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Raman spectrum of superconducting oxides
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The anomalous electronic Raman scattering in the normal state of various cuprates extends smoothly
to an energy of 1 eV. This behavior is shown to be in accord with the frequency-dependent damping
caused by electron-electron scattering between nearly parallel (i.e., "nested") sections of the Fermi sur-

face. Intermediate on-site Coulomb repulsion is found to be compatible with the data, whereas the
long-range Coulomb coupling is ineffective in the small-momentum-transfer limit. The matrix element

for the scattering process is attributed to energy-density fluctuations for anisotropic Fermi surfaces. By
contrast, conventional density-fluctuation processes for parabolic energy bands are several orders of
magnitude smaller and restricted to a narrow frequency range because of charge conservation and the

Pauli exclusion principle. A surprising proportionality between the Raman line shape and the optical
conductivity is derived in the nesting approximation. Evidence for such behavior is established by fits to
the Raman spectra of YBa2Cu307 and Bi&Sr2CaCu208 using electron-electron coupling and energy-cutoff
values previously obtained from our analysis of the optical conductivity and reflectance data. Similar

electronic spectra should appear in other metals with nested Fermi surfaces, such as chromium and vari-

ous rare-earth metals.

I. INTRODUCTION

Raman scattering by single-particle excitations in a
simple metal is expected to be very weak and restricted to
frequencies below 30 cm ' for ordinary laser probes and
Fermi velocities. The cross section is proportional to the
Fermion gas structure factor' S(q, to) which tends to van-
ish as q —+0, and is surely very small at the momentum
transfer q of the light.

Thus the discovery ' of strong electronic Raman
scattering over a wide frequency range in YBa2Cu307
generated a fundamental theoretical challenge which may
have relevance to the high superconducting transition
temperatures of the cuprates. The insulating counterpart
YBa2Cu306 exhibits a Raman spectrum of similar intensi-
ty and range, but the antiferromagnetism in this case pro-
duces a much different line shape with a broad peak
which has been established as two-magnon scattering.

Similar flat Raman spectra have been observed for oth-
er cuprates and in the unusual superconductor
Ba K, „Bi03 which does not have spin fluctuations of
the form usually associated with the copper oxides. The
slight frequency variation of the electronic spectrum of
the superconductors is sensitive to the light polarization.

Metals with anisotropic Fermi surfaces allow light to
couple to fluctuations in the energy density and thereby
yield a quasielastic continuum that is much different than
the weaker charge density scattering. The nonparabolic
band scattering originally derived for doped serniconduc-
tors may be applicable to superconductors with particu-
lar relevance to the layered copper oxide superconduc-
tors. The acceleration of an electron by an optical Geld

creates a change in the effective mass which introduces a
nonlinear term in the equation of motion.

The anomalous Raman scattering data in the cuprates
provided the inspiration for the "marginal Fermi liquid"
hypothesis' which presumed that the susceptibility at
long wavelengths has the form ys't ~ to/T for ~co

~
(T and

ys't o- sgn(co) for ~co~ ) T. Considering the standard Bose
factor in the cross section, this phenomological form of
y~ was inferred from a flat Raman spectrum. Assuming
further that this y~ structure is independent of momen-
tum q, it generates a quasiparticle self-energy
XM ~ max( T,

~
co

~
) that is claimed to be compatible with

conductivity and other measurements on the cuprates.
However, if the linear frequency variation continues to
zero frequency and temperature, the corresponding
singularity in the effective mass leads to a breakdown of
conventional Fermi-liquid (FL) behavior, and this situa-
tion has been named "marginal. "

