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An exact solution for the stochastic master equation describing the semiclassical Coulomb-blockade
theory is obtained for an arbitrary shunt resistance at zero temperature. This solution is used to
systematically evaluate various quantities characterizing the dynamics of single-electron-tunneling
oscillations. Our solution provides analytic expressions of the voltage spectra and sum rules.

I. INTRODUCTION

Small-capacitance normal tunnel junctions have at-
tracted a great deal of attention since it was pre-
dicted (for reviews, see Refs. 1—3) and experimentally
corroborated that the charging eft'ect of a single elec-
tron leads to a family of phenomena at low temperatures,
where the charging energy e2/2C exceeds the background
thermal energy ksT Single-e. lectron-tunneling (SET) os-
cillations are particularly fascinating. They are the volt-
age oscillations with frequency Id, /e that are generated
in a small normal tunnel junction when a charge transfer
across the tunnel barrier in discrete units of the electronic
charge e is supplemented by the continuous injection of
current Id, from an external circuit.

Within the semiclassical approximation, the dynam-
ics of small-capacitance normal tunnel junctions can be
described by a stochastic master equation. Most ar-
ticles have reported numerical simulations rather than
analytical solutions of the master equation. The nu-
merical approach successfully yields the static proper-
ties of SET oscillations, such as current-voltage (I V)-
characteristics. However, it is not suitable for investi-
gating their dynamic properties, such as voltage spectra,
because SET oscillations have an extremely long-time
correlation that severely restricts the accuracy of com-
puter simulation. An alternative time-domain approach
to small tunnel junctions gives complete informa-
tion about two consecutive tunneling events and hence
the analytic expression of I-V characteristics for arbi-
trary bias conditions, but this approach has not been
extended to study voltage spectra.

The purpose of this paper is to develop an analytic ap-
proach to small tunnel junctions by exactly solving the
stochastic master equation. This approach not only af-
firms previously obtained results but also gives an ana-
lytic expression of the voltage spectra of SET oscillations
under arbitrary bias conditions. This analytic expression
allows a deeper understanding of SET oscillations, and
clears up ambiguities about the accuracy of computer
simulation. Special emphasis is put on sum rules and the
linewidth problem of SET oscillations.

This paper is organized as follows. Section II describes
a semiclassical model for small-capacitance normal tun-
nel jUnctions and the corresponding stochastic master
equation. Section III obtains the exact solution of the
master equation under arbitrary bias conditions, and dis-
cusses two important cases: constant-current operation
and the stationary case. In particular, it is proved that
the linewidth of SET oscillations vanishes for constant-
current operation. Section IV uses the exact solution to
calculate the charge (or voltage) correlation function and
the power spectra for both current-driven and shunted
operations. The results are used to discuss the sum rules
and linewidth of SET oscillations. Up to Sec. IV, the
discussion is only treated in the frequency domain. How-

ever, another analytic method reported in Refs. 12-14
describes the physics in the time domain. Therefore,
Sec. V connects the two descriptions by showing how

the key distributions in the time-domain description can
be constructed from the solution of the master equation.
Section VI shows how our method can be used to calcu-
late the current, -voltage characteristics. Section VII uses
t, he solution of the master equation for a detailed discus-
sion of the linewidth problem. Section VIII summarizes
the main results. Some complicated algebraic manipula-
tions are relegated to appendices to avoid digressing from
the main subject.

II. FORMULATION OF THE PROBLEM

We briefiy describe here our semiclassical model and
assumptions. We consider a simple circuit [see Fig. 1(a)]
consisting of a normal tunnel junction, with electrostatic
capacitance C and tunnel resistance R~, and a resistanceR„„„in series with a voltage source V. All other cir-
cuit elements, such as stray capacitance and inductance,
are ignored for simplicity. This configuration is equiv-
alent to a conventional one, in which a normal tunnel
junction and a shunt resistor R,h„„tare connected par-
allel to a current source [Fig. 1(b)]; the two circuits are
connected by the relation V = IR,~„„,. In this paper we
use the former circuit and denote the resistance R„„„
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as source resistance Rg. Constant-current operation can
be achieved by taking the limits V ~ oc and Rg ~ oo
with V/Rs fixed at Iu, . We shall refer to cases of finite
V and Rs as shunt, ed.

Both source resistance Rg and tunnel resistance RT
are assumed to be much larger than the quantum unit
of resistance Rq ——6/e2, so that the eH'ects of the elec-
tromagnet, ic environment ' and the quantum fluctua-
t, ions of electric charge' ' can be disregarded. The con-

dition RT )) Rq means that an electron is almost always
localized on either side of the tunnel barrier. The barrier
traversal time and the thermal equilibration time inside
the electrodes are also assumed to be negligible compared
to circuit, time constants and the average time between
adjacent tunneling events. These assumptions allow us
to make the Markov approximation and describe the dy-
namics of small tunnel junctions by the stochastic master
equation,

+(Q ~) =
l

( "» —(('v —q)I'(q &))
cl 1 8 ( OP(Q t)

+i (Q+ e)P(Q+ e, t) + l(Q —e)P(Q —e, t) —[r(Q) + l(Q)]P(Q, t), (2.1)

where P(Q, t) is the probability density of charge Q at
time t, and the forward and backward tunneling rates,
i (Q) and l(Q), are given by

Henceforth, we restrict our discussion to zero temper-
ature, where the master equat, ion (2.1) reduces to

i'(Q) =
1 —exp

l(Q) = i (—Q)
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—P(Q, t) = — P(Q, t)+ P(Q, t)
8 CV —QB 1

+r(Q + e) P(Q + e, t) —i (Q)P(Q, t), (2.3)

with the forward tunneling rate,

The point here is that the right-hand side of Eq. (2.1)
consists of two parts, corresponding to the continuous
charge-up process and the discrete tunneling process in
units of e, both of which are essential for SET oscillations.
Such coexistence of continuous and discrete processes in
a single equation makes Eq. (2.1) unique but intractable.

'0, Q&e/2

(Q)= &

Q —'/',
Q & ./2.

eRTC

(2.4)

Because tunneling is forbidden for )Q( & e/2, it is suffi-
cient to consider only CV & e/'2.

~ series
(a)

III. EXACT SOLUTION OF THE MASTER
EQUATION

A. General solution

This section formulates and solves an initial-value
problem of the stochastic master equation (2.3). We seek
a solution of Eq. (2.3) with the following initial condi-
tions:

(b) P(Q, t = 0) = b(Q —Q(i) and P(Q, t & 0) = 0. (3 1)

~ shunt

FIG. ]. (a) Schematic illustrations of the circuit treated

iu this paper aud (b) the equivalent circuit.

For clarity, we denote the solution of this initial-value
problem as P(Qo, Q; t), which is the retarded Green's
function of the master equation.

The procedure for obtaining P(Qo, Q;t) is outlined as
follows. We first solve the master equation ('2.3) with-
out the tunneling term r(Q+ e)P(Q+ e, t) Using this.
solution, we transform the full master equation into an
integral equation. Finally, the integral equation is solved
for CV & 3e/'2, which is sufficient for investigating SET
oscillations.
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Let us first solve the master equation without the tun-
neling term

Since the probability that no tunneling event occurs while
the charge increases from Qi to Q2 is given byis

—Pp(qp Q t) =—CV —Q 0
Pp(qp, Q;t)CRs

1
'CR "'q' q '

"(Q)P0(qp Q't) (3 2)

Po(Q1, Q ) = &

CXP

Qi & Q2 «/2

2.(q) ~
dq. , I, Q2) e/2,

'(q )

(3 4)

with the initial conditions

Po(Qp, Q;t = 0) = b(q —Qo) and Po(Q0, Q;t & 0) = 0.

where A:—max(qi, e/2) and

CV —q
i(q) =

CRs (3.5)

(3.3) we obtain the solution of Eq. (3.2) as

Pp(Qp, Q; t) = 8(t)Po(Qp, Q)6(q —CV —(Qp —CV) exp( —t/CR )s), (3.6)

where 8(t) is the unit-step function. The t) function in Eq. (3.6) ensures that the time for the junction to charge from
Qo to Q is equal to t.

Using the fact that Po(Q0, Q;t) is the retarded Green's function of Eq. (3.2), we can transform Eq. (2.3) into an
integral equation,

CV

P(qi, Q2;t) = Pp(qi, q2;t) + dt dqP(qi, q; t')&(q)P0(q —e, Q2,'t —t')
0 e/2

(3 7)

This integral equation is equivalent to the initial-value
problem of the stochastic master equation (2.3) with the
initial conditions (3.1). We solve this equation in the
frequency domain. The Fourier transform of Eq. (3.7)
yields

P(Qi, q2;~) =

Po(Qi, Q2;~) =

Ct e' 'P(Q„Q,;t),

d«'"'Po(Q1, Q2, t)

(3.9)

(3.10)

)= P(q, q; )
CV

+ dQ p(q„q;u)p(q)
e/2

x Pp (Q —e, Q2; ~) (3 8)

The Fourier transform of Eq. (3.6), on the other hand, is
given by

Pp(Q1) Q2) ~) —CRS(Q2 Ql)P01(Q1) ~)P02(Q2) ~))

(3.11)

where P(Q1, Q2, (u) alld Pp(Q1, Q2) 4J) are defined by where

((CV-Q, )*-cR-', Q, &,/2,
(Q'P;e~): ( /gy e/2)()l )(~ IR )(~e ())

(CV Q )
tuCRc);

)( CV —Qi
1Rs e«P — ——0)), 0~&e/2,eAT 2

(3.12)

R11Cl

f (CV Q )
—1-i~CR~

P02(Q2,.~) = ( CV q )(il~)(Rs/Rv)(«&(2)
(CV Q )

—l~tucR~ 2

CV —e/2)
1 Rs

exp — Q2 ——,Q2 & e/2.
RT

(3.13)

U»ng Eq. (3.11), Eq. (3.8) can be expanded by iteration to yield
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This series expansion can be summed exactly when voltage V is less than 3e/2C, because in this case, the step function
in the integrand, 8(q;+1 —q; + e), always gives unity, so the multiple integrals can be reduced to products of single
integrals:

P(Q1, Q2; ~) = CRsPol(Q1; ~)P02(Q2; ~)

X 2 — ~+ 2 — S+e C&S
B

dq»02(qr; ~)r(ql) Pol(ql e ~)

+(CRs) dql Po2(ql; ~)r(ql) Pol (ql e ~)
A

dq2Pp2(q2', (J)r(q2) Po1 (q2 —e; u)
/2

x 1+CAs
/2

dqPp2(q; ~)r(q)Pol(q —e; cu)

( cv
+ I CRg dq Pp2(q; ~)r(q) Po1 (q —e; ~) +

= CRSP01(Q1;~)P02(Q2; ~)

x 8(Q2 —Ql) + CRS8(Q2 —Ql + e) dqPo2(q;~)r(q)P01(q e ~)

CV
+(CRs)' dqlP02(ql ~)r(ql)P01(ql ~)

A

d'q2P02(q2; ~)r(q2)P01(q2 e'4')
2

CV
xll— dqPo2('q ~)r(q)P01(q e ~) (3.15)

where A:—max(Q1, e/2j and 8 = minjQ2 + e, CV). Introducing the quantity

I(ql q2 4)) —CRs dqP02(q;~)r(q)P01(q e ~), (3.16)

we Anally obtain

I(A, CV; ~)I(e/2, B;~)
P(Q1, Q2,.~) = CRSP01(Q1., ~)P02(Q2., ~)

~ 8(Q2 —Ql) + 8(Q2 —Ql+e)I(A, &;~) +
1 1

(3.17)

This is an exact solution of the stochastic master equation (2.3) for CV & Be/2 with initial conditions (3.1). That is,
it is the retarded Green s function of the master equation. The quantity I(ql, q2,

.cu) can be evaluated from Eq. (3.16)
using Eqs. (2.4), (3.12), and (3.13).

Thus we have demonstrated that the master equation (2.3) can be solved exactly for CV & Be/2. This solution
is nonetheless applicable to CV ) 3e/2 as long as the probability that the charge on the junction capacitor exceeds
Be/2 is negligible. Mathematically, this condition can be expressed as



45 EXACT SOLUTION OF THE MASTER EQUATION FOR. . . 3439

e
I(q, , qe, ~) = dqexp[iter(q —e, q)[P —,q), (3.20)

gx

where the quantity

s n
CV —Qi

2

gives the time needed for charging from Qi to Q2 without
tunneling events, and

(3.21)

3 (q) (

exp I

— dg .
3(q) )

(CV 3 /2) ()/e)(RR/R2 )(cv —e/2)

( CV —e/2 )
Rs1x exp
RT y

(3.18)

Ie'or constant-current operation, Eq. (3.18) reduces to

exp! —
! (& 1,

/' e
(3.19)

Idc)
which is satisfied when the driving current Id, is much
smaller than e/Rz C. For example, the left-hand side of
Eq. (3.19) gives 6.7 x 10 for I« = O. le/Rz C. Because
SET oscillations can only be observed at low currents,
this condition is usually satisfied in the cases that we are
interested in. The solution (3.17) is therefore useful for
investigating the dynamics of SET oscillations.

Some comments on the key quantity I(qi, q2, ur) are
in order here. Substituting Eqs. (3.12) and (3.13) into
Eq. (3.16) yields

is the probability density that the first tunneling event
occurs at charge q, given that the initial charge was less
than e/2. is

Noting that the quantity

CV

dq r(q —e, q) P (—,q)
e/2

(3.23)

gives the average time required to charge the junction
by e, which is also equal to the average interval between
consecutive tunneling events, we find that I(e/2, CV; u)
is the moment-generating function for that time:

I(e /2, CV;~) (3.24)

Now let us examine properties of the solution (3.17)
in some detail by reducing it in two important cases:
constant-current operation and the stationary case. The
reduced expressions will be used in later discussions.

B. Solution for constant-current operation

I(qi, q2;~) = e' '/" exp!—qi —e 221
2eRT CId, j

(q2 —e/2) 2
—exp!—2eRrCIe),(3.25)

For constant-current operation, the retarded Green's
function (3.17) of the master equation (2.3) can be
greatly simplified, because the quantity 7.(q —e, q) in

I(qi, q2;u) becomes e/I«regardless of ~. In the lim-
its V ~ oo and Rs ~ oo with V/Rs = I«, Eq. (3.16)
reduces to

~ -',
q =". ' exp—

3(q) I, ./2 3(q') /[

(3.22) Substituting Eq. (3.25) into Eq. (3.17) yields, to the first
order in exp( —e/2RT CId, ),

I ef & t.'/Igc
ei~(q2-qq)/Ia e(q q, ) +

Id, 1 —ec~ejI~c
(Q2+ e/2)'l
2eRT CId, )

for —e/2 & Qi, Q2 ( e/2

(e' (q' &3)/ " .
/

exp! —
! for —e/2 ( Qi & e/2 & Q2 & 3e/2

e*"«2-&*)/" e(Q2+ e —q, )e*"'/". 1 —exp
P(q&, Q2, ~) = i Id, 2eR2 CI«

e2iieqe/Ia / (Q2 + e/2)2+ 1 —exp!—
( '..-.. ) )

for —e/2 & Q2 & e/2 & Qi & Be/2

1,; (q, q, )/I.. e(q Q ),„('(Q2 — / )' —(Q~ — /2)'!
2eR~CId

eiqde/Ia f (Q2 —e/2)2 q
exp! —

! for e/2 & Q„q,& Be/2.
1 —e*~ »' (, 2«TCI«)
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From Eq. (3.26) we find that P(Q1, Q2', u) has poles on the real a axis at a = 27rnId /e (n = 1, 2, . . .), which indicates
that the SET peaks in the power spectra have no linewidth. Although Eq. (3.26) itself is correct only to the first,
order in exp( e—/2RTCIde), this conclusion holds true as long as the junction is driven by a constant-current source.
A more rigorous proof is given in Appendix A.

C. Stationary solution

1Rs e
exp — Q+ — ), —e/p ( q ( CV —e

eR~ 2

1Rs e
exp — Q ——,e/2& Q & CV,eR~ 2

From the solution of the master equation, the stationary solution or the charge distribution can be calculated as

1
P(Q) = P(Q, t) = lim — dtP(qi, Q;t) = i lim —~P(qi, Q;~), (3.27)

where the bar over P(Q, t) denotes the time average. Substituting Eqs. (3.17) and (3.16) into Eq. (3.27), we obtain
the charge distribution for CV less than 3e/2 as

1 CRs /' CV q l (1/e)(R /R )(CV e/2)

7CV —Q ( CV —e/2 )
1 CRsp(q) = t— CV —e(Q(e/2 (3.28)7CV —Q'

CV q l (1/e)(R /R )(TCV —e/2)

!
S

, r CV —Q CV —e/2)

where r is t, he average dwell time given by Eq. (3.23).
This result is identical to that obtained in Ref. 13 using
the probability-density-function approach. In particular,
for constant-current operation, the charge distribution is
obtained from Eq. (3.26) as

A. General properties of the charge correlation
function

We begin by discussing general features of the charge
correlation function defined by

(Q+ e/2)'
e 2e RTCIdg

sq(r) = e(r)[q(t)q(t + r) —q(t)'j. (4.1)

P(Q) = t —e/2 & Q & e/'2 (3.29)
Our primary concern is the analytic behavior of its
Fourier transform,

(Q —e/2)—exp —,Q & e/2,
, e 2e RT CId, dr e' 'Sq(r) (4.2)

which, of course, holds only for Id, « e/RTC.
The average and mean square of charge can be calcu-

lated from Eq. (3.29):

This quantity can be expressed in terms of P(Q) and

P(Qi, q2, ~) as

q(t) = eRT CIa. , —
2

(3.30)
Sq(~) = Sq(~+ ib), (4.3)

e2
Q(t)2 = —+ 2eRTCI„

12
(3.31)

where 6 denotes an infinitesimal positive number and

dQ2 Q1Q2P(Q1)P(Q1 Q2 ~)
These results will be used later in discussing power spec-
tra and sum rules.

e/'2 e/2

lCV

dQQP(Q)
e/2

(4.4)

IV. POWER SPECTRA OF SET OSCILLATIONS

'I his section evaluates various quantities characterizing
SET oscillations, such as the charge (or voltage) corre-
lation function and the power spectra, The results are
used in discussing the sum rules and linewidth of SET
oscillations.

Other general nth-order correlation functions can also be

similarly expressed in terms of P(Q) and P(Qi, q2;~).
Because the correlation function defined by Eq. (4.1) is

the retarded one, Sq(cu) is analytic in the upper half of
the complex ~ plane. By definition, the following sum

rule holds:
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f led 2

Sq(~) = —,[Q(t)' —Q(t) ]
, Sqr (~')

Sq(~) = —P du)' (4 vx

CV

dQ O'P(Q)
—e/2

—
l J ~QQP(Q)

2-

(4.5)

oo S&(~~)
S (~) = —P der'

so the correlation function can be represented as

oo SR(~ I)
Sq(~) = — d(u'

td —N + 26

(4.S)

(4.9)

This sum rule and the analyticity in the upper-half plane

determine the asymptotic behavior of Sq(~):

Sq(~) - —[Q(t)~ —Q(t) ] for !~! oo; Im~ & 0.

(4.6)

We shall refer to the real and imaginary parts of Sq(~)
as S&+(u) and Sql(u) It follo. ws then from the analyticity
and Eq. (4.6) that these pairs obey the Kramers-Kronig
relations,

Equation (4.9) shows that Sq(u) can be regarded as
the power spectrum of the charge fluctuations or SET
oscillations. 2~ It can be easily proved that Sqn(u) has a
finite value rather than a b-function peak at ~ = O.

B. Power spectra and sum rules

This section examines analytic properties of the power
spectra and discusses the related sum rules for constant-
current operation. Sq(ur) can be calculated by substi-
tuting Eqs. (3.26) and (3.29) into (4.4). Lengthy but
straightforward calculation yields

i e2 erd,
Sq(~) = ——+ 2eRT CIq, 1 ——

12 4 2~2
e&tt/&/Idc t .4lqy+ . /I dqg exp! i

e&ttt&/ dc Idc
ei(u»/Ig» & q (

dQ sin exp!—
1 e»GJ8/I~» Id

g + e&~&/ld &I2dc

1 —eius e/Id, ~3

Q '
! dq, !/', Q

2eRz CId, ) o k Id,
Q'

2eRT CId, )

q,'
2eRICId )

(4 1o)

The real part of Sq(u) is given from Eqs. (4.3) and (4.10)

Sq(~) = Sq~' (~) + ) ' b(~ —2nnld, /e)Sq (~),
RTC

(4.11)
~here Q' denotes the summation over all integers except
n=0,

Equation (4.1l) shows that SqR(~) consists of b-function

peaks Sq (~) at ~ = 2nnId, /e and what is called the

noise pedestal S&~' (~).
The contribution of the pedestal to the power spectrum

Sq(u)/n is given by2~

Sq~ (~) =eQ(t)! 1—
q ( 2)

Sq"(~) = —f(~) —
2I ([f(~)]'+b(~)]'), (4.12)

—e RipCId, .
I

(4.16)

S" (~) =
I

' —f(~) I
+b(~))E~ )

(4.13)

We have introduced here the functions f(~) and g(u),
which are defined by

Eq~~tion (4.16) shows that the contribution of the
pedestal is proportional to the average charge of the
junction. This is a characteristic feature of a Poisson
random-point process, so it confirms the statement that
the pedestal is generated due to the statistical random-
ness of individual tunneling events. o The value of Sq~' (cu)

at ~ = 0 is given by22

f(~) = dQ sin exp!—
0 Id, 2e RT CId,

(4.14)
Sq~' (0) = e~R»(: (1 ——), (4.17)

g((d) = dQ cos exp!—
0 Id, (, 2eRTCI~, ) (4.15) while its asymptotic behavior for u )) +Id, /eRz C is

given (see Appendix B) by
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eId, t Id,~'
(u)) = 1—

(~'eRTC)
3

(~&eRTC) (4.18)

)" b(~ —2xnId, /e)Sq (~)
QQ 7I

The contribution of the 6-function peaks is, on the other
hand, given by

pedestal tends to overcome the contribution of the SET
peaks. This means that SET oscillations are less obvious
for larger currents. In addition, as ~ increases, the SET
peaks decrease rapidly as SqsET(~) 1/cu .

For shunted operation, the power spectra of SET os-
cillations can be calculated numerically using Eqs. (3.17)
and (4.4). The results are shown in Fig. 3. The figures
clearly show that SET peaks appear as the ratio Rs/RT
increases; as this ratio further increases, the background
noise corresponding to the pedestal decreases and the
SET peaks grow and become sharper.

= Q(t)' —Q(t) —eQ(t) ~

1—
v~r

Q
2

= —+ 2eRTCId, 1——
12 4

—
~

1—
~

esRT —CId, .
( 1 )

2j
(4.19)

C. Linewidth of SET oscillations
for shunted operation

The linewidth of the SET peaks can be estimated by

the relation

The right-hand side of Eq. (4.19) depends on Q(t)2,
which reflects the fact that SET oscillations are gener-
ated due to correlation of tunneling events.

S&~' (u) and S&ET(u) are shown in Fig. 2 for typical
values of the current, Id, RTC/e = 0.01 and 0.05. It
can be seen that, as the driving current increases, the

Fs = —Im~ (4.20)

I(e/2, CV;~„)= 1.

To first, order in RT /Rs, we obtain

(4.21)

where ~„is a pole of P(Qq, Q2, ~), determined by the
equation

2~n . RT (2gy) ( ggy)
CVye/2 Rs eCRs ln
CV —e/2

1—
2CV

(2xn)2

CV+ e/2l '
CV —e/2)

(4.22)

where n is an integer. Thus the linewidth of SET oscil-
lations due to a small source resistance Rs is given by

r, = ~'n'(4 —~) (4.23)
S S

A more detailed discussion on the poles of P(Q~, Q2, cu)
for a shunted junction is given in Appendix C.

cessive tunneling events, while P, qq(r) describes the cor-
relation between any two tunneling events separated by
a time interval of r.

Using Po(Qq, Qq, t) and P(Qq, Q2, t), P, »(r) and
P, qq(r) can be written as

V. TIME-INTERVAL DISTRIBUTIONS
P.

, »(&) = dQ dQ~P;(Q )P.(Q, Q.') (Q )

(5 1)
So far, the discussion is only treated in the frequency

domain. However, Refs. 12—14 use time-domain descrip-
tion. In this section we will show how the key distribu-
tions in the time-domain description can be constructed
from the solution of the master equation. We discuss
the probability distributions of time intervals between
tunneling events. In a small tunnel junction at most
one electron tunnels at one time, and the tunneling pro-
cess is Markovian. Such tunneling events can be most
directly characterized by second-order correlation func-
tions, and we introduce two such time-interval distribu-
tions P, qq(r) and P, qq(7). The former (latter) distribu-
tion gives the probability density that the next (another)
tunneling event occurs at time 7 after the first event.
Thus P, qq(r) describes the correlation between two suc-

p;(q, ) = p(-;, @i+~), (5.3)

where P(e/2, Q) is given by Eq. (3.22). In the limit of
constant-current operation, the analytic forms of their
Fourier transforms are given by

p.„() = f ~v f ~a p. w )p(au~;. ) (~~),
(5 2)

where P;(Q~) is the charge distribution immediately after

a funneling event and is given, for e/2 & CV & 3e/2,
b 13
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circe/Iae e (.tdQt
Pe,»(~) =, R» dQ1Qr exp l

i
(eRg Idc '

tt Id,

Q', ) ' /' .~Q2
dQ2 Q2 exp

~

—i
2eRT CId, ) o Idc

Q',

2eRTCId, ) (5.4)

and

e14l e / Iac .uzQz
P, »(uz) = . dQt Qt exp i

eRT CId, 2 1 —e'~e/I" Idc
dQ Q

2e RT CId, y o Idc
Q2

2eRTCId, j
(5.5)

We see from Eqs. (5.4) and (5.5) that the difference
between P, tq(~) and P, qt(uz) is only a factor 1/(1—
e' '/ '); that is, P, tq(u) is nothing but P, qq(tu) re-
peating with period e/Idc. This can easily be under-
stood by noting that the junction charge changes with
time as depicted in Fig. 5(a) and that the probability of
charging the tunnel juntion above Be/2 is assumed to be
negligible. Thus every charging process starts from the
Coulomb blocked region, and thus the memory of earlier
tunneling events does not affect later tunneling events.
This relation between P, qq(uz) and P, tt(uz) is specific to
constant-current operation for low currents and does not
hold for larger currents or for shunted operation.
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FIG. 2. Real part of the charge correlation function for
constant-current operation with (a) Ia, RzC/e = 0.01 and

(b) Ia, Rz C/e = 0.05.

F1G. 3. Real part of the charge correlation function for
shunted operation at Ci'' = e: (a) Rs/Rz =3, (b) Rs/RT =.

10, and (c) Rs/RT = 100, where the inset shows the same
figure in a different scale.
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VI. CURRENT-VOLTAGE CHARACTERISTICS

The previous sections discussed dynamic properties of
SET oscillations. In this section we consider their static
properties, i.e. , current-voltage characteristic. The time-

averaged voltage across the tunnel junction is given by

CV

V = — dQ QP(Q)C -e/2
(6.1)

Substituting Eq. (3.28) into Eq. (6.1) we obtain I&irch-

hoff's second law,

V= V —RsI

where the quantity

(6 2)

(6.3)

VII. LINEWIDTH PROBLEM REVISITED

Section IV B showed that the linewidth of SET oscil-
lations vanishes for constant-current operation and that

is the average current through the tunnel junction. It
is interesting to note that a classical circuit relation is
recovered for a circuit involving a quantum device (i.e.,
tunnel junction) if we take an ensemble average. This
is a tunneling version of Ehrenfest's theorem. Equation
(6.2) shows that the current-voltage (I V) ch-aracteristic
can be calculated by using Eqs. (3.22) and (3.23) to eval-
uate the average time interval between tunneling events.
The results are shown in Fig. 4. This figure, which
clearly demonstrates the crossover from constant-voltage
operation (Rs/RT « 1) to constant-current operation
(Rs/RT » 1), agrees well with the previous results. i

In the limit of constant-current operation, the I Vchar--
acteristic has horizontal (insulating) and parabolic (con-
ductive) branches, while the I Vcurve is -single valued
and has an offset e/2C in the limit of constant-voltage
operation.

the statistical randomness of tunneling leads to the back-
ground noise, called noise pedestal. This result has been
known for some time, but it has not seemed so obvious
because in optical physics statistical fiuctuations usually
lead to a finite linewidth. In this section we use the
exact solution of the master equation to reconsider the
physical origin of the vanishing linewidth.

The vanishing linewidth of SET oscillations —or,
equivalently, the infinitely long-time correlation of SET
events —for constant-current operation originates from
the combination of the discrete transfer of charge across
the barrier with its linear supplement from the external
circuit. It thus follows that the values that the charge
can take at each moment are restricted to a discrete set,

Q(t) = Q(0) ~ I„t—ne, (7.1)
where n is the number of tunneling events [see Fig. 5(a)].
Therefore the statistical properties of charge at t = 0,
Q(0), precisely carry over to those of charge at time t,
Q(t), and "memory" of charge at t = 0 is preserved. This
is why the randomness of individual tunnehng events
does not lead to deterioration of correlation. In shunted
operation, on the other hand, nonlinearity of the charging
process allows the charge to take values from a contin-
uous set after several tunneling events [Fig. 5(b)], and
eventually the memory of the charge at t = 0 will be
completely lost, .

The reason the randomness of individual tunneling
events does not deteriorate the long-time correlation of
SET oscillations can be put in another way. Provided
that tunneling events have occurred at Q = Qi, Qz, . . . ,
Q„while the charge changes from Q = Qo to Q, the time
taken for the whole process is given, from Eq. (3.21), by

( CV —Qp CV —Qi+er = CRs
~

ln + ln

y ln
"

~. (7.2)
CV —Q„+e)
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FIG. 4. Current-voltage characteristics for (a} Rs/Rr =
0, (b} Rs/Rr = 3, (c} Rs/RT = 10, (d} Rs/Rr = 50, and

(e} Rs/Rr ~ oo.

FIG. 5. Regions in the t Qplane that the junct-ion charge
is allowed to occupy: (a} constant-current operation and (b}
shunted operation.
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In the limit V ~ oo and Rs ~ oo with V/Rs = Id„
Eq. (7.2) reduces to (Q(t)) = Qo+ Id.t —e

' + — + e ) kp(k, t),
Id, t+ Qp 1

1
[(Qi —Qp) + (Qz —Qi+ e)

~dc

+" +(Q —Q +e)]

Q —Q() + ne

Idc
(7.B)

(74)
where [ ] is Gauss's symbol, and p(k, t) is a distribution
function satisfying the normalization condition,

) p(k, t) =1. (7 5)
k=o

This shows that the randomness of intermediate tunnel-
ing events at Q = Qi, Qz, . . .,Q„doesnot affect the time
r and hence does not destroy the long-time correlation.

These qualitative explanations for the absence of the
linewidth of SET oscillations can be refined by using
our analytic solution of the stochastic master equation.
In constant-current operation, the time evolution of the
charge averaged over the ensemble, in which the initial
value of the charge Qp is held fixed, is given by

We have assumed that Qp is less than e/2. The first
three terms of the right-hand side (rhs) of Eq. (7.4) rep-
resent completely regular SET oscillations, whereas the
last, term includes the stochastic nature of the tunnel-
ing. The separation of (Q(t)) into regular and random
parts leads to two distinct components in the power spec-
trum, namely, a set of b-function peaks and the pedestal.
The explicit form of the last term can be obtained from
the analytic solution (B.17) of the master equation. The
Fourier transform of (Q(t)) is given by

2

2eRT CId, ) (7 6)

(q(~)) = jdp pp(Q. Q;~),
iQo Id, ie exp[in(e/2 —Qp)/Id, ] e exp[i'(e/2 —Qp)/Id ] t' uQ.+ .

'
dQexp~ i

1 —exp(i~e/Id, ) Id, 1 —exp(i~e/Id, ) o ( Id,

It can be easily verified that the first three terms of
the rhs of Eq. (7.6), respectively, correspond to the
Fourier transforms of the first three terms (i.e., regu-
lar parts) of Eq. (7.4). The last term in Eq. (7.6), on
the other hand, includes the random nature of tunneling
events; it is a product of a periodically oscillating factor
e'~~'I2 ~'1~~"/(1 —e' ')'~") and an integral arising from
the randomness of individual tunneling events. Hence
the last term in Eq. (7.4) is given by a convolution of a
periodic function with frequency Id, /e and the Fourier
transform of the integral,

( Id, tz
e exp

~

— '
~

for 0 & t & e/Id, .
) (7.7)

As noted in Sec. V, the periodicity of the random part
is characteristic of low-current operation and is not di-
rectly related to the vanishing linewidth. In fact, this
periodicity will be lost as the probability that the charge
exceeds Be/2 increases. Nevertheless, the linewidth of the
SET peaks will remain zero as long as the values that the
charge can take are restricted to a discrete set.

VIII. CONCLUSIONS

In this paper we have exactly solved the stochas-
tic master equation for small-capacitance normal tunnel
junctions under arbitrary bias conditions at zero tem-
perature. We have used this solution to calculate im-
portant quantities characterizing SET oscillations both
for constant-current and for shunted operation. Analytic

expressions of the power spectra and sum rules of SET
oscillations are explicitly calculated for constant-current
operation. Although thermal noise is not treated in this
paper, this effect can be included, for sufBciently low tem-
peratures, by replacing the b function in Pp(Qi, Qz, t)
with a Gaussian packet.
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APPENDIX A: POLES OF P(Qi, Q~;(y)
FOR CONSTANT-CURRENT OