(e —s(k, ) —e(k1))

1,e(s —e(k, )) .
27rA2

For s) 2w'gll s, k, )=g~~(e).

(33)

Here

U, (s, p}=b,(s, )+bz(s, ) cos(p, a ),
U2(s, p) =b3(s, ) cos(p, a ) .

(36)

(37)

Matrices C; and C; satisfy the following Bethe-Salpeter
equations (Fig. 4):

C((s, p, q, s„, co()=n; V U, (s, p)U, (s, p)5; +n; VzU, (s,p)

d T s S
3 U, (s, r)G ——r, e„G —+r, e„+coL g Ck,.(s, r, q, e„,co(),

(2~)3 ' 2 ' " 2 L k=(2k(

3

C ((s, „e, co)(=n; ~V 5(+n; V U;(s, r)G ——r, s„G —+r, s„+co( g Uk(s, r)Ck (s, s„,co(),

(38)

(39)

where

G(p, e„)= is„—g~+ sgn(e„)
p

If we define

X(s, „e, (co)= ;nV G ——r, e„
d r S

(2m )'

X G —+r, c„+col
s

(40)
C;;(s,e„,co()=n; ~

V 1 —X„.(s, e,„,co()

X,', (s, e„,~()
1 —X .(s, e„,co()

X((.( s, E„,co( )

(42)

(43)

X U;(s, r)U, (s,r),
then the solutions of the Bethe-Salpeter equations are

(41) In these equations jWi. For c.F ))A/~ and using the re-
striction on Matsubara frequencies (see, e.g., Ref. 17)
E„(e„+co()&0 we get
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1, i =j=1
lim X,J(s,e„,col ) = ~ 0, i'+s~O, col ~0 41, = =2 .l=j=

(44)

a 2 Pn, n+1
z, h

2&o P„„+P„„~1
which has no classical counterpart.

Here

(49)

2 2

D = VIIV VII FXO

Fs 2 (1 b'}'—' (46)

Here we assumed that vII F =const on the Fermi surface
(FS) for EF))2w. Diffusion constant in the z direction
has more complex character

D, =D, ,+D, h . (47)

The D, , again corresponds to the classical diffusion con-
stant

W a VpD„=(u2~}„,=
fi [1+(1—b )]' (48)

The other term is the hoppinglike diffusion coeScient in
the z direction,

If X; %1 the PPDP does not have the diffusive pole. In-
spection of C,- leads to the conclusion that only C» has a
diffusive character for small s and cuI. Other C,- do con-
tribute to transport, but behave classically with respect to
change in temperature or magnetic field.

Expanding X;. allows one to 6nd diffusion constants

X„(s,e„,cur)=1 roI—coiI —
ruDiisii

—~(D,s, , (45)

where the classical diffusion constant for parallel trans-
port, DII, has a classical form

Pn, n +Pn, nial

2(f' f' )

((f2 +f2 }2)
(50)

and Pn n and P„„+, are the intralayer and interlayer
scattering probabilities, respectively. The superlattice
constant a is also the hopping distance (only nearest-
neighbor hopping is allowed by the tight-binding
nearest-neighbor model} and ~0 is the characteristic,
scattering-induced, hopping time. D, h appears despite
the coherent nature of weakly perturbed (quasiparticle)
Bloch wave functions, and this is the main result of this
work. Momentum-dependent scattering probability [see
Fig. 2 and Eq. (21)] is responsible for this additional
diffusion. D, h formally looks like the modi6ed one-
dimensional analog of site hopping diffusion' (in our case
this becomes hopping between adjacent layers) for which
the diffusion coeScient is

(51)

However, in addition, the factor P„„~,l(P„„+P„„z,)
determines the interlayer scattering probability relative
to the total one which also includes the intralayer scatter-
ing as can be deduced from the form of the Hamiltonian.

Finally

[1+b cos(p, c2)][1+bcos(q, a)]
Ci&(»p q E cul)= 2 22~g(EF)~o I~i I +D~~s~~+D, s,

(52)

where g(eF) =(1/a)g~~(sF) for EF )2w.