The purpose of the present work is to calculate the
electronic Raman response of a nested Fermi liquid
(NFL) which is characterized by nearly parallel sections
of electron (or hole) orbits. "The optical response of the
NFL model is much different from conventional Drude
behavior, and yields a remarkably good description of
conductivity and reflectivity data on high-temperature
superconductors with an on-site Coulomb coupling corn-
parable to the bandwidth. ' Our Rarnan calculation of
the energy density response includes self-energy and ver-
tex corrections from electron-electron scattering. The
magnitude and unusual linear frequency variation of the
NFL damping provides the mechanism for light scatter-
ing out to large frequencies ( —l eV).
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In relation to Raman scattering it is instructive to first
present the structure factor in the NFL theory using the
standard relation'

2
1

S(q, co) = Im
4rre' &(q, ro)

'

where the dielectric function in the long-wavelength limit
q~0 is given by'

2
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is found to be near 3 eV for su-
perconducting Bi2Sr2CaCu208 using the above form to fit
data'-' on infrared conductivity, refiectivity, and the f-
sum rules for the conductivity as well as the structure fac-
tor. ' The key ingredient in the NFL analysis is
electron-electron scattering across regions of the Fermi
surface that satisfy the nesting condition

for a nesting wave vector Q. This approximation yields a
quasiparticle transport damping rate that is linear in fre-
quency

NFL

for ro )P'T and also

1
—=—p'a T

+NFL

(4a)

(4b)

in the static limit ro ((p'T. The coefficient p' varies from
3.3 in the weak-coupling limit to 4.2 in the strong-
coupling limit' where a is proportional to the Coulomb
coupling U divided by the bandwidth 8'. Specific
analysis of the Bi2Sr2CaCu208 data reveals u =0.4, which
is compatible with a Boltzrnann equation solution if
U/W=1. 0 and 90% of the Fermi surface satisfies the
nesting condition. ' Physically, the finite transport
damping for electron-electron collisions on a nested sur-
face originates form an anisotropic velocity distribution
along the orbit that permits a current change despite
momentum conservation.

The structure factor SN&„(q,co) corresponding to the
above NFL analysis exhibits a broad plasmon peak as
shown in Fig. 1: The line shape at low and intermediate
(co —1 eV) frequencies is quite close to the spectrum de-
rived from optical reAectivity data' and is generally
compatible with independent electron loss measure-
ments' performed at a momentum transfer ~q~

—=0.05
A '. The SN„„(q,co) function satisfies the f-sum rules
required by charge conservation, although there is some
uncertainty near the cutoff in the 2-eV range.

Clearly the structure factor deduced in Fig. 1 is nol;
seen in the Raman spectra of the cuprates. This is not
surprising in view of the small cross section for the iso-
tropic scattering mechanism' and the minor influence of
the energy fluctuations on the plasrnon scattering.
Furthermore, the NFL structure factor is much different
from the corresponding marginal FL phenomenological
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function. '

Raman spectra of doped semiconductors reveal elec-
tronic valley orbit transitions in cases with anisotropic
effective masses. Interesting plasmon-phonon line shapes
have been observed, ' ' and a broad continuum occurs in
n-type SiC. Broad Raman peaks in doped silicon and
germanium reveal line shapes and intensities that change
with carrier concentration and applied pressure in a
manner that is compatible with light coupling to interval-
ley density fluctuations. ' This scattering appears as a
Lorentzian-like tail whose width is dominated by impuri-
ty scattering. ' Coupling to an Einstein phonon intro-
duces a predominant peak at the phonon frequency. In-
terband transitions have been proposed ' to explain low-
frequency Raman structure in the superconducting state
of certain copper oxides. However, none of these sources
are expected to generate a smooth spectrum extending to
1 eV as seen in the cuprates.

Hence we proceed to calculate the energy fluctuation
response using the NFL analysis for electron-electron
scattering. The formalism is presented in Sec. II, and a
comparison to Raman data on high-temperature super-
conductors is in Sec. III. Conclusions of our study with
suggested prospects for similar nesting phenomena in
chromium, transition-metal alloys, and various rare-earth
metals are presented in Sec. IV.

