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Excited states of the two-dimensional D ~ center (or H™ ion) are considered in the low-field and high-
field limits. It is shown that in two dimensions there are no bound analogs of the large-radius bound ex-
cited states that spring into existence when an arbitrarily weak magnetic field is applied to a three-
dimensional H™ ion. Asymptotically exact wave functions and energies are obtained in the limit of
infinite magnetic field. In that limit, only four bound states are found in two dimensions: one spin sing-
let (symmetric space wave function), which is the ground state, and three spin triplets (antisymmetric
space wave functions). It is pointed out that even those states that are unbound have, nevertheless,
discrete energy levels in two dimensions (due to the Landau quantization of the planar motion) and play
an essential role in the absorption of radiation by the D~ center. Connections between the two-
dimensional D~ center and D ~ centers in quantum wells are discussed.

I. INTRODUCTION

It is well known that a neutral hydrogen atom or a hy-
drogenic donor can bind a second electron to form a neg-
ative ion. In analogy to the terminology for hydrogen the
donor ion formed in this way is called a D~ center. Sim-
ple hydrogenic D~ centers have been unambiguously
identified in bulk samples of GaAs, a semiconductor in
which shallow donors are very nearly hydrogenic, by
means of the magnetic-field dependence of their photo-
ionization threshold.! Recently reported experiments
purporting to observe magneto-optical transitions associ-
ated with D~ centers in GaAs/(Ga,Al)As quantum
wells? have motivated the present investigation of the ex-
cited states of these centers.

The importance of such excited states as final states in
optical transitions originating from the ground state of
the D~ does not seem to have been appreciated, although
it turns out that in two dimensions and for quantum wells
of experimentally interesting widths photoionization tran-
sitions to final states lying inside the quantum well do not
occur; for photon energies too small to eject a D~ elec-
tron from the quantum well, all final states reached are
discrete unbound states of the D~ center. The final
states of interest cannot be expected to have energy sepa-
rations from the ground state equal to the binding energy
of the ground state, as has been assumed.> Thus the cal-
culation of the optical-absorption frequencies of the D ™
in a quantum well entails calculations not only of the
ground-state energy® but also of energies of the appropri-
ate excited states.

D~ states formed from a donor and a second electron
confined to a common quantum well are always discrete
because of the Landau quantization of the motion of elec-
trons in the well planes and subband quantization of
motion along the magnetic field (which is assumed per-
pendicular to the well planes in this paper). On the other
hand, only some of these discrete states are bound in the
sense that they lie lower in energy than the energy of the
donor plus the energy of a free electron infinitely far from

45

the donor and in the lowest Landau level. (In this paper
the Zeeman spin energy of the D~ electrons is ignored;
the spin state of the electrons affects the energies dis-
cussed only through the Pauli principle, which forces the
overall electronic wave function to be antisymmetric.)

It is of interest to compare the physics of binding of
D~ excited states in two dimensions to the three-
dimensional binding. Remarkably, the three-dimensional
H™ ion, which possesses only one bound state at zero
magnetic field,* has an infinite number in any finite field.’
To understand these excited bound states one must exam-
ine the potential produced by a hydrogen atom or a
donor atom at distances r from the atomic center which
are large compared to the Bohr radius, a, of the three-
dimensional atom. This potential attracts negative
charges toward the atomic center at all distances. It is
proportional to®

lel(1+r)e =2 /r , (1)

where, in Eq. (1) and elsewhere, the convention is adopt-
ed that all displacements are measured in units of a.
Although the attractive force associated with the po-
tential of Eq. (1) decays exponentially with increasing 7,
the actual attraction of the atom on a distant electron is
manyfold greater than implied by Eq. (1) because the at-
tracting atom is polarized by the Coulomb field of the
faraway electron. An atomic dipole moment, p, is in-
duced which points toward the electron. This dipole at-
tracts the electron through its potential, p /r2. The mag-
nitude of p, being proportional to the electric-field
strength from the distant electron evaluated at the atomic
center, itself decreases with increasing r like 1/72. Thus
the attractive potential of the polarized atom is propor-
tional to 1/r* for large . This potential binds the distant
electron in the presence of weak magnetic fields.>’

II. WEAK-FIELD LIMIT

For a two-dimensional donor or even a donor in the
center of a quantum well the situation is completely
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different. In both of these cases the charge distribution of
the donor electron is not spherically symmetric as in
three dimensions but, instead, is oblate. This oblateness
arises, in quantum wells, from the squeezing of the donor
wave function by the barriers and is associated with a
buildup of electronic charge at the equator of the donor.
The extra equatorial charge causes a repulsive contribu-
tion to the potential seen by a distant electron located in
the same well as the donor.