C. Weak-localization correction to conductivity

Using. MMv~haJa. Qxmahsm' w,e ~ma M~ir weak=
localization (WL) conductivity from the diagram in Fig.
5 as a term linear in the external frequency, viz. ,

2edkdq
I,, (cut)= g f 3u;(k)u, (q —k)

13 „(2m.) (2')
X G(k, c.„)G(k, E„+cul )G(q —k, E„)

XG(q — , kE+ o(c)C(q, , k—k, E„,cu, ),
(53)

1

~2% ' J (2~)3 D q2+D q2+&
II z z ph

e 1

2M (D,r ~)
(55}

where the condition e„(e„+cut)(0 of nonvanishing
PPDP C(q, k, —k, e„,col ) is assumed. The leading term is
obtained by putting q=O in all the factors except the
PPDP which is approximated by its diffusive part,

CTq, k, k, s„,co, }=—c»(q', c„,.co, &8';(.'ui[ f+ b cos(&,w' j-.
(54)

Finally, we obtain the results for the parallel conductivity

and the z component of the conductivity

D, ,
+z WL D +II,WL '

II

(56)

FIG. 5. Maximally crossed diagram for the weak-localization
conductivity.

Here we followed the standard procedure of introducing
dephasing time ~ h.

It is worth noting that in the above formula the classi-
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cal diffusion constant D, , determines the scaling factor
relating o., wz with o.

~~
wQ On the other hand, the major

dependence of the WL effect on dephasing processes is
governed by the full diffusion constant D, defined in Eqs.
(47)—(49).

In the standard approach, the effect of a nonzero mag-
netic field amounts to replacing the integral over

q~~
in Eq.

(55) by the sum over quantized values of
q~~

„=(n + ,' )4eB—/R and introducing the degeneracy fac-
tor e8/(M).

IV. NUMERICAL RESULTS AND DISCUSSION

Before discussing the numerical results of our model,
we comment on the assumption of the 5-function scatter-
ing potential. This approximation solely leads to unphys-
ical results when the impurity distribution P(z) ap-
proaches a 5-like profile located at the barrier centers.
Physically this situation corresponds to suppression of
disorder and manifests itself by infinite scattering time v,
defined as the average of r(p), Eq. (30), viz. ,

7 p

( 1 b2)1/2 (57)

Inspection of Eqs. (30) and (57) shows that the divergence
occurs for a factor b defined in Eq. (32) [and confined to
the interval (0,1)] approaching unity. As is shown in the
Appendix, Eq. (A14), the finite range of the impurity po-
tential reduces the factor b, thus providing a finite
scattering time. Consequently, we consider our model to
be applicable to the systems for which the doping region
thickness is greater than the range of the effective
(screened) impurity potential. In contrast to metals,
where the assumption of 5-function scattering potential is
tolerable, the modulation-doped semiconductors call for
the use of a finite-range potential. This has not been done
yet in the literature, in the context of weak localization,
due to formidable computational complicati. ons.

So far all the work we are aware of on weak localiza-
tion is done on the semirnicroscopic level. Contrary to
classical theory of transport, ~p is not calculated but
treated as a phenomenological parameter, determined
from the classical conductivity. This poses a question of
how the theory presented here is to be compared with ex-
periment. Let us rewrite Eq. (31) in the form

where
' 1/2

2m )(E
(61)

and

and o., allows one to determine D~~ and D, „through the
Einstein relation. Then from Eqs. (46} and (48) va and b
could be found, provided the miniband width 2w
(equivalent to the Wannier's functions overlap from adja-
cent layers) is known. In reality we rarely know both
diffusion constants.

We decided to use ~, as a parameter determined from
o

~~

or D~~. Then the microscopic information about n; ~
is not explicitly considered. From Eq. (57) ra can be
found and used in calculation of D, , together with b.
The disadvantage of this approach is that although ~, de-
pends on impurity distribution and wave-function rnodu-
lation, this dependence is implicit. On the other hand,
D, , (as well D, i, ) contains explicit dependence on these
two quantities.