II. FORMALISM

Light coupling to electrons via the vector potential A
can be treated in second-order perturbation theory to

co (cm ')

FIG. 1. Structure factor for Bi,Sr2CaCu208 derived from op-
tical reflectivity data of Ref. 13 is shown by circles. The calcu-
lated NFL loss function is the solid curve obtained with e„=5,
cop/ 3. 1 eV, a =0.4, and a cutoff co, —= 1 .2 eV: This function
satisfies the f-sum rules and the evident large plasmon width is
caused by the frequency variation of the damp 1/7.»& (co).

o
Electron loss data from Ref. 15 at q =0.05 A is shown by tri-
angles. A conventional Drude fit to the low-frequency conduc-
tivity predicts the narrower dashed curve with a position, width,
and temperature dependence that contrast with the data shown
here.
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derive a cross section:

Is =r S(q, co),
N;

where ra =e /mc is the Thomson radius, and co,.(co, ) is
the incident (scattered) light frequency. The generalized
structure factor is defined as

S(q, co)=(1—e "~
) Imp(q, co),

with

g(q, co) =([p(q),p( —q)])(co),

where q and co represent the momentum and energy
transfer of the scattered photon, respectively. The
effective density

p(q) = gy(k)ci, +
her

involves the energy fluctuations that are vital in the
present case of anisotropic Fermi surface scattering and
c& (cz ) represent creation (destruction) operators for
electrons. The momentum-dependent function y(k) de-
pends on the scattering geometry through the polariza-
tion vectors of the incoming (ep) and scattered (e' )

light:

y(k) = g e' y p(k)ep .
a,P

For nonparabolic energy dispersion E(k) the general-
ized inverse mass tensor y p(k) reduces to
mot) E(k)Bk Bkp if the incoming and scattered light fre-

quencies are neglected in comparison to the optical band

gap, ' and mo denotes the free-electron mass.
The effective density correlation function with both

self-energy and vertex corrections can be expressed as

g (q,iv)= f d k T gy(k)G(k+q/2, ico)G(k —q/2, i(co —v))V(k, ice;q, iv) .
(2m )

(10)

Our treatment is based on the NFL approach" used pre-
viously to calculate the optical conductivity. ' The key
physical input is that the response of a nested Fermi sur-
face is dominated by correlations with a typical nesting
wave vector Q. Then the electron-electron scattering
yields a quasiparticle self-energy

E(p, l V)=g +NFL(Q, EV), (12)

where the susceptibility gNzz includes self-energy correc-
tions in the electron-hole propagation.

Within these approximations, Eqs. (11) and (12) yield
the self-energy and analytic continuation gives a quasi-
particle damping"

X(k, ico)= f d p TQK[k p, i(co —co')]G(p—,i''),1

(2m. ) I

I NFL(cu) = —&NFL(co) =cz max(PT, le I ), (13)

where the corresponding diagrams are shown in Fig. 2.
Considering an electron-electron coupling g=UQ, in
terms of the on-site Coulomb repulsion U and unit cell
volume 0, the basic interaction kernel becomes

NFL

where P is of order unity and the coefficient a increases
with the dimensionless coupling g=gN(0)=U/W to
values approaching unity when g -1, i.e., when U is near-
ly equal to the bandwidth 8'. This quasiparticle damping
rate should not be confused with the transport relaxation
rate discussed in the Introduction. We show later that an
additional momentum dependence in the kernel E does
not spoil the linear frequency and temperature depen-
dence of the self-energy.

The vertex corrections are represented by diagrams in
Fig. 3, and they involve the same kernel E(iv) defined in
Eq. (12). In addition we consider corrections caused by
the long-range Coulomb coupling V =4me /q, which
yields the total vertex

V(k, ice;q i v) =y(k)+ V, (q, iv)+ V(k i co;q i v),
where

(14)

XNFL

FIG. 2. Quasiparticle self-energy XN„Lwith the double lines
representing dressed propagators that include self-energy
corrections in a self-consistent way. The double wavy line is the
kernel E which originates from electron-electron scattering
with momenta near the nesting wave vector Q. The shaded tri-
angle is the vertex V and the efFective density response function
yN&L(q=0, co) includes the photon coupling y to the energy-
density fluctuations.