More precisely, the atomic potential, ®(r), evaluated
at displacement r from the center of the unpolarized
atom is given exactly by

le|®(r)= f—“’T(rﬂ_%w 2 @

where W(p',z') is the normalized ground-state wave func-
tion of the donor electron. Energies here and elsewhere
are measured in units of the Rydberg, R, of the bulk
donor. Taking the z direction perpendicular to the
quantum-well planes, expanding in inverse powers of r,
and noticing that for the unperturbed donor the mono-
pole, dipole, and off-diagonal quadrupole moments van-
ish, one obtains the leading terms®

24,2 2
lelo(r)~ QY | Qe )
r r
where
0=0,,=0,,=— [(0.502 =2} W(p',z") 2" (4

and Q,,=—2Q. In Eq. (4), ¥, the unpolarized donor
ground-state wave function, is assumed to have cylindri-
cal symmetry around z; the Q’s are in units of |e|a?. If
p?>>L? where L is the width of the quantum well
(L =0 in the two-dimensional limit), then

lel®(r)~Q/p* . (5)

For oblate charge distributions, Q defined by Eq. (4) is
negative; as a result the force associated with the poten-
tial given by Eq. (5) is repulsive for electrons. A compar-
ison of the exact potential of Eq. (2) and the approximate
potential of Eq. (5) is shown in Fig. 1 for the two-
dimensional donor. The corresponding plot for the case
of the donor and the distant electron in the middle of a
quantum well would display a relatively weaker max-
imum, which is displaced to higher values of p. For
quantum wells with 0.5 <L <6 and with infinitely high
barriers variational calculations indicate that Q is greater
than 32 %> which is its value for the two- dimensional donor.
(Calculations of Q for L <0.5 were not pursued.)

It is important to realize that at large p the potential of
Eq. (5) dominates the dipole potential induced by the dis-
tant electron by virtue of the fact that the former de-
creases like 1/p> whereas the latter falls off like 1/p* as p
gets very large. Thus the dipolar attraction is weaker
than the quadrupolar repulsion at large distances and, in
distinction to the situation in three dimensions, one can-
not expect to find large-radius bound states of the D~ in
weak magnetic fields.

One might ask whether there exist thresholds of mag-
netic field at which various excited D~ states in two di-
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FIG. 1. Plot of the negative of the electrostatic potential due
to the unperturbed two-dimensional donor atom in its ground
state [W= exp(—2p)]. The solid line is the exact curve from
Eq. (2), the dashed curved is the quadrupole potential from Eq.
(5).

mensions do become bound and remain so at all higher
fields. To answer this question in detail one might under-
take a careful variational study of various D~ excited
state energies as functions of magnetic field. (Results of a
study of this sort will be reported elsewhere.) On the oth-
er hand, such states, if unbound at zero field, may be
identified by investigating their binding in the strong-field
limit. Obviously, a state which binds in this limit but
which is unbound at zero field must have a threshold
field.

III. STRONG-FIELD LIMIT

In three-dimensional donor atomic units (energies in
units of R, lengths in units of @) the Hamiltonian for an
isolated D~ center in two dimensions has the form

H=H,(1)+H,12)+2/lp,—psl , (6)

where Hp(j) is the donor Hamiltonian for electron j
(j =1 or 2) given by

Ho(j)=—vi+L =

3
i 3¢

—Hy(j)— 2 —7 ; (8)
Pj

+%y2p§ , (7)
Hp(j)

v is the dimensionless magnetic-field strength defined by
y =*iw, /2R, where w,=eB /mc, B is the strength of the
applied magnetic field, and m is the conduction-band
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mass. Note from Eq. (8) that the zero of energy for the
donor and the D~ is taken at the free-electron ground-
state energy, ¥, in the magnetic field.

The total Hamiltonian, H, is invariant under inter-
change of the indices 1 and 2 and under rotations about
the z axis. Its eigenstates, therefore, may be classified ac-
cording to (a) their total component of angular momen-
tum in the z direction, labeled by the quantum number
M, and (b) their symmetry (symmetric or antisymmetric)
under interchange of coordinate indices 1 and 2.° The
ground state of H is the M =0 symmetric state which, at
zero magnetic field, has been calculated variationally by
Phelps and Bajaj.'!°

By “strong-field limit” in two dimensions we mean
here the limit ¥ — o in Egs. (6)—(8).!! It is easy to show
that as ¥ — oo the eigenfunctions of H can be expanded in
linear combinations of products of pairs of one-electron
ground-state eigenfunctions of Eq. (7), which individually
have the form

Xy(p)=(y'*p)™ —yp*/4)
Xy 2 /[20(2MM ]2 . 9)

exp(—iM @) exp(

These (normalized) wave functions are defined for integer
M from O to oo; they are degenerate ground-state solu-
tions of the free-electron problem