Below a realistic estimate of the diffusion constants
[Eqs. (48) and (49)] is given as a functional of a distribu-
tion of scattering centers (impurities). Three different im-

purity distributions in the superlattice growth direction
are studied (in-plane or x-y distribution is assumed uni-
form for all cases studied here).

(a) Uniform impurity distribution across the superlat-
tice structure. This corresponds to the background irn-
purities and/or defects always present in semiconductor
systems.

(b) Interface scattering due to interface imperfections.
Here, the impurity distribution is simulated by the 5-type
profile at the well-barrier junctions.

(c) In-barrier scattering. Both alloy scattering and the
scattering from ionized donors are included in this
category. Although the corresponding distribution func-
tion may be described by a more complicated form, only
the case of a uniform profile within the barriers is exam-
ined here as an illustrative example.

The single-well approximation for the ground-state
Wannier functions is used,

A cos(az} for z in the well regionf z)=' 8 exp(+Pz) for z in the barrier region 60

b, (0)

VQ Qp
(58)

' 1/2
2m

~~( vb E)—
g2

(62)

where

p

2'jrg)~(ez}" im &

aA
(59)

One could try to use ~p as a parameter and relate it, for
example, to the number of impurities. However, it is
common for even the best MBE samples to have mobili-
ties 30% different for the same nominal conditions.
Moreover, n; appears in combination with a poorly
known potential V.

In principle, knowledge of classical conductivities o
~~

are calculated for energy E of the single-well ground
eigenstate (the middle of the superlattice ground mini-
band). Coefficients A and 8 are related by the continuity
requirement at the interfaces. The normalization factor
does not affect the results presented below. The following
superlattice parameters are used: well width 18.8 nm,
barrier width 3.8 nm, effective mass m~~

=0.0667m„Fer-
rni energy 17.1 rneV, fixed elastic scattering time
~, =0.22 ps, and barrier height Vb from 0.05 to 0.25 eV.
These are typical parameters of the GaAs/Al„Ga, As
superlattices measured and reported in our earlier work.
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Anisotropy appears in two contexts in this work.
There is scattering anisotropy characterized by parame-
ter b, where b =0 means no anisotropy, corresponding to

'Tp increasing b means larger momentum dependence
of r(p). There is also anisotropy of the diffusion tensor.
This anisotropy is mainly characterized by 2w, the mini-
band width.

In Fig. 6 we show parameter b [Eq. (32)] as a function
of barrier height. We see that the scattering anisotropy is
significantly larger for in-barrier scattering and interface
scattering than for the uniform impurity distribution.
From Eq. (32) it follows that b increases with the increase
of overlap of the wave functions from adjacent layers.
Ever stronger dependence on barrier height (with similar
tendency for the three impurity distributions) can be ob-
served in the normalized interlayer scattering probability
[Fig. (7)]: The more scatterers located closer to the bar-
rier centers the higher the probability of interlayer hop-
ping relative to the intralayer one. It is worth noting that
the above results do not depend upon the total number
(density) of scatterers which influences only the effective
elastic scattering time. Figures 8(a), 8(b), and 8(c) show
the results for the diffusion constants plotted versus the
barrier height Vb for three different impurity distribu-
tions described in (a), (b), and (c), respectively. The paral-
lel component of the diffusion tensor D~~ is given only for
comparison. The classical part of the z component, D, „
depends very weakly upon the type of impurity distribu-
tion discussed here. Its dependence on the barrier height
is almost identical for all three distributions and is mainly
determined by the exponential decrease of the superlat-
tice miniband width 2w with the increasing barrier height
Vb. The hopping part of the z component D, z also de-
creases with Vb. However, the reason for this behavior
lies in the strong reduction of the interlayer scattering
probability for high barriers (see Fig. 7). The case (a) of
uniform scattering throughout the superlattice is charac-

0.1

0.01

9

0.001
C4

0.0001

I I I I I I I I I
I

I I I I I I I I I

0.05 0.15 0.25
Barrier height Vb (eV)

FIG. 7. Relative interlayer scattering probability in a super-
lattice as a function of barrier height for (a) uniform impurity
distribution, (b) interface scattering, and (c) in-barrier scatter-
ing. The superlattice parameters are as in Fig. 6.

