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Strong disorder and the nonlinear susceptibility of conjugated polymers
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The effect of quenched randomly distributed bond-breaking defects on nonlinear susceptibilities of
conjugated polymers is studied within a tight-binding (Huckel) model. The susceptibility corresponding
to third-harmonic generation, y' '(3'), is calculated as a function of defect concentration p in chains of
length N Re.sonant peaks are broadened, as expected, but the overall suppression of ~y' '~ is weaker

than one might assume on the basis of the average segment length between defects.

I. INTRODUCTION

Among the many interesting physical features of con-
ducting polymer chains are their remarkable nonlinear
optical properties. ' In particular, they have unusually
large nonlinear susceptibilities, ' even at frequencies too
low for real absorption. They also exhibit ultrafast
response at the subpicosecond level. These features
make the polymers good candidates for fast nonlinear de-
vices. '

The electrons in these chains occupy two types of or-
bitals. The cr electrons provide the basic binding to give
structural stability to the backbone, but they play very
little part in the optical properties we consider here, since
their excited states lie at energies well above the frequen-
cies of interest. The mobile m. electrons, on the other
hand, are characterized by low-lying excited states which
dominate the optical properties. Although the linear-
chain structure leads, as expected, to relatively large sus-
ceptibilities, experimental measurements on long poly-
mers have given low values for the nonlinear coefficients
compared to what was anticipated from extrapolation of
short-chain results and theoretical predictions. It has
been suggested that this discrepancy might be due to a
reduction in effective electron delocalization length by
the various kinds of disorder present in these systems. In
light of this, we here examine theoretically the effects of
disorder on these higher-order susceptibilities within a
very simple model where quenched random defects corn-
pletely break the chain, by disrupting ~-electron corn-
munication. In future publications we will extend con-
sideration to more general types of disorder, including
the introduction of annealed defects.

The optical properties are particularly sensitive to dis-
order, ' because they are determined by the electric di-
pole matrix elements and by the electronic energy spec-
trum, particularly the energy gap (b, ) created by the
Peierls distortion. " The transition dipole matrix element
is effectively proportional to the overlap length of the
electronic states involved, a quantity which decreases as
disorder increasingly localizes the electronic states. The
Peierls instability, and therefore the gap, is also dimin-

ished by disorder (stretch alignment of polyacetylene has
raised' the gap from 1.9 to 2.3 eV, for example), which,
moreover, can actually create electronic states within the
gap' -.g., of polaron or soliton character. Though
these considerations hold for optical response generally,
it should be noted that higher-order nonlinear suscepti-
bilities involve larger numbers both of matrix elements
between different states and of energy denominators
which depend on the band gap. Then we expect particu-
larly strong inAuence of disorder on these nonlinear
responses.

For the quasi-one-dimensional chain polymers, the
effect of disorder, as always, is much more drastic than it
is in higher dimensions. In one dimension there is no
way to go around or to avoid a defect, and localization
effects are strong. Even complete destruction of electron-
ic communication between segments of a polymer can be
effected by breaking a single link —e.g., by a suitable rota-
tion of one monomer relative to the next.

In conjugated polymers the potential kinds of confor-
mational and electronic disorder and defects depend on
the type of polymer, its environment, and the way it has
been processed. They include various kinds of charged
impurities, ' ' rotations about bonds' ' or bending of
the backbone, interchain couplings (including cross
links), solvent interactions for polymers in solution, sp
defects ' (the local introduction of an additional bonding
orbital, which then eliminates the mobile sr orbital),
thermal fluctuations, and end effects. Some of these,
such as rotations about bonds or polymer interaction
with the solvent, may dominate in solution, while certain
other, including interchain interactions, may be more im-
portant in the solid state.

Since second-order nonlinear responses vanish in a cen-
trosymmetric system, one often concentrates on the
third-order susceptibilities, notably the third-harmonic
generation, of the production of light of frequency 3'
from incident radiation of frequency cu. In this paper we
will explicitly limit consideration to this response func-
tion.

In the next section we present a calculation of the
effect of randomly distributed bond breaks on third-
harmonic generation within a simple model. The final
section is devoted to discussion and conclusions.
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II. MODEL AND CALCULATION

To calculate n~~(l), we first note that the probability of
having m breaks in an open chain X units long, if the
probability of having a break between a given pair of
neighboring units is p, is simply given by the binomial
distribution

N —1
(2)

We denote by Pg (I ) the probability of having a segment
of length I, given that there are m defects, in the chain X
units long. Then

N —1

nz (1)= g ( m + 1 }f~ ~ Pg (1),
m=0

(3)

where the factor (m+1) is the number of segments of a
chain with m breaks.

