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Quasiclassical calculation of magnetoresistance oscillations of a two-dimensional electron gas
in an anharmonic lateral superlattice potential
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A classical approach, relating magnetoresistance oscillations of a two-dimensional electron gas
(2DEG) in a weak lateral superlattice potential to the guiding-center drift of cyclotron orbits, is extended
to periodic potentials of general shape, and justified from the quantum-mechanical Kubo formula.
Several reasonable model potentials in a (gate) plane at some distance from the 2DEG are investigated in
order to study two competing effects: (1) the suppression of higher harmonics with increasing distance
according to Poisson's equation and (2) the relative enhancement of higher harmonics due to the
(Thomas-Fermi) screening by the 2DEG itself. An experimental result by Winkler, Kotthaus, and
Ploog, showing magnetoresistance oscillations with a rich structure, is closely reproduced by the calcula-
tions.

I. INTRODUCTION

The two-dimensional electron gas (2DEG) in a high-
mobility GaAs-Al„Ga& As heterostructure subject to
both a perpendicular magnetic field and a weak lateral su-
perlattice potential V(x} with period a —100—500 nm
shows interesting magnetoresistance oscillations, first ob-
served by Weiss et al. ' At liquid He temperatures, T=4
K, these oscillations are seen most clearly at low magnet-
ic fields (8 -0.1 —0.6 T) where the usual Shubnikov —de
Haas (SdH) oscillations (which are well visible for
8 ~0.5 T) are not yet resolved due to thermal broaden-
ing. Similar to the SdH oscillations, the oscillations are
periodic in 1/8 with a period

c ae
B 2Ak,

depending on the period a of the superlattice and on the
mean density N, =kF/2tr of the 2DEG. Weiss et al. '
found the largest oscillations in the resistivity component
p, measured when the current flows perpendicular to
the equipotential lines of the modulation potential V(x),
and subsequent experimental investigations ' have fo-
cused on this situation. The large-amplitude oscillations
of p„„areattributed to the occurrence of a "band con-
ductivity" ho„„originating from the fact that the super-
lattice potential broadens the Landau levels (LL's) into
bands that yield a finite group velocity in the y direction.
In this picture ' the "Weiss oscillations" originate from
the oscillatory dependence of the superlattice-induced
width of the Landau bands on the Landau quantum num-
ber.

The group velocity of the Landau bands is, however,
just the quantum analog of the classical Hall drift of the
guiding centers of cyclotron orbits in the periodic
superlattice-electric field. Beenakker has pointed out
that, in the interesting low-B regime, hcryy can already be
calculated within a quasiclassical approach without tak-

ing into account any energy quantization. He thus ar-
gues that the Weiss oscillations are of a classical nature.
Later experiments by Weiss on samples with a 2D super-
lattice questioned this point of view: an additional
periodic modulation in the second lateral direction
dramatically suppressed the band conductivity. This was
not expected within the quasiclassical approach, but can
be understood (qualitatively} within a quantum theory
based on the correct Hofstadter-type energy spectrum
and taking into account the interplay of collision
broadening and subband splitting of this spectrum. '

It should be realized, however, that all the theoretical
investigations of the Weiss oscillations which have been
published so far are based on the simple harmonic ansatz

V(x,y) = V cos(2trx /a„)+icos(2my /as ) (2)

V(x,y}=gVse's'
8

n n
g =2'

I.

, a a

with n„and ns integers and V = V', i.e., V(x,y) real.
In the Appendix we show how, for the 1D superlattice,
the same result can be derived from the quantum-
rnechanical Kubo formula. Some special applications are

for the superlattice potential (with V =0 in the 1D case).
It is not obvious that this is a realistic description of the
experimental situation with a 2D superlattice. Moreover,
strong effects of the third harmonic [~ cos(6mx /a)] have
been reported by Winkler, Kotthaus, and Ploog for 1D
superlattices generated by a microstructured gate.

Therefore, it is of considerable interest to investigate
the e6'ect of higher potential harmonics on the Weiss os-
cillations. This is what we will do in the following for
several typical examples of 1D superlattices and of 2D
superlattices with rectangular symmetry. In Sec. II we
extend a simplified quasiclassical approach, which was
suggested and, for the most interesting range of magnetic
fields, justified by Beenakker, to a general potential of
the form
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discussed in Sec. III, and a brief summary is given in Sec.
IV.

II. QUASICLASSICAL APPROACH

Following Beenakker, we calculate the drift velocity

v = ', (E), ,XB (4)

of the guiding center ro of a cyclotron orbit with radius R
in the magnetic field B=Bz by taking the average of the
local electric field E(x,y)=V(V/e) over the orbit. This
assumes that the cyclotron orbits are not changed by the
weak superlat tice potential and is reasonable for
sufficiently large values of the relevant cyclotron energy
(—,'mco, R ))

~ V~ ), where cv, =eB /me is the cyclotron fre-

quency and m the effective mass of 2DEG. Moreover, it
assumes implicitly that cyclotron orbits are well complet-
ed before the electrons are scattered, i.e., co, ~&&1, where
r is the transport relaxation time. Inserting the potential
V(x,y) from Eq. (3), this yields

III. SOME EXAMPLES

A. 1D superlattices

We first consider a lateral modulation only in the x
direction, i.e., V =0 if g %0. With g=(n2m. /a, O),

Vs = V„,and the asymptotic form (6) we obtain

bo'yy= g n~ V„~cos 2nn
e 16~
2~ A'ma),'aR,

„

R,
4

(b,o )"'=8"' g n
~ V„/V, ~

cos [m.(n/8"' —,')], —(10)
n=1

For the simple cosine potential V(x)=V„cos(2nx/a),
i.e., V, =

—,
' V, V„=Oif n & 1, this reduces to the known

result, ' ' where R, =vF/co, is the radius of a cyclotron
orbit with Fermi energy, Ez =

—,'mUF. In the following we

add different harmonics to this fundamental cosine poten-
tial and plot the rescaled band conductivity

v = +Vs(gXz)e 'Jo(gR),
g

where g =
~g~ and Jo is the Bessel function of order zero

with the asymptotic expansion

2
Jo(gR ) =

~gR

' 1/2

cos gR ——
4

(6)

for gR »1. The contribution of the guiding-center drift
to the conductivity tensor 0.

„

is then given as the aver-

age

2

(7)

over the unit cell of the superlattice. This yields for the
"band conductivity" tensor

b,o„= gq„~V
~ [Jo(gR )]

arm (A'co, )

with q =g, qyy gzp and q = —g g . This result can
also be obtained from the quantum-mechanical Kubo for-
mula in the limit of large Landau quantum numbers, if
the internal energy band structure of the Landau levels is
neglected, i.e., for not too large B values, A'co, &&k&T.
This is shown in the Appendix for 1D superlattices. The
proof for 2D superlatices is given elsewhere. ' lf the po-
tential has a refiection symmetry V( —x,y)= V(x,y) or
V(x, —y) = V(x,y), the nondiagonal part vanishes,

Lmll 0 y
Lek 0 y 0 If the Potential is of the form

V(x,y) = V„(x)+ Vy (y), i.e., Vs =0 if g„gWO, then b, cr

is independent of V (y) and depends only on V (x), etc.
Since only the modulus

~
V

~
of the potential Fourier

coefficients enters Eq. (8), it is in general not possible to
reconstruct the form of the superlattice potential from
the magnetic-field dependence of the band conductivity.

as indicated in the figures by "arb. units, " versus the res-
caled magnetic field 8"'=a l2R, . Assuming the Drude
results o „=e N, /m co, and pa = I /o o

=m /(e N, r ) for
the unmodulated system, one obtains, with the approxi-
mation hp„„=b,cr /o „,the relative band resistivity
b,p„„/poif one multiplies b, o.~" with the 8-independent
dimensionless factor n(4r~ V& ~/. mfi) la N, . For the sim-

ple cosine potential and apart from notation, this result
agrees with Eq. (1) of Ref. 5. Since our evaluation of Eqs.
(4) and (7) is limited to the lowest order in the small pa-
rameter 1/co, ~, we have to omit contributions to p and

p~y containing dko
yy

which formally arise in our approxi-
mation and are of the order (co,r) . As has been dis-
cussed by Beenakker, these contributions are spurious
and do not occur in a more rigorous treatment based on
an exact solution of Boltzmann's equation in the
relaxation-time approximation. This treatment also does
not require the present restrictions on the magnetic field.
However, for the experimental situations we have in
mind, ' the most interesting range of magnetic fields is
0.1 B 0.5 T and our approximations are sufficient.

Note that the cosine in Eq. (10) vanishes for values of
its argument satisfying

2nR, /a =I,——,', A, =1,2, . . .

For n =1, this is the cornrnensurability condition ob-
tained previously, ' leading to the period given in Eq.
(1).

Figure 1(a) shows results for the model potential
V(x) = V, cos(2mx /a )+ Vzcos(4mx /a ) and several

values of the ratio V2/V1. ~ith increasing V2/V1 the
maxima of ho shift slightly to higher values of the

magnetic field, whereas the minima shift to lower B
values, i.e., from 8"'= I/(A, —

4 ) towards 8"'= 1/
(A, ——') for )t.=1,2, . . . . Simultaneously, shoulders ap-

pear below 8"'= I /(A. +—', ) which develop into side maxi-

ma for V~/V, )—,'. [To obtain these 8"' values, the pre-

factor 8"' in (10) was omitted. ]
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FIG. 1. Rescaled band conductivity, Eq. (10), vs rescaled
magnetic field B"'=a/2R, for the simple one-dimensional su-

perlattice potentials V(x) = V& cos(2mx /a )+ Vk cos(k2~x /a );
(a) k =2 and

~ Vz/V~ ~=0.0 (solid line), 0.3 (dashed line), 0.5
(dashed-dotted line), and 0.6 (dotted line); (b) k =3 and

~ V3/V, ~=0.0 (solid line), 0.2 (dashed line), and 0.5 (dashed-
dotted line).

2Rc

FIG. 2. (a) Effective potential according to Poisson's equa-
tion and (b) rescaled band conductivity created by the step-
function potential (12) with aspect ratio d /a =0.5 at a distance
z from the 2DEG for z/a =0.01 (solid lines), 0.03 (dashed lines),
and 0.1 (dashed-dotted lines).

Vo= Vd/a,

V„=Vsin(end/ )/ann for n =+1,+2, . . . .
(12)

Due to Poisson's equation the harmonics fall off exponen-
tially away from the gate and we must replace V„in the
plane of the 2DEG by V„(z)=V„exp( n2mz/a), if we-
assume no charges between the gate and the 2DEG and
absorb a (homogeneous) background dielectric constant
in V. In Fig. 2 the effective potential and the resulting
Lell cTyy are shown for three val ues of z /a and an aspect ra-
tio d/a =0.5, where only Fourier coefficients V„with

If the second harmonic vanishes, for instance due to
symmetry reasons, the third harmonic may become im-

portant. For the model potential V(x)=Vicos(2mx/
a) —V3cos(6nx/a) and for three values of the ratio
V3/Vi, Fig. 1(b) shows the rescaled b,cr~~. For small

V3/Vi (&&3/9) the result is similar to that of a small
second harmonic: the maxima shift to h~iher and the
minima to lower 8 values. For V3/Vi )&3/9 [to obtain
this value again the prefactor B"' in Eq. (10) was disre-
garded] a triple structure evolves from each fundamental
peak. Near the maxima the fundamental peaks appear to
be split into doublets, and additional side peaks appear at
the minima of the fundamental structure. In this regime
the structures due to the third harmonics are significantly
different from those produced by a second harmonic.

We now consider —as a still very crude approximation
to the potential created by a metallic grating gate at a dis-
tance z from the 2DEG—a periodic step potential with
steps of height V(x) = V and width d, alternating with
steps of height V(x)=0 and width a —d. Taking the
center of a V step at x =0, one obtains the Fourier
coefticients

odd values of n occur. For realistic values of z/a, i.e.,
z/a)0. 1, only the fundamental period survives. Al-
though not of practical importance, it is interesting to
note that for a bare step-function potential (z/a =0) Eq.
(10) yields a divergent result for Acr~~. This is an artifact
of our evaluation of the drift velocity according to Eq.
(4), which yields a divergent result for cyclotron orbits
having a line of potential discontinuity as a tangent. A
direct evaluation for this situation yields v ~ V ', clari-

fying the problem with a perturbative calculation to
lowest order in V. In a quantum treatment this problem
does not occur, as is shown in the Appendix.

So far we have not discussed the screening of the su-

perlattice potential by the 2DEG itself. This, however,
provides an effective mechanism for the suppression of
the long-wavelength contributions in favor of the higher
harmonics. Using the Thomas-Fermi approximation, one
obtains for the dielectric function of the 2DEG
e(g ) = 1 +2/ga&, with a& =9.79 nm the effective Bohr ra-
dius of GaAs. "' This means a reduction of V„(z)by a
factor e(2mn/a)=1. +a/(masn). F.or a=500 nm, this
reduces Vi(z) by a factor =17 and V3(z) by only 6.3,
which means a relative enhancement of the third har-
monics in Ao.

yy by roughly an order of magnitude. Fig-
ure 3 includes this screening effect due to the 2DEG.
Now the effect of higher harmonics survives to much
larger z/a values than in the approximation of Fig. 2.

The analogs of Figs. 2 and 3 have been calculated for
the aspect ratio z/a =0.3 (and the equivalent value
z/a =0.7), and are shown in Figs. 4(a) and 4(b), respec-
tively. They are dominated by the second harmonic in-
stead of the third one (Fig. 1), and the peaks in Fig. 4(a)
show double-step profiles instead of single-step profiles in
Fig. 2(b).

It is very interesting to note that the solid curve of Fig.
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the 2DEG is not satisfied in the experiment. If a redis-
tribution of charges in the Si-doped Al Ga, As layer,
partially screening the periodic gate voltage, were
somehow frozen in, this could easily lead to the relative
enhancement of the third harmonic observed in experi-
ment.

It is very plausible that higher harmonics do not ap-
pear in the experiments by Weiss et al. ' First, the
charged donor distribution created in the Si-doped
(A1Ga)As layer by holographic illumination and the re-
sulting electrostatic potential are, probably, already very
cosinelike with little content of higher harmonics.
Second, the period a is considerably smaller, a -300 nm,
so that z/a is not very small, and the screening by the
2DEG is not so very different for the fundamental and
for the higher harmonics, as in Ref. 3.

B. 2D superlattices

a // 2Rc

FIG. 3. Same as Fig. 2 but with Thomas-Fermi screening by
the 2DEG included. The model parameters are a/n. a&=16.0
and z/a =0.05 (solid lines), 0.09 (dashed lines), and 0.13
(dashed-dotted lines).
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FIG. 4. (a) Same as Fig. 2(b), but with aspect ratio d/a =0.3
and with z/a=0. 01 (solid line), 0.03 (dashed line), and 0.10
(dashed-dotted line); (b) same as Fig. 3(b), but with d/a =0.3
and with z/a=0. 09 (solid line), 0.14 (dashed line), and 0.20
(dashed-dotted line).

3(b) for a/2R, ~0.3 nicely reproduces all the structures
seen in the curve measured by Winkler, Kotthaus, and
Ploog for a gate voltage of +150 mV [lowest curve of
Fig. 1(b) in Ref. 3j, of course apart from the SdH oscilla-
tions seen in the experiment at 8 )0.5 T and without the
superimposed structure at low magnetic fields which is
related to positive magnetoresistance and magnetic break-
down. ' In view of the experimental value z/a 0.2,
however, this cannot be considered as satisfactory agree-
ment. On the other hand, it may well be that our as-
sumption of vanishing space charge between the gate and

The dramatic suppression of the band conductivity ob-
served in holographically modulated samples with 2D su-
perlattices has so far been discussed on the basis of the
additive model potential of Eq. (2). For this model, the
classical result (8) for the band conductivity b,o~~ is in-

dependent of the modulation in the y direction, and the
total suppression must be ascribed to a quantum effect. '

In view of the experimental modulation process, this ad-
ditive model seems, however, not to be realistic. In the
first illumination step, a 1D modulation pattern is created
where essentially no donors are ionized in the dark
stripes and essentially all donors are ionized in the stripes
with maximum light intensity. In the second illumina-
tion step, after rotation of the sample by 90', only those
donors can be ionized that have not been ionized in the
first step. The maxima and the minima of the ionized
donor concentration have the same values for both the
1D and the 2D superlattice. Therefore, it seems to be
more realistic to describe the potential of the 2D modula-
tion by a multiplicative than by an additive ansatz. Sirni-
lar arguments apply to gated samples, where a metal gate
is deposited on a holographically structured photoresist.
We thus consider the model

V(x,y) = V—,'( I+cosICx )—,'(2 —a+a cosKy )

= Vp p +2 V] pcosKx +2 Vp ]cosEy

+4V& &cosEx cosKy, (13)

with 0 ~ a ~ 1, and we have introduced the Fourier
coefficients of Eq. (3) with the notation Vs= V„„for

X

g= vr2(n„,n )/a, so that V+& o=(1—a/2)V/4 and

Vo +, =2V~i +i =(a/2) V/4. If we deliberately omit the
mixed term, V& &

=0, we see that the second modulation
reduces V, 0 from the 1D value (a=0) to one-half of that
value for the lattice with square symmetry (a= 1). This
"classical" effect reduces the band conductivity by a fac-
tor 4, which is already considerable. It is, however, by
far not sufficient to explain the dramatic suppression of
lab cTyy observed in the experiment and leaves room and
need for the quantum-mechanical investigation. '

The solid line in Fig. 5(b) shows, for a= 1, the rescaled
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tance z between the plane of the potential (15) and the
2DEG, where the exponential decrease of the Fourier
components according to Poisson's equations is taken
into account, but not the screening due to the 2DEG.
The origin of the rich structure shown by the solid curve
in Fig. 5(a) (z/a=0. 015) is analyzed in Fig. 5(b). It is
qualitatively well understood, if one adds to the 1D re-
sult, shown in Fig. 2(b) for z/a =0.01, the contributions
due to the most important mixed terms given by the
Fourier components V&, and V» in (16) [Eq. (8)].

1.0 IV. SUMMARY
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FIG. 5. (a) Rescaled band conductivity created by the step-
function potential (15) with square symmetry (a=1) and aspect
ratio d/a =0.5 at a distance z from the 2DEG, for z/a =0.015
(solid line), 0.04 (dashed line), and 0.08 (dashed-dotted line).
Only the effect of Poisson's equation is taken into account, not
that of screening by the 2DEG. (b) Models
(ho»)' =B"'g„,v„cos[n(g„/8"" ~)] vs B"'=a/2R„
with v, =g, =1, g2=v 2, g3=3, and g4=v'10 for v, =0.35,
v 3 v 4 0 (solid line), for v 2

= v 3
=0, v 4

=0.3 (dashed line), and
for v2 =0.6, v3 =0.15,v4 =0.2 (dashed-dotted line).

0 if ~x~)d/2
V(x,y)= V if (x( &d/2, (y(&d/2

(1—a)V if Ixl &d/2, lyl &d/2
(15)

again with 0~a~ l. The relevant Fourier components
are

conductivity for the model (13},

(b,rJ )"'=B"'[cos [n(1/B"' ,')]-—
+(~2/4)cos [m.(~2/B"' ——,')]] . (14)

The second cosine term, resulting from the mixed term
(~ V~ ~) in Eq. (13), raises the values at the minima and
shifts the minimum at B"'=—', [Fig. 1(a)] to a somewhat

higher value.
As a multiplicative model for a 2D step-function po-

tential we consider a square lattice with a unit cell
~x~ & a /2, ~y~

& a /2, where the potential is
r

We have calculated the contribution of the band con-
ductivity to the magnetoresistance oscillations of a
2DEG subject to a general, nonharmonic two-
dimensional superlattice potential in the quasiclassical
limit. In general, the effect of higher harmonics con-
tained in a superlattice potential, which is created near a
gate at some distance z from the plane of the 2DEG, de-
creases exponentially with increasing z as a consequence
of Poisson's equation. The higher harmonics contained
in a step-function potential of period a become absolutely
unimportant for z/a ~0.2, provided there are no space
charges between the gate and the 2DEG. A very effective
mechanism which enhances the importance of higher
harmonics is the wave-number-dependent (Thomas-
Fermi) screening of the potential by the 2DEG itself. For
a step-function potential with aspect ratio d/a =0.5, this
screening mechanism leads to well-visible effects of the
third harmonic up to distances with z/a =0.1. The cal-
culated magnetic-field dependence of the band conduc-
tivity for this situation shows a rich structure and repro-
duces very closely an experimental result of Winkler,
Kotthaus, and Ploog. If the additional structure due to
the higher harmonics is not resolved, within the classical
calculation the only effect of these harmonics can be
slight shifts of the minima and the maxima of the band
conductivity. The drastic changes observed recently by
Weiss, such as an interchange of the positions of resis-
tance maxima and minima and a considerable suppres-
sion of the band conductivity by more than an order of
magnitude, which occur when the lateral superlattice po-
tential is changed from a one-dimensional to a two-
dimensional one, cannot be explained by the classical cal-
culation and point to a quantum-mechanical origin. ' '
Within the classical calculation and the multiplicative
models discussed, one obtains at most a reduction of the
band conductivity by a factor 0.25.

ACKNOWLEDGMENTSV„o=[1—a( 1 —d /a ) ]sin( n.n„d/a ) V/(mn„), .

Vo„=a(d/a)sin(n. n d/a)V/(mn ), (16)
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V„„=a sin( n.n„d/a }sin( m n„d/a ) V/( m n„n~) .x' y

For an aspect ratio d/a=0. 5 the modulation towards
square symmetry (a= 1) again reduces the amplitude V& 0
of the fundamental period to one-half of its value for the
1D lattice (a=0). Again for d/a =0.5, Fig. 5(a) shows
the rescaled band conductivity for three values of the dis-

APPENDIX

To first-order perturbation theory, the correction to
the Landau energies E„=pro,(n+ —,') due to the weak
modulation potential V(x)=g V exp(igx) is given by
the expectation value (nxo~ V(x)~nxo } taken with Lan-
dau functions (x,y ~nxo }=L„'exp(ikey )P„(x—xo),
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where xo = —1 k, and P„is a normalized oscillator func-
tion. The resulting energy eigenvalues of the Landau
bands are' *'

E„(xo)=%co,(n+ —,')+gee 'X„(—,'g l ), (A 1)

with X„(G)=exp( G I—2)L„(G)and L„aLaguerre poly-
nomial. The Kubo formula yields for the band conduc-
tivity Ao»» = —fdE f'(E)htr (E), with f'(E) the
derivative of the Fermi function and'

tie
At» (E)=

~ f g I(n xoI v»Inx o) A„„(E)I

(A2)

If we neglect the internal band structure of the Landau
levels and omit the xo dependence of the spectral func-
tion A„„(E)and insert the group velocity

( nxo I v» I nxo ) =R 'dE„(xo)/dk» calculated from Eq.
(Al), we obtain

&tr»»(E) = g [ A „(E)]'g g'I Vg I'[L„(—,'g'I' }]'.
n g

(A3)

Assuming that the shape of the spectral function A„(E)
is independent of n and that its width ( ~ y) is much
smaller than k~ T, we may write

fdE f'(E)[A„(E)]=f'(E„)/ytr To derive Eq. (9), we

exploit A'co, «k~ T, transform the n sum into an integral
over E„,and assume that L„asa function of n near
n~=EF I%co, ())1) varies slowly on the scale ktt TIAto, .
Then we obtain

2M XAQ) c
"F (A4}

For fixed argument —,'g I and large index nF ())1),
L„(—,'g l ) =Jo(gR, ) holds with R, =1+2n»+ 1. With

this approximation, with y=fi/r, with g=2 tnr/a for
(n =+1,+2, . . .), and with the asymptotic formula (6),
Eq. (A4) reduces to Eq. (9). For a superlattice potential
with only conditionally convergent Fourier series,

I Vg I
o- 1/g, this approximation is, however, not feasible,

since Jo(gR, ) ( cc g
'

) decreases only slowly with in-

creasing g, so that the sum in Eq. (9) diverges, whereas

L„(—,'g l ) decreases exponentially with increasing g, and

the g sum in Eq. (A4) converges rapidly. Thus, the possi-
ble divergence of Eq. (9) for a steplike superlattice poten-
tial is an artifact of the classical approximation using Eq.
(4).
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