10
(a) (uniform) (parallel)

10

10
(hopping)

terized by a very small hopping term D, I, compared to
the classical one D, , [they differ at least by a factor of
100, see Fig. 8(a)]. By contrast, the in-barrier scattering
(c) reveals a significant contribution of the hopping term
to the total diffusion constant D, . The two parts are of
approximately equal magnitude as shown in Fig. 8(c).
The interface scattering (b) represents an intermediate sit-
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FIG. 6. Scattering anisotropy b as a function of barrier
height for (a) uniform impurity distribution, (b) interface
scattering, and (c) in-barrier scattering. The other superlattice
parameters are well width 18.8 nm, barrier width 3.8 nm,
effective electron mass 0.0667m„Fermi energy 17.1 meV, elas-
tic scattering time 0.22 ps.

FIG. 8. Diffusion constants in a superlattice as a function of
barrier height. Solid, dashed, and dotted curves represent, re-

spectively, the classical (D, ,), hopping (D, &), and parallel (D~~)

components of the diffusion constant. Plots (a), (b), and (c) refer

to uniform scattering distribution, interface scattering, and in-

barrier scattering, respectively. The superlattice parameters are

as in Fig. 6.



45 STRUCTURE-DEPENDENT WEAK-LOCALIZATION MODEL FOR. . . 3573

uation. Here, D, & contributes about 20% to the
diffusion constant D, . This number is almost indepen-
dent of the barrier height as can be seen in Fig. 8(b).
This behavior of D, z for different impurity distributions
is again governed by the interlayer scattering probability
(Fig. 7).

The results of Fig. 8(c) require an additional comment.
Our theory is based on a small-collisional-broadening-
assumption,

(63)

Neglecting the weak impurity distribution dependence,
the ratio of the hopping to coherent terms for the
diffusion in the z direction is

D, „
+zc raw

(64)

Therefore, when D, I, becomes comparable to D, „the
small-collisional-broadening assumption becomes ques-
tionable. This occurs for small enough ~p, i.e., it reflects
the fact that D, & is inversely proportional to ~p. For the
parameters considered here this happens for the in-
barrier impurity distribution. However, for real semicon-
ductor systems the finite range of the scattering potential
effectively smoothes the impurity distribution.

As mentioned previously, the application of the present
model to the interpretation of experimental data is not
straightforward. Several works have recently been pub-
lished (in addition to Ref. 6} in which the coherent trans-
port (existence of Bloch wave functions) in the vertical
direction is shown. The most convincing is the work of
Stormer et al. , who from the Shubnikov-de Haas data
on the Fermi surface exhibiting the existence of clearly
separated maximum and minimum orbits demonstrated
the three-dimensionality of the electronic system in a
GaAs/(Al, Ga)As superlattice. Lambert et al. ' extract-
ed diffusion coefficients from time-resolved photolumines-
cence measurements. They compared two kinds of sam-
ples: GaAs/Al„Ga, „As thin barrier superlattice, where
x =0.3, with Al Ga& As reference alloy, with

y =0.15x. These two systems have the same number of
dopants. Their average diffusion coefficient increases
with a decreasing period of the superlattice down to the
period L =60 A and then levels off at a value correspond-
ing to the equivalent alloy. Such an isotropy in D can
possibly be explained by interface roughness. Thin bar-
rier Al Ga, As superlattice, was also investigated by
Schneider, Grahn, and von Klitzing, who found direct
evidence of Bloch transport. Most relevant is that mobil-
ity enhancement was observed by Ye et al. ' by regular
positioning of donor impurities. Weak dependence on
the tilt angle (though not studied systematically) suggests
weak anisotropy. However, since their rneasurernents
were performed at large magnetic fields, no direct com-
parison with the present theory is possible.

To summarize, the model presented in this work ad-
dresses the problem of weak-localization transport in su-
perlattices with an emphasis on the effects of the electron
wave-function modulation and impurity distribution. It

is a natural expansion of the basic model derived by us in
Ref. 9. Its tight-binding superlattice Harniltonian, en-
velope function approximation, and arbitrary impurity
distribution result in a nontrivial z-momentum depen-
dence of the scattering probability. Consequently, anisot-
ropy described in our model difFers from that considered
by the theory of Bhatt, Wolfle, and Ramakrishnan. "
This anisotropy leads to a complicated formula for the
PPDP. There exists, however, a diffusive term in it,
which is responsible for weak localization. The form of
this term is a standard one. The noteworthy physical
effect is that the diffusion coefficient in the z direction has
not only a coherent (classical) part but also an incoherent
or hopping part. This process reveals some aspects that
are similar to the intervalley diffusion scattering problem
considered by Fukuyama. The significance of the
hopping-induced diffusion strongly depends on the distri-
bution of the scattering centers with respect to the super-
lattice structure.

Our numerical results indicate that more theoretical
work (particularly, avoiding the use of the 5-function in-
teraction potential and considering Umklapp processes2 )

has to be done. Also thorough experimental measure-
ments using different superlattice geometry, doping
profiles, and the direction of the magnetic field in magne-
toresistance have to be performed before definite answers
about the nature of quantum corrections to electron
transport in superlattices can be given. The extension of
this work to finite-range potentials such as that used by
Stern and Howard is nontrivial and will be discussed in
future work.
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APPENDIX

From Eq. (57) it follows that the divergence of r,
occurs when the factor b, as defined in Eq. (32), ap-
proaches unity. This unphysical feature can result only
when the assumption of the 6-function scattering poten-
tial is used [see Eq. (5)]. Here we demonstrate that the
finite range of the impurity potential reduces the factor b,
thus providing a finite scattering time.

In what follows we use a more general electron-
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impurity potential in separable form,
/

V, (r,z)= V,.„(r)V;,(z)= V, (r—R,. )V, (z —Z, ), (Al)

To investigate the case which previously led to the
singularity in ~, we assume the 5-function doping profile

but we investigate only one specific doping profile. Using
Eq. (Al) we get the following matrix elements (in which
only the relevant z part is written}:

&+.IV~I+ &"I dz V, (z Z;)f (z «)f(z ma)

(A2)

p(z;)=&(z;) .

We then obtain

a) =2I++ =2I I++ =2I

a2 =I+.+.I+ =I I+

a3 =I++I
(A10)

Employing the tight-binding approximation
n, m =n, ,n;+1 we get the following integrals:

z V, z —z, *z*-,'a z+-,'a .

with
where

' =I dz V, (z)f (z+ —,
' a),

Then, in Eqs. (9) and (13) If+I and f+f are, respec-
tively, substituted with

If+I ~ Jdz V, (z z;)lf(z+ —,'a}l (A4)

f+f ~ Jdz V, (z —z;)f'(z+ ,'a)f(z ———,'a), (A5)

I+ =f dz V, (z)f (z+ —,'a)f (z —
—,'a) .

Consequently

(A 1 1)

(A12)

etc. As a result, modified impurity averages a, ,a2, a 3 are
(f assumed real}

~'

a, =2 Jdz;p(z;) Jdz V, (z —z;)f (z+ ,'a)—
Using the same approximation for the wave functions

in the barriers as before [see Eq. (60)], and assuming a
simple potential which retains the main feature of interest
(finite range)

a2= Jdz, p(z, )I dz, V, (z, —z;)f (zi+ —,'a)

X z2 V, z2 —z; z2+ —,'a zz —
—,'a,

a, =f dz, p(z;) f dz, V, (z, —z, )f'(z, +—,'a)

X f dz2V, (z2 —z;)f (z2 —
—,'a) .

V for Izl &r/2
0 for lzl & r/2,

we get the final result for b,

b=
sinh(Pr)

For r ~0 b =1, while b & 1 for finite range r.

(A13)

(A14)
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