FIG. 3. Diagrammatic representation of the vertex equation
that includes the light coupling y to the energy fluctuations, the
electron-electron scattering kernel K (double wavy lines), and
the long-range Coulomb interaction shown as a single wavy line.



350 A. VIROSZTEK AND J. RUVALDS 45

V(k, icp;q, iv)=[1/(2m. ) ]f d p T QK[k —p, i(cp —cp')]G(p+q/2, i cp')G(p —q/2, i(cp' —v)}V(p,icp', q, iv) (15)

and

V, (q, iv)=[V /(2m) ] f d pT QG(p+q/2, icp')G(p —q/2, i(cp' —v))V(p, ice', q, iv) .

We note that K(q, iv~oo)=0 and therefore V(k, icp
—+ oo; qiv) =0 as well.

Hence determination of the Raman cross section re-
quires a self-consistent solution of these self-energy and
vertex equations. To treat these coupled equations we ex-
pand the k-dependent functions in terms of a complete
orthonormal set of Fermi surface harmonics tpl (k),
with yl p(k)=1 and

".'(k)= X yL, ql. (k» (17)

and

V(k, i co;q, iv) = g VL (icp;q, iv)cpi (k),
L

(18)

K[k p, i(c—p c)p]—= g KL I[i(cp cp')]y—L (k)q&M(p) .
L, M

For simplicity we approximate the kernel in a diagonal
form

KL ~(iv) =Kl (iv)51M, (20)

X(icp) = i sgn(—cp }r(icp),

with

(21)

I (icp)=mN(0)T g Kp(iv),
Ivi & I~I

(22)

providing that the electron density of states N(E) =N(0)
is slowly varying near the Fermi energy. Using Kp(iv)
and the nesting approximation for the quasiparticle ener-

I

thereby restricting but not eliminating its momentum
dependence. The constant component Kp(iv) then corre-
sponds to the momentum-independent approximation of
Eq. (12) which was used in Ref. 12. By a similar analysis
to the conductivity derivation, ' the decomposition of Eq.
(18) and the condition of Eq. (20) yield a momentum-
independent self-energy

I

gy E(k+Q)-=—E(k) produces the NFL damping" in
Eq. (13).

%e note that the approximation of a diagonal kernel in
Eq. (20) facilitates the analytic approach of calculating
correlation functions in this paper. Allowing off-diagonal
terms in E leads to a momentum-dependent self-energy
via Eq. (11), and then the resulting nonlinear equation re-
quires numerical analysis. Recent computations on a
two-dimensional (2D) Hubbard model with the NRL con-
nection machine indeed show momentum variations in
the self-energy, which may suggest 25-30% corrections
to the averaged constant term over the whole Brillouin
zone. Nevertheless the qualitative strength and, most im-
portant, the frequency variation of the NFL self-energy is
confirmed by these sophisticated self-consistent numeri-
cal results in the case of a nearly half-filled band which
exhibits nesting of the Fermi surface. Therefore the
present derivation of the long-wavelength response
should capture the essence of the line shape by using the
leading term in the self-energy.

Turning to the effective density response y, we realize
that the Green's function

6 (k+q/2, icp) =icp E(k+q—/2) X(icp)— (23)

+i sgn(cp)I (ico) . (24)

Considering the laser frequencies and Fermi velocity vz
appropriate for cuprate superconductors, q.v~ =30
cm ', while the lowest value of the damping is

(rc=p0)=T) T, —100 cm '. Hence it is sensible to
take q~O in the evaluation of f, and V from Eqs. (10)
and (15). At this stage our analysis departs from previous
calculations because the predominant inhuence of the
frequency-dependent damping will greatly extend the
range of the NFL Raman cross section.

Using the Fermi-surface harmonics we thus obtain

can be reduced (by noting the smallness of the light
momentum q) to

6 '(k+ q/2, icp ) —= icp —E(k) —q.vz(k) /2

VL (icp;q, iv) 1
y(q, i v) =N(0) yz dET

i sgn(co)[lcpl+r(icp)] E i sgn(cp —v}[ lc—p —vl+r[i(cp —v)]] —E (25)

The lack of absolute convergence of Eq. (25) requires care in the interchange of the energy integral and sum. In the
process the condition

VL (i co~ oo; q, i v ) =y I +51 p V (q, i v )

enters and reduces Eq. (25) to

(26)

Vc (icp&q, iv)
y(q, iv) =N(0) g yl. yL, +81.,pVc(q iv) 2vrT— (27)
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Similar treatment of the vertex equation (14}yields

N(0)K [i(co c—o')]
VI (ico;q, iv) =yL +5L pV (q iv)+2vrT g, , VL (ico';q, iv) .„v+I ico' +I i v —co'

(28)

Since the long-range Coulomb interaction couples only to the long-wavelength density fluctuations, it contributes
corrections only in the L =0 channel in Eqs. (27) and (28). The vertex equation (28) in the L =0 channel is solved by
summing over the range 0 & co & v and using the identity'

2n T g N(0)K [i(co co')]—=I (ico')+I [i(v—co')],
0(u(v

which gives

Vp(i co; q, i v)

„~.„v+r(i~)+r[i(v ~)] =y'+ ' ~"

(29)

(30)

Clearly then, the L =0 channel including the Coulomb potential cancels completely in Eq. (27) and thus yields zero con-
tribution to the effective density response y. This is not surprising since the I.=0 channel corresponds to the ordinary
density fluctuations which obey the f-sum-rule requirement y(q~O, co)—+0. This behavior is a consequence of parti-
cle conservation, and is satisfied by the actual density response in the nesting approximation as well. '

Finally, the main result of these calculations yields a q independent Raman cross section that arises from the L 40
channels which are not constrained by the f-sum rule. ' The resulting effective susceptibility is

Vz (i co;i v )
g(iv)=N(0) g yL, yL, 2nT- .

L&0

and the vertex function becomes

N(0)KL [i(co—co') ]
VL (ico;&v)=yL +2m T g, , VL (i co';iv) .v+I ico' +I i v —co'

(31}

(32)

IIl. NFL RAMAN SPECTRUM

A comparison to experimental data on high-temperature superconductors is now feasible with the effective density
response from Eqs. (31}and (32) evaluated with the NFL damping of Eq. (13). First we consider the situation where the
kernel is presumed to be momentum independent, and then we treat the more general case where the momentum varia-
tion may infiuence the spectral response at different scattering geometries.

A. Momentum independent kernel

Considering electron-electron scattering events characterized by a nesting wave vector Q to be dominant leads' to
the simple kernel KL (i v) =5L pKp(i v). Then the vertex of Eq. (32) reduces to VL (i co i v) =y I for L %0, and the correla-
tion function of Eq. (31)becomes

y(' )=N(0) g yL, (33)

A similar frequency sum was encountered in the treat-
ment' of the NFL optical conductivity, where it was
shown that I (ico)+I [i(v co)] can be—replaced by its
average value

I

response yield real and imaginary parts of I that deter-
mine the transport lifetime rN„„(co,T) given in Eq. (4)
and the corresponding mass normalization

27TTr(iv) = y [r(i~)+r[i(v —~)]j,v 0&co(v
(34)

INFL
(co, T}=1+ ln

mp 7T m x(aP' lTco I )
(36)

due to the weak frequency dependence in the range
0&co(v. Thus we obtain

Finally the Raman cross section follows from Eqs. (5},(6),
(35), and (36), and is

g(iv)=N(0) g yi v+I (iv)
(35) INFL =rp N(0)[1 —e ]

CO;

By analogy to the conductivity calculation, ' analytic
continuation and the causality requirement for the

coTNFg(co)'
Xgyi 2 2

L/p [~NFL(~}~ p] NFL(
(37)



352 A. VIROSZTEK AND J. RUVALDS 45

X g y', (4~/~'„)~~»L(~) .
LAO

(39)

This surprising proportionality between the Raman line
shape and the conductivity is very much different from
the tr d' '

e raditional isotropic Raman cross-section result' of
Eq. (1) and is generally not valid for a nonparabolic band
with weak damping.

The proportionality of the Raman spectrum and the
conductivity was anticipated previously in the theory of
Mott-Hubbard systems with a similar "stress tensor"
analysis for the light coupling to energy fluctuations.
However, the origin of the anomalous Raman scattering
was attributed to "incoherent" parts of the spectral rep-
resentation without specifying its frequency distribution.
Physically a rough proportionality is expected when the
nonparabolicity of the band induces light coupling to
nonconserved density fluctuations providing that the ma-
trix elements of this process are comparable to the true
current operator which determines the conductivity.

A comparison of the NFL Rarnan line shape to data
on YBazCu307 is shown in Fig. 4, using the interpolation
formulas

Some qualitative features of this spectrum are apparent
q. t &. At low temperatures the relaxation time

is roughly 2.NFL-=(aP'co) ' over the frequency range
co) p'T and 02) co' so that the only frequency variation
of the NFL Raman spectrum is caused by the weak fre-
quency variation of the effective mass m NFL(02, T): A
crossover to conventional Fermi liquid behavior should
occur below 02* =p'T—', where p'= 3.3 and T* is estimat-
ed near 100 K from numerical calculations with realistic
tight-binding bands. ' Thus variations in the electron-
electron coupling which are proportional to a tend to
change the overall intensity of the spectrum but will have
relatively small influence on m'(co) and thus will not
change the overall shape of the Raman spectrum, which
is rather smooth in any event. Hence changes in the Fer-
mi surface nesting induced by oxygen doping, for exam-
ple, are not expected to give dramatic line-shape changes
unless of course the nesting is substantially destroyed.

A remarkable correlation appears between the Raman
line shape INF„and the optical conductivity'

2

( )
1 ~pl+NFL( ~ )

+NFL (38)
4~ [m NFL ( 02 ) /222 o ] 02 ~NFL I 02 I

+ 1

which allows Eq. (37) to be rewritten as

INFL = r o(02, /02, )(1—e ) 'N(0)

YBa~ Cu3 07 R. HACKL ...DATA

(XX) T=210K

NFL a=0.55

I

2000 4000

co {cm ')

I

6000
I

8000 10000

FIG. 4. The calculated NFL Raman line shape yields the
solid curve for a=0.55 and co, =17000 cm ' (=2 eV) whichc s

were obtained from our previous analysis of optical conductivi-
ty and reflectance of YBa&Cu30, in Ref. 14. The Raman data of
Staufer, Hackl, and Muller of Ref. 6 for the (XX) polarization
shows the slight frequency upturn in accord with the theory for
a single scattering channel.

C

I
tO

co

z
Z

K

Biz Sr& Ca Cuz 08
R. HACKL ...DATA

(XX)

crossover to conventional Fermi-liquid behavior that is

The r
expected for a realistic band structure such as

' R f 28in e.
e predicted sharp upturn at very low frequencies in the

NFL spectrum using Eq. (40) may provide clues to the
crossover value co*, since the logarithmic divergence of
the effective mass in the NFL approximation is removed
below co*. A rather good description is achieved witih a
coupling a=0.55 and a cutoff frequency co, =—17000
cm ' (-2 eV) which were obtained from our earlier

14analysis of the reflectivity of untwinned single crystals.
The variation of the NFL spectrum is also shown for
another value of the coupling a to illustrate the weak sen-
sitivity of the line shape.

The Raman data for BizSrzCaCuz08 also agrees with
the NFL spectrum in Fig. 5 using the parameters a=0.4
and co, = 10000 cm ' from our previous fits' to the

and

1/TNFL a[(P'T) +—co ]' (40a)
I

2000
I

4000

t0(cm ')

6000
I I

8000 10000

m NFL 2a=1+ ln
mO [(piT)2+ 2]l/2 (40b)

with R'=3.3. These expressions have the appropriate
NFL asymptotic limits of Eq. (4) at T«02 and also
T &&co. However, the validity of these expressions is also
subject to the constraint co& co' & 3T' which marks the

FI~.G. 5. Raman spectrum of Bi&Sr~CaCuz08 from Staufer,
Hackl, and Muller in Ref. 6 is compared to the NFL line shape
calculated using ca=0.4 and co =1 2 V The . ese parameters are
identical to the values which were found earlier in the NFL
analysis of optical conductivity {Ref. 14) and also are compati-
ble with the structure factor shown in Fig. 1 along with the f
sum rules. The data and analysis are done at T= 120 K.
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reAectivity, conductivity, and structure factor of this
high-temperature superconductor.

There remains the problem of spectral changes ob-
served in the cuprates at different polarizations. To ex-
amine these features, we consider next an appropriate
solution of the vertex equation (32) when the momentum
dependence of the kernel gives Ki %0 for l. =0.

S. Momentum dependence and scattering geometry

To achieve a tractable analytic solution for the vertex
in Eq. (32) we assume that the frequency dependence of
the kernel is the same for all channels with a magnitude

i.e., KL(iv)=-A&KO(iv), where Ao= l. It seems
reasonable to take ~EL&0~(1 because K(q, iv))0. In
fact A.L may be much less than 1 in most channels be-
cause the kernel Ko of Eq. (12) is found to be an order of
magnitude larger than a conventional Fermi-liquid aver-
age that should represent non-nested regions of the Fermi
surface. The generalized susceptibility becomes

(1—X )I(iv)
j(iv)=N(0) Q y~ v+ 1(1—

A I )I'(i v)
(41)

Evidently the functional form is modified slightly by con-
tributions from different channels. For A,L & 0 the
effective slope of the Raman spectrum decreases, while
for A,z & 0 the slope increases. However, multichan
nel scattering contributions to the Raman cross section
IN„z are not simply related to the optical conductivity
0(co). Hence the approximate proportionality IN„&
~ (1—e ) 'cocrNrL(co) that appears to be compatible
with the data for the cuprates in Figs. 4 and 5 may indi-
cate that the momentum-independent L =0 channel
dominates the scattering in Bi2Sr2CaCu208 and in
YBa2Cu 307.

Since different scattering geometries sample different
sets of yr, the frequency dependence of Eq. (41) will de-

pend slightly on the polarization of the light, because the
functions containing A,L will enter with different weights.

C. Low-temperature limit

At frequencies above the phonon range, i.e., co& 1000
cm ', the NFL spectrum exhibits negligible temperature
variation as seen in Fig. 6.

In the phonon range strong antiresonance line shapes
near the phonon peaks are observed, and these suggest
an interference between the ion response and the elec-
tronic continuum. In addition there is inevitably strong
Rayleigh scattering at the lowest frequencies which
masks the temperature dependence as well. Nevertheless
it may be worthwhile to search more closely the low-
frequency region for indications and limits of the low-
frequency upturn predicted by Eqs. (38) and (39), and
shown in Fig. 6.

The high transition temperatures of the cuprates im-
pose another lower limit on our frequency analysis which
is valid for the normal state. The creation of a supercon-
ducting energy gap may also modify the nesting features
of the Fermi surface. Attempts to deduce a gap from an
examination of the temperature variation of the spectrum

0.6
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0.0 '

0
i

2000
I

4000

m(cm ')

1

6000 8000

FIG. 6. The calculated Raman line shape SN&z in the single-
channel NFL analysis is shown for three different temperatures
to illustrate the uptrend at low frequencies caused by the tem-

perature and frequency variation of the effective mass

mN&L(co, T). Experimental data in the low-frequency region
show phonon peaks and pronounced interference line shapes as
in Figs. 4 and 5. Also Rayleigh scattering at very low frequen-
cies may mask the unusual temperature-dependent structure
predicted by the NFL theory.

at low frequencies may well be complicated by the addi-
tional variation of the NFL electronic scattering shown
in Fig. 6.

A fundamental theoretical issue is the validity of a
Fermi-liquid description for the copper oxide supercon-
ductors. The "marginal" FL hypothesis asserts that the
efFective mass m *(T,co) that is deduced from a phenome-
nological form' of the susceptibility and damping rate
exhibits a logarithmic singularity in temperature which
leads to a breakdown of the concept of well-defined quasi-
particles. This type of situation occurs for an electron
gas in one dimension, and also has been proposed in the
original formulation of the spinon-holon excitation spec-
trum for a doped highly correlated Mott-Hubbard insu-
lator.

Our nested formulation avoids these diSculties at the
lowest temperatures even though the functional depen-
dence of m N„L(co, T) in Eq. (36) is similar to the results of
the "marginal" FL approach. ' Since the nesting is not
perfect, there will be a crossover temperature T* and fre-
quency co* below which the quasiparticle is so narrowly
confined to the orbit that the trajectory curvature fails to
satisfy the nesting condition and the response reverts to a
conventional Fermi liquid.

Numerical computations of the susceptibility and
quasiparticle self-energy verify the crossover from NFL
response at reasonable values of T* and co', provided
that the input of two-dimensional tight-binding bands is
tailored to fit the Fermi surfaces predicted by band-
structure calculations. It is noteworthy that the band
calculations show substantial Fermi-surface nesting for
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essentially all of the high-temperature superconductors
examined so far.

IV. CQNCI. USIQNS

Light scattering by energy Auctuations in a nonpara-
bolic conduction band is shown to yield a broad continu-
um which may extend to 8000 cm ' or roughly 1 eV in
the case of substantial nesting of the Fermi surface. A re-
markable proportionality of the Raman cross section to
the optical conductivity in our NFL analysis is found for
the simplest approximation of the electron-electron
scattering kernel. Quantitative evidence for such unusua1
behavior is provided by the good fits achieved for the Ra-
man spectra o YBa2Cu3 7 and B&2S12CRCu2O8 using pa-
rameters determined previously from our NFL analysis
of optical conductivity and reAectivity data for these su-
per conductors.

Nested Fermi surfaces are expected to occur in various
rare-earth metals and in transition metals such as
chromium. Thus it is encouraging that a broad Raman
continuum has been observed in Dy, Er, and Y films,
and independent evidence for a linear frequency variation
of the quasiparticle damping is apparent in the infrared
reAectivity measurements ' on Ba, Sr, Eu, and Yb, and
also in chromium.

Since nesting is known to inhuence the range, sign, and
periodicity of the indirect exchange coupling between lo-
calized spins that is mediated by conduction electrons,
optical investigations may reveal clues to the origin of
magnetic ordering phenomena in transition-metal alloys

and in multilayer fihns.
Our theoretical formulation for the NFL self-energy

and vertex corrections satisfies the Ward identity re-
quired for charge conservation and gauge invariance.
However, the treatment of the light coupling vertex to
the anisotropic energy fIuctuations yields a Raman cross
section that is much larger than the conventional
particle-hole process. The latter scattering vanishes as
the square of the light momentum transfer as required by
particle conservation and the Pauli exclusion principle,
and hence is extremely small for the applicable laser fre-
quencies. By contrast, the anomalous Raman spectrum
derived for a nested Fermi surface yields strong intensity
and polarization properties that are sensitive to details of
the energy-momentum dispersion, while the actual densi-
ty response is nevertheless compliant with charge conser-
vation.
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