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Transfer-matrix theory of the energy levels and electron tunneling
in heterostructures under an in-plane magnetic field
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We present a unified treatment, within the transfer-matrix approach, of the energy levels and electron
tunneling in heterostructures under an in-plane magnetic field. Parabolic cylinder functions are used to
expand the electronic wave functions. The theory is applied to a double-barrier resonant-tunneling
structure made of GaAs and Ga& „Al„As. A few low-lying conduction subbands and wave functions
are calculated. The transmission coefficients and tunnel currents are also presented.

I. INTRODUCTION

In recent years, semiconductor heterostructures, pro-
posed by Esaki and Tsu, ' have become a field of great in-
terest. They are studied as low-dimensional electronic
systems, with potentially useful applications ranging from
optoelectronics to high-speed devices. Especially in-
teresting physical phenomena may arise when these
structures are subjected to transverse magnetic fields.
For example, the subjects of magneto-optics and magne-
totunneling heterostructures have been widely investigat-
ed both theoretically and experimentally.

From a theoretical point of view, since the presence of
the transverse magnetic field breaks the tetragonal sym-
metry of the heterostructure problem, the in-plane-field
case is more complicated than the case without the pres-
ence of magnetic field or the case with a field in the longi-
tudinal direction. With the symmetry in the problem
lowered by the field, theories of magneto-optics and mag-
netotunneling in the in-plane-field case usually resort to
heavy numerical computations or sometimes are bur-
dened with unnecessary, inappropriate approximations.
Consider, for example, theories of the energy levels of
heterostructures in a transverse magnetic field. These
theories mostly employ the variational method. In a
pioneering work, Ando calculated with this method the
magnetic energy levels in a Si/Si02 inversion layer.
Later Xia and Fan carried out similar calculations for a
superlattice structure. In the calculation they expanded
the wave function by a set of basis functions, represented
the Hamiltonian operator in matrix form, and diagonal-
ized the matrix to obtain both the energy eigenvalues and
eigenfunctions. However, to achieve reasonable accuracy
in computing the wave function, they needed to increase
the number of the basis functions in proportion to the
characteristic layer width of the structure. Since the
CPU time consumed in diagonalizing the Hamiltonian
goes roughly as the cube of the matrix dimension, the
computational requirements in the variational method
may become prohibitively expensive in the case of wide-
layer structures.

In contrast, several theoretical approaches have been
taken to study the physics of magnetotunneling through
heterostructures in a transverse magnetic field. For ex-

ample, Brey, Platero, and Tejedor applied the transfer-
Hamiltonian technique to this problem. But the main
limitation of this technique is that of being a perturbation
theory. On the other hand, Eaves, Stevens, and Sheard
used the WKB method to study tunneling through a sin-

gle barrier. Later, Zaslavsky et al. applied the same
method to resonant tunneling in a double-barrier struc-
ture. However, the WKB approximation fails in the
case of thin-layer structures.

Therefore, in the in-plane-field case, the need arises of
developing a theory capable of treating magnetic energy
levels and magnetotunneling exactly and efficiently, for
arbitrary layer thickness. An interesting question is
whether one can derive a theory along the lines of the
transfer-matrix method that Tsu and Esaki originally
developed for the problem of electron tunneling in a mul-
tibarrier structure. ' This method involves solving the
Schrodinger equation in each layer of the structure. In
connecting the wave function through the interface, a
2 X 2 matrix at each interface is formed by matching the
wave function and its derivative at the interface. From
the product of these matrices, one can obtain the
transmission probability of an electron tunneling through
the entire structure. The transfer-matrix method is exact
and efficient. It has also proved to be time saving and
successful in superlattice band-structure theories. '

In this paper we report unified treatment, within the
transfer-matrix method, of the energy levels and electron
tunneling in heterostructures under a transverse magnetic
field. In Sec. II we describe the theory of the energy lev-
els. In Sec. III we describe the theory of electron tunnel-
ing. In Sec. IV we present our results on the energy lev-
els, wave functions, transmission coefficients, and tunnel
currents in a double-barrier structure. In Sec. V we give
a summary and draw some conclusions.

II. THEORY OF ENERGY LEVELS

We consider the GaAs/Al Ga, As heterostructure
placed in crossed electric and magnetic fields with its
growth direction along the z axis. The structure extends
from z =0 to a. The magnetic field B is taken to be uni-
form and directed along the positive x direction; the elec-
tric field E, is taken to be uniform and directed along the
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,(x,y, z)=exp(ik x)exp(ik y)4,(z), (2)

where v further labels the energy eigenvalues. Putting
the wave function in the wave equation H%'=E%, we ob-
tain the energy eigenvalue equation

$2 d2 $2+, 4 (z —zo) + V(z) 4,(z)
2m* dz 2m*i

z axis. For the magnetic vector potential we write
A=(0, —Bz,O). We consider only magnetic energy levels
in the conduction band and write the Hamiltonian as

H= [P +(P, eB—z) +P, ]+V(z)+eE,z,1

m

within the effective-mass approximation, where m * is the
conduction-band eff'ective mass and V(z) is the hetero-
structure potential, including the effect of the
conduction-band offset. Note that although the spin-field
interaction p B has been dropped from the Hamiltonian,
its inclusion would not complicate the theory since that
amounts to only adding a constant to the Hamiltonian.
Moreover, in the GaAs/Al Ga, As case, the magni-
tude of this term is negligible compared with the other
terms in the Hamiltonian.

Since the Hamiltonian in Eq. (1) is translationally in-
variant along both the x and y directions, the wave num-
bers k, and k are good quantum numbers which may be
used to label the wave function of the electron. Hence we
can separate the spatial variables and write the wave
function as a product,

their mirror images U„*(g') and V,*(g), with
U„*(g)—:U (

—g) and V„*(g)—:V (
—g), when V(z) is

constant. Properties of parabolic cylinder functions are
listed in Ref. 19. Here we brieAy mention their analytic
properties at g=+~, important for our application:
U (g)~0[U*(g)~0] as g~+ ~ (as g~ —~ ), whereas
V,, (g)[ V,*, (g)] diverges at g=+ co (at g= —~ ). Thus, in
their analytic properties at large distances, parabolic
cylinder functions and their mirror images behave
asymptotically like the exponential functions exp(+icg).

For the wave function inside the structure, we use both
U, (g) and V (g) [both U„*(g) and V„*(g)] to expand it
for g) 0 (/&0). We stress that V„(g) and V,*(g), though
asymptotically divergent at large distances, have to be
kept for expanding the wave function in each layer. Out-
side the structure, however, only U, (g) [U,"(g)] is to be
used for the wave function at g)0 ((&0). The wave
function so represented satisfies the boundary condition
%(z~+~ )=0, which is required in our case since the
electron is confined by the in-plane magnetic field.

To solve Eq. (3) on the whole domain (
—~, + ~ ), we

divide the space into many thin slabs, each of which with
a nearly constant V(z). In particular, we take the bound-
ary points d, with m =1,2, . . . , n, in the following or-
der: d, (= —ao) &d~ (=0) & &d; (=zo) &

& d„, ( =a ) & d„(= + ~ ). Solving Eq. (3) in each slab,
we obtain the wave function as follows:

A, U„* (g}, d, &z&d,

Ak
E,(zo, k„)—eE,zo-

2m

A' k
@,(z),

2m

(3)

A U„* (g)+B V„* (g), d ~&z &d +,j J

~k v (~)+ k Vv(k)~ dk ~l & d&k1+&n —i

A„U, (g'), d„,&z &d„,

where 1=VA/eB is t—he magnetic length, a measure of
the cyclotron-resonance orbital size; zo=l (k» —kd) is

the center coordinate of the orbital motion, with

kd =—m *E,/AB, the drift momentum of the electron
along the y axis in the crossed magnetic and electric
fields. The energy eigenvalue E„(zo,k„) represents a con-
duction subband and has a quadratic k„dependence:

where v in each slab is calculated according to Eq. (6).
To connect the wave function in one slab to that in the
adjacent slab, we match qi and (I/m')(BiIIIBz) at the
slab interface and form a 2 X 2 transfer-matrix equation
for each interface:

Ak
E,(zo, k„)=E (so, k„=O)+

2m
(4)

A

B

'z Im] 2 Im]
'

A

where the eigenvalue

A' k
, —V(z)

2m

fi~kdv= E (zo, k„) eE,zo——
2m*

with ~, —=eB /m ' the cyclotron-resonance frequency.
The standard solution to Eq. (5) is a linear combination
of parabolic cylinder functions U (g) and V (g) or of

By further making the variable change z~g=v 2(z
—zo)/l, we rewrite Eq. (3) as

d2
@ (g) —( —'g +v)C& (g) =0,

This allows us to relate the expansion coeScients of the
wave function at the leftmost slab to those at the right-
most slab:

A1 A„
T[1]T[2].. . T[n —1]

0 0

A„
T 7

which requires that the matrix element

(10)

Solving Eq. (10) results in the energy eigenvalues and
eigenfunctions.
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III. THEORY OF ELECTRON TUNNELING

X [exp(ik,'z)+R exp( —ik,'z)], (12)

where k,'=[2m*(E E„E~)]'—lA' —with E the total
energy of the electron, E =A k„/2m „and
E„'=—fi k /2m, . Note that RR * represents the reflection
coefficient of the electron.

On the other hand, at the right electrode where
z E (a, + ao ), the Hamiltonian is

P„(P eBa) P, —
2m 2m * 2m

where V, is the applied bias. The wave function of the
electron in this region is the transmitted plane wave:

We assume that the GaAs/Al Ga, „As structure is
subjected to a transverse magnetic field B and a longitudi-
nal electric field E, . Furthermore, for definitiveness, we
take both fields to vanish outside the device region (O, a).
For the vector potential associated with the magnetic
field, we write A=(0, 0,0) for z &0, A=(0, Bz—, O) for
0&z &a, and A=(0, —Ba,O) for z &a. We stress that
the vector potential outside the structure, although only a
constant, must be considered, since phases of the in-
cident, reflected, and transmitted waves all depend on it.
We consider electron transport in an n-type
GaAs/Ga„Ali, As heterostructure and treat only the
tunneling via the conduction band. In solving for the
wave function of the tunneling electron, we follow the
procedures outlined in Sec. II, but with minor
modifications: Within the region of the structure, we still
represent the wave function by a linear combination of
the parabolic-cylinder functions, whereas outside the
structure, we expand the wave function in plane waves.
However, care should be taken in writing down the plane
waves as discussed in the following.

At the left electrode where zG( —oo, O), the Hamil-
tonian is that of a free electron,

P, P P,
(11)

2m* 2m* 2m*

and the wave function in this region is made of the plane
waves incident onto and reflected from the structure,

%(x,y, z) =exp(ik„x)exp(ik y)
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FIG. 1. Three lowest-energy subbands for the double-barrier
structure. The magnetic field is taken to be 10 T. The electric
field is taken to be zero. k„ is zero.

From the above equation one can then calculate the
values of T and R and the tunnel current.

0. 15

0. 1

IV. RESULTS

We apply the theories outlined in Secs. II and III to
a specific example and calculate the energy levels,
wave functions, transmission coefficients, and tunnel
currents in the double-barrier GaAs/A1Q 3Gao 7 As/
GaAs/Ala 3Gao 7As/GaAs structure. The barrier is 28 A
wide and the well is 80 A wide. The conduction-band
offset is taken from Ref. 20. For the conduction-band
effective mass, we use 0.067mo in both the barrier and

well. The origin of z is chosen to be at the well center.
We take k„=O in the energy-level calculation. In Fig.

1 we present a few low-lying energy subbands for the
double-barrier structure. The magnetic field is taken to
be 10 T. The curves are symmetrical with respect to
zo=0 as a result of inversion symmetry of the structure.
In Fig. 2 we present the wave functions of the states at
the edges of the subbands shown in Fig. 1. The wave

4( yx, z) = T exp(ik„x)exp(ikey)exp(ik, "z), (14)
0, 05

1

R —i —2
=T T

T
+n —1 Q

(15)

where k,"=[2m *(E+eV, E„E")]'~/A, — w—ith
E"= (Ak —eBa) /2m—*. Note that (k,"Ik, )TT*
represents the transmission coefficient, which, together
with the reflection coefficient RR *, satisfies the identity
RR *+( k,"Ik, ) TT*= 1, the law of probability conserva-
tion.

Now, following the procedure described in Sec. II, we
slice the structure into many thin slabs, relate the wave
function at the left electrode to that at the right elec-
trode, and obtain

Q3
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FIG. 2. Wave functions of the zo=0 states at the low-lying
subbands shown in Fig. 1. Solid curve, the lowest subband;
dashed curve, the second subband; dotted curve, the third sub-

band.
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FIG. 3. Transmission coe%cients as functions of E for the
double-barrier structure at zero bias. Four magnetic fields are
considered, namely 0, 5, 10, and 20 T. k and k~ are both taken
to be zero.

FIG. 4. Tunnel currents for the double-barrier structure.
Four magnetic fields are considered, namely 0, 10, 15, and 20 T.

functions are all localized. They show zero, one, and two
nodal points, respectively.

We again take k =0 in the calculation of transmission
coefficients. In Fig. 3 we show the transmission
coefficients as functions of the energy E for the double-
barrier structure at zero bias. Four magnetic fields are
considered, namely 0, 5, 10, and 20 T. k is taken to be
zero. As shown in the figure, the energy where the
transmission peaks increases with increasing magnetic
field. On the other hand, the peak narrows and the
transmission reduces overall with the magnetic field. In
Fig. 4 we show the tunnel currents for the four magnetic
fields 0, 10, 15, and 20 T. The peak current drops and the
whole curve fiattens out with increasing magnetic field.
The voltage where the current peaks shifts to a higher
value with increasing magnetic field.

tures under an in-plane magnetic field. The transfer-
matrix approach is employed. We have demonstrated the
convenience of using parabolic cylinder functions for ex-
panding the wave function. The treatment presented
here is not only exact, but also efficient for the hetero-
structure problem, valid for all arbitrary layer widths.
We have applied the theory to a double-barrier structure
made of GaAs and Alo 3Gao 7As and calculated the ener-

gy levels, wave functions, transmission coefFicients, and
tunnel currents. Finally, we note that since the presented
theory can treat any potential profile V(z), it is therefore
applicable to a self-consistent calculation in which the
Coulomb interaction among the electrons needs to be in-
cluded.
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