HoXp(p)=EX,(p) (10)

corresponding to z angular momentum —M and energy
E=y. All other solutions to Eq. (10) have energies
(2N +1)y, where N, the Landau quantum number, is a
positive integer greater than zero. Spacings between the
ground-state levels and the excited levels are therefore of
order y, whereas all relevant matrix elements of the
Coulomb potentials in H are easily shown to be only of
order yl/ 2. As a result, admixtures of states with N >1
can be neglected in the eigenstates of H or of Hj in
lowest order, and D~ energies obtained are exact to or-
der ,)/l/ 2

Each function in Eq. (9) is a donor eigenfunction to
lowest order in the high-field limit because the Coulomb
potential, —2/p, does not couple states of different M.
The lowest-order neutral donor (D°) energies are

p(M)={ Xy |Hp|X,)

_ 12(2M —
_ (27y) (ZM)" (M>0)

172 (11)

—(2my) (M =0) .

All other donor levels lie above the energies of Eq. (11) by
an amount of order y. Clearly E(0) is the donor
ground-state energy, as would be expected from Eq. (9),
from which it is clear that the M =0 wave function is the
most highly localized of the X,,’s around p=0, the posi-
tion of the positive charge.

D~ eigenfunctions in the high-field limit can be con-
structed from the basis functions

DM, M, V=X, (p1)Xp, (p2) Xy (p3) Xy (p1) (12)
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by taking linear combinations

M
YEM)= 3 CM,M—M)dEM M—-M,), (13
M, =0

where —M is the total z angular momentum of the D~
state and the + and — superscripts refer to symmetric
and antisymmetric (space) eigenstates, respectively. It is
straightforward to solve the Schrodinger equation

HYE(M)=E*(M)¥T(M) (14)

for the C’s and eigenvalues E *(M) once the matrix ele-
ments of the repulsive potential in Eq. (6) between the
various ®* functions have been obtained. These matrix
elements have been calculated by numerical integration
in this work. A list of the lowest eigenvalues for each of
various symmetric and antisymmetric states is given in
Table I. Also listed there is the corresponding second-
electron binding energy, defined as the minimum energy
required to remove one of the two D~ electrons to
infinity. This quantity is positive only for bound D~
states. Binding occurs for the lowest-lying M =0 sym-
metric state and M =1, 2, and 3 antisymmetric states.

The eigenstate WE(M) corresponding to each el§enva1-
ue E *(M) appearing in Table I is either a pure ®=(M,0)
state (as in the case of M =1 and 2 for antisymmetric
states and M =0 and 1 for symmetric states) or else con-
sists predominantly of that state. Notice that as M in-
creases the energy differences E *(M)—E ~ (M) quickly
get smaller. This occurs because the exchange integrals
occurring in matrix elements of 2/ |p1—p2| diminish rap-
idly with increasing M as compared to the Coulomb in-
tegrals.

The spectrum of optical transitions from the ground
state is particularly simple in the high-field limit. For
light propagating along the magnetic field (normal to the
two-dimensional plane) the dipole selection rule is
AM ==x1. In addition there is always the general selec-
tion rule that requires that the initial and final space
states either be both symmetric or both antisymmetric.
The ground state of the D~ is ¥*(0). In the high-field

TABLE 1. Energies E (M) and E (M) and corresponding
second-electron binding energies ef (M) and ez (M) of the
lowest-lying symmetric and antisymmetric state, respectively, of
the two-dimensional D~ center with quantum number M. The
energies are presented in units of ¥!'/2R. The E values are mea-
sured relative to the lowest Landau level. Only states with posi-
tive ep values are bound.

M E*(M) ey (M) E~ (M) ez (M)
0 —3.2409 0.7343

1 —1.9877 —0.5189 —2.8737 0.3668
2 —2.4824 —0.0242 —2.5604 0.0538
3 —2.4776 —0.0290 —2.508 55 0.0019
4 —2.4839 —0.0227 —2.4954 —0.0112
5 —2.4873 —0.0193 —2.4929 —0.0137
6 —2.4912 —0.0154 —2.4935 —0.0131
7 —2.4937 —0.0129 —2.494 85 —0.0118
8 —2.4958 —0.0108 —2.4963 —0.0103
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limit this state has nonzero dipole matrix elements to
only two states. One of these is W' (1) with energy
E™(1) given in Table I. The other is a replica of ¥ (1)
but with angular momentum equal to + 1 (instead of — 1)
and with energy E *(1)+2y (recall that 2y is the cyclo-
tron resonance transition energy in the present system of
units).'> Transitions occurring at the binding energy of
the D~ ground state would require AM =+, as dis-
cussed below. Note that the transition energy for
¥ (0)—>W*(1)is ~21% higher than the binding energy
of the D~ ground state.

Both E*(M) and E ~ (M) appear from Table I to ap-
proach from above the threshold energy for binding,
—(2m)12~ —2.506 628, for large M. In fact, the discus-
sion leading to Eq. (5) is applicable for analyzing the
lowest-lying large-M wave functions WF(M) in the
strong-field limit and for showing that these wave func-
tions, unbound at sufficiently large M, have energies
which approach (from above) the threshold energy for
binding as M — «. The condition for applicability of Eq.
(5) is that the second electron be, on average, much far-
ther away from the positive ion than is the donor elec-
tron. This condition is well satisfied by the two-electron
wave function X, (p;)X,(p,) if M is sufficiently large,
since the donor wave function X,(p,) has a much smaller
radius than the outer-electron wave function X, (p,),
which, moreover, vanishes rapidly at small p;. From Eq.
(5) one would infer that the energy of the two-electron
wave function just introduced (more precisely, the expec-
tation value of H in that wave function) lies above the
D " ionization energy by an amount proportional to

(Xplp 3N Xp ) ~M 32, (15)

Since H is symmetric in electron indices, the energy of
the state X, (p,)Xy(p;) is the same as that of
Xy(p1)Xy(p,). But since exchange terms are negligible at
large M, ®*(M,0) must also have very nearly the same
energy as these two product functions. Corrections to
the energy of ®(M,0) induced by admixing
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®*(M —1,1) and other basis wave functions as
prescribed by Eq. (13) can be shown to be of order M 2
and smaller. (The M ~2 correction arises from polariza-
tion of the donor by the outer electron.) As a result the
lowest D~ energy for a given M value and symmetry type
(symmetric or antisymmetric) approaches the binding
threshold from above as M — .

This conclusion is not expected to apply to D~ centers
in quantum wells in the high-field limit (L fixed, ¥ — o).
At sufficiently high magnetic fields the donor ground
state becomes prolate, producing an attractive quadrupole
potential far from the donor center, which may well bind
all states of sufficiently high M.

IV. SUMMARY AND CONCLUSIONS

It is shown that the D~ problem in a quantum well or
in the two-dimensional limit differs in fundamental ways
from the analogous problem in bulk. In two dimensions
with a uniform magnetic field present all states, whether
bound or unbound, are discrete. Excited states with
[M|>>1 are expected to be unbound in the weak-
magnetic-field limit, unlike the situation in bulk samples.
In the high-field limit only four bound states have been
found for the two-dimensional D~ although an infinite
number are expected for D~ centers in quantum wells.
The decisive role played by the donor quadrupole mo-
ment is emphasized. It is pointed out that in the two-
dimensional high-field limit the two allowed optical tran-
sitions from the ground state both have substantially
higher energies than the binding energy of the D ~ center.
There is no reason to expect that any of the allowed tran-
sition energies at intermediate fields are very close to the
binding energy of the D .

Whether inserting the correct excited state energies
into the calculations of Ref. 3 would bring the predicted
transition energies into agreement with the experimental
results of Ref. 2 is an issue that is currently under investi-
gation.

IC. J. Armistead, S. P. Najda, R. A. Stradling, and J. C. Maan,
Solid State Commun. 53, 1109 (1985).

28, Huant, S. P. Najda, and B. Etienne, Phys. Rev. Lett. 65,
1486 (1990).

3Tao Pang and Steven G. Louie, Phys. Rev. Lett. 65, 1635
(1990).

4R. N. Hill, Phys. Rev. Lett. 38, 634 (1977).

5J. Avron, L. Herbst, and B. Simon, Phys. Rev. Lett. 39, 1068
(1977).

6J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New
York, 1975), p. 50.

7D. M. Larsen, Phys. Rev. B 20, 5217 (1979).

8See Ref. 6, p. 138.

9The Pauli principle requires that the spin wave function associ-
ated with the symmetric space state be antisymmetric (a spin
singlet) whereas those associated with the antisymmetric
space state be symmetric (spin triplet states).

10D, E. Phelps and K. K. Bajaj, Phys. Rev. B 27, 4883 (1983).

IThe two-dimensional limit can be defined as the limit of a
quantum well with infinitely high barriers as L —0. The
strong-field limit in two dimensions referred to in this paper
should be understood as the result of two limiting processes:
first the limit L —O0 is taken, followed by the limit y — co.
The order of the limits is very important.

121n the dipole approximation the perturbation due to left circu-
larly polarized light incident on the D ~ center is proportional
to pexp(—i¢). This perturbation operating on X, (p) pro-
duces, to within a multiplicative constant, X, ,(p) [see Eq.
(9)]. As a consequence, left-circularly-polarized light couples
the high-field D ~ ground state to the excited state ¥*(1) and
to no other state. Likewise right-circularly-polarized light,
which leads to a term in the Hamiltonian proportional to
pexplig), couples the high-field ground state to the state
{p1expli¢,) exp[ —y(pi+p3)/4]+ 12} and to no other
state.