Finally, the calculation of P~ (1) is a standard statisti-

I

As a first approach to exploring the effect of disorder
we consider the simplest case, where defects break com-
pletely the m.-electron transport along the chain. Then
the individual segments between the breaks act as in-

dependent chains. We take a quenched random distribu-
tion of breaks, characterized only by the defect concen-
tration and length of the chains in which the defects are
found. Then the statistical distribution of breaks can be
dealt with analytically. Annealed disorder, incorporating
defect energetics, must be treated separately.

Consider a monodisperse sample of polymer chains
with X identical units connected by bonds susceptible to
breaking [the unit, e.g. , might be a double-bonded carbon
pair, as in (CH)„or an aromatic ring for polythiophene].
We fix the defect concentration p, the probability of hav-
ing a break at each bond. Then the system is character-
ized by n~ (1), the average number of segments of length
1 per chain. The susceptibility of interest, g(l) (in this
case, third-harmonic nonlinear susceptibility), is evalu-
ated numerically for all accessible values of length l.
Then we can compute the average susceptibility per chain
y' '(N) as

N
g'"(N)= g n~~(l)y(l) .

This analysis implies at least a single break (m 1), but
the remaining case (m =0) is simply included: Pz(l}
=5&z and nz (N)=(1 —p)

The sum over m in Eq. (3) can be done in closed form:

n~p(1) (1 p—}" —'&m

N —I 1V —I —1

g (m+1)
1 p (1—p)

m=1

=p(l —p)' ' 2+p (p+q)
dp

=p(1 —p )' '[2+p(N —1 —1)],
q =(1—p)

an exponentially decreasing function of l. Finally, the
average f' '(N) for an ensemble of chains of length N is
given by Eq. (1).

We now turn to the calculation of the susceptibility
y(l), which differs from earlier studies only in that we al-
low the finite-chain configuration to relax. These end
effects are substantial only when the chain length is less
than 15—20 units, and such small chain segments, which
have very small susceptibilities, do not contribute sig-
nificantly to the overall g' '(N) for N) 50 [we reem-
phasize that 50 "units" does not in general imply 50 sin-

gle carbon atoms along the backbone; e.g., in (CH)„ there
are two carbon atoms per unit]. Nevertheless, we briefly
review the calculation in order to discuss the various
physical processes that contribute to the nonlinear
response. The expression for the third-order susceptibili-
ty at zero temperature (temperature plays a negligible
role, since it is much smaller than the gap) from standard
perturbation theory can be written as '

cal distribution problem. The fractional number of seg-
ments with length l is identical to the fraction of all first
segments (the segments nearest to the chain ends) with
that length. This, in turn, is the ratio of the number of
ways of segmenting the remaining (N 1)—units of the
chain into m pieces, to the number of ways of segmenting
the full chain into (m + 1) pieces:

X —l —1

Pg (1)= (4)

1 + 1

(E„+3')(E +2')(Ei +co} (E„+co)(E 2')(EI co)

(E„g+3co)(E„s+co)(E g+co) (E„+co)(E g+co)(E g
co)—

Here f,~is the electric dip. o. le matrix element between
states i and j, and E; is the energy difference between
those states. The upper and lower set of signs in each
product are to be included independently in the overall
sum.

To progress further we need an explicit model. We
take the simplest form which incorporates the essential
physics: electron mobility which depends on the chain
configuration and an elastic configurational energy. We
modify the standard Su-Schrieffer-Heeger (SSH) tight-
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binding Hamiltonian for polyacetylene only in allowing
the bonds to relax independently (so as to include end
effects appropriate to open chains). A single band of m.

electrons is described by spatially localized Wannier
functions with an effective hopping between nearest-
neighbor units (again, not necessarily single carbon sites).
In dimensionless form,

A/to = g (1—u„)(c„+, c„+ct c„+, )+g gu„,
n, cr

(7)
where to is the hopping matrix element for a structurally
rigid uniform chain. For numerical calculations we arbi-
trarily choose the reduced (dimensionless) stiffness con-
stant g to be 0.9, a value appropriate to (CH)„; it refiects
the size of electron-phonon coupling, as well as the in-
trinsic bond elastic stiffness. The subscript n labels the
sites, and u„ is the fractional change in bond length be-
tween the sites n and n+1 from that of the uniform
chain. The creation and annihilation operators c„and
c„refer to the above Wannier states at site n with spin
0.

Within the adiabatic approximation of Eq. (7) (no
atomic dynamics), there are no instantons, which have
been proposed as an important mechanism in nonlinear
optical processes. However, their importance is certainly
reduced in short segments where there is not even ap-
proximate ground-state degeneracy, and in any case, the
focus of the present study is on the impact of disorder.
We therefore explore the effects of disorder within this
frequently studied approximation, where the displace-
ments u„are parameters determining a set of one-
electron states and eigenvalues whose occupation gives

(a)
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(c)

I )I l&l(
I 0 I

I

(e)

FIG. 1. Dominant types of transitions contributing to g' '

[Eq. {6)]from electron states near the gap (at the center of the
horizontal energy levels shown in each diagram). Each process
proceeds from left to right.

the states and energies in Eq. (6). The first term in that
equation is the sum over all third-order virtual transitions
where the system never returns to the ground state at any
intermediate stage, including the processes shown in Figs.
l(a) —1(c). The only remaining contributions come from
diagrams of the form shown in Fig. 1(d), where the
creation and annihilation of a given particle-hole pair is
repeated twice. Disconnected diagrams such as that
shown in Fig. 1(f) do not contribute, since they cancel
term by term with processes such as that shown in Fig.
1(e). We restrict ourselves to the half-filled band case, in
part for reasons of simplicity. The addition of carriers by
electronic doping introduces the familiar topological
excitations —solitons, polarons, etc.—with accompany-
ing states within the original Peierls energy gap. It would
surely be inappropriate to treat the corresponding spa-
tially inhomogeneous state within a model of quenched
random break defects which ignores the important ener-
getics of the excess charge-carrier distribution. More-
over, the consequent reduction or elimination of the gap
introduces absorption processes at undesirably low fre-
quencies. In fact, for these reasons experiments on
third-harmonic generation in these materials have also
largely been restricted to undoped systems. We can then
invoke the electron-hole symmetry of the half-filled band:
There is a complementary set of processes related to
those shown by the interchange of corresponding elec-
trons and holes, whose contributions are identical to
those of the processes shown.

We make several approximations in the calculation of
the matrix elements that enter Eq. (6). Formally, the re-
sults are for a sample of chains fully aligned with each
other and with the applied electric field; we ask for the
completely diagonal component of the fourth-rank sus-
ceptibility tensor y„„„„.The extension to a distribution
of angles 0 between the independent segments and in-
cident electric field is trivial: There is a factor of cos(8)
for the corresponding matrix elements (and a similar fac-
tor for the outgoing wave at 3'), and a suitable average
can be taken over the distribution. The individual seg-
ments are assumed to be linear; orientational departures
from this, such as local coiling of the chain, must be
treated separately and explicitly. Finally, we have taken
the distance parameter x of the dipole operator to be pro-
portional to the number of units along the chain —i.e.,
we have not included the effects of bond-length relaxation
in this operator. The changes in bond length are typical-
ly of order a few percent, and the effect on the suscepti-
bility is of this same order.

In the half-filled band systems, the first excitation from
the ground state necessarily will be across the Peierls gap.
For this interband transition, the dipole matrix element is
approximately independent of the length of the chain
(roughly the matrix element of x between two plane
waves, each of wave vector G, but out of phase). But for
the intraband transitions, which connect states corre-
sponding to plane waves with wave vectors differing by
(hk) —1/I, the normalized matrix elements —1/l(b, k)
-I, proportional to the length over which the electron
wave function is delocalized. The energy denominators,
which for the dominant contributions are each approxi-
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mately equal to the gap 6, also depend on segment length
I. Initially, for short chains, we find that 6 ' grows ap-
proximately as the square root of I, with an asymptotic
a roach to a constant value as 1 increases. Of course,

'(N) must become extensive ( ~ N) for large enough N.
Mathematically, this develops, as the electron states
merge into a quasicontinuum, from the cancellation of
the matrix elements in the single-electron processes for
transitions with and without exchange of fermions. The
average susceptibility per unit length, g(l)/1, initially
grows approximately as I and ultimately saturates, as
we have just discussed. From the above discussion we
understand one factor of I from each of the dipole matrix
elements and of order 2 more from the energy denomina-
tors (and, overall, one is removed by normalization to
unit length). This behavior is similar to the results ob-
tained by Heflin et al. who found the initial exponent
to be between 3.7 and 4.4 in their quantum-chemical cal-
culations of cis and trans forms, respectively, of polyene
oligomers. A recent independent calculation by Shuai
and Bredas of g' ', using an approach similar to ours,
but including energy-dependent excited-state lifetimes,
finds the value 3.32. The results obtained by Yu et al.
are qualitatively similar, but their initial exponent is
again smaller (-3), which may be attributable in these
short chains to the differential relaxation near chain ends,
which we have included in determining energy eigenval-
ues. Their saturation value, however, is similar to ours
(and for the long chain, where saturation has occurred,
the end effects are negligible). As these authors have
pointed out, the quantitative agreement with experiment,
for polyene chains up to about 20 backbone carbons, is
very good.

III. RESULTS AND DISCUSSION

The susceptibility per chain unit, g' '(N)/N, is plotted
in Fig. 2 as a function of N for various defect concentra-
tions. The frequency co is chosen to be less than one-third
of the gap, co & b, /3, so that there is no real absorption.
We have only a few representative numerically calculated
values of g(1); to carry out the sum of Eq. (1) over all
values of I, we simply interpolate smoothly between
them. Since n~ (1) falls exponentially and y(l) is a mono-
tonically increasing function, the summand of Eq. (1),
y(l)n~~ (1), is peaked. If the peak were sharp enough that
the sum was dominated by terms with I —I, where
1= g& nzz(l) is the average segment length, then the rap-
id falloff of y(l) with decreasing 1, below 1=50, would
suggest a very substantial reduction in g '(N) with only a
few percent of bond-breaking defects: y' '(N)/N
-y(l )/1. But with a random distribution of defects, the
superlinear dependence of g(l) on 1 strongly weights
longer segments, which then make contributions to
y' '(N) disproportionately large compared to their proba-
bility of occurrence. Therefore, substantial reduction of
f ' '(N) from its saturated value comes only with tens of
percent random breaks. We do note that if the defects
are, instead, annealed, the electron delocalization energy
promotes regularity of segment size (an effective mutual
repulsion between successive breaks), leading to a more
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FIG. 2. Average low-frequency third-harmonic generation
(3)

(THG) susceptibility per monomeric unit, g (N)/N, as a func-
tion of total chain length N. The defect concentration p labels
the curves.
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FIG. 3. Saturation value (long-chain limit) of average THG
susceptibility g„, and chain length N„„where it drops to 1/e of
that value, as functions of defect concentration p.

highly peaked distribution of lengths I about the average,
1, so that g' '(N)/N is more nearly y(l )/1 -py(1/p ) and
the reduction of g' '(N) then is effected at smaller defect
concentrations.

In Fig. 3 the saturation value y„,(p) of the susceptibili-
ty per chain and the "saturation length" N„, at which
g' '(N)/N reaches a value (1—1/e)y„, are plotted as
functions of defect concentration p. We see that y„,(p)
has an approximately exponential dependence on p, de-
creasing from 26 for p =0.05 to 0.8 for p =0.40. N„, de-
creases from 26 to 14 over this same range of p. The
strong dependence of g, on p is the expected sensitivity
to the electron localization length emphasized above.

We can also look beyond the low-frequency region
(co «6 /3) to examine the effects of disorder when real
absorptive transitions become possible. However, it is
then impractical to interpolate smoothly between a few
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FIG. 4. Absolute magnitude of average THG susceptibility
as a function of frequency for chain length N =80 and excited-
state lifetime parameter I =0.03. From highest to lowest
peaks, the curves correspond to defect concentrations p =0,
0.05, 0.10, and 0.20.

numerically calculated values of y(l) for each frequency
co. In the neighborhood of the interesting resonances, the
susceptibility is a sensitive function of chain length (at
least for relatively small lengths), as the energy levels
which determine those resonances themselves change
with this parameter. Hence we have numerically inserted
a random distribution of chain breaks with concentration

p in an ensemble of chains with fixed total length N to ob-
tain a statistical measurement of y' '(N) for a range of
frequencies. To avoid artificial divergences we introduce
an imaginary part to the excited-state energies in Eq. (6):
E g

~E g
+ / I Numerically, we choose as the damping

factor I =0.03, where we recall that in these dimension-
less energy units the gap 6 is of order unity, and so the
scale is approximately that of electron volts. Then the
model energy-level width I is of the order of an inverse
phonon frequency, a lower limit to the physical value as
set by lattice relaxation processes. Moreover, it is rela-
tively small compared to the width of the predicted reso-
nances and does not artificially distort their shape; we

note that this value is comparable to that which has been
chosen by others. The results for ~g' '(N) ~, for various
defect concentrations p, plotted in Fig. 4, show a
significant decrease in the susceptibility near the peaks at
co=A/2 and 5/3. For large defect-free samples, our re-
sults are similar to those of Yu et al. and Wu, with a
true three-photon absorption peak at one-third the gap.
A second peak at half the gap, observed experimentally,
disappears with increasing chain length within theories
(such as the present one) with constant excited-state life-
times, ' although a recent theory with energy-
dependent lifetimes ' reproduces it even in the long-chain
limit. True two-photon absorption is forbidden in a sys-
tem with a center of symmetry; this peak is rather the
consequence of a large polarizability near co=5/2. We
do see this and other subsidiary structures associated
with the spectral discreteness for shorter chains. In any
case, with the introduction of break defects, all peaks de-
crease significantly. In fact, all structure except for the
three-photon absorption at to=A/3 has become unob-
servable by the time the defect concentration is as large
as 5% in a sample with chains of length N =80. We un-

derstand this as a consequence of the distribution of
chain-segment lengths in the disordered system, with a
corresponding distribution of electronic energy levels (in-

cluding gap size), so that sharp structure becomes
smeared.

Of course, a realistic polymer sample is polydisperse.
The above results are readily extended to incorporate this
feature by making a suitable weighted average over the
total chain length N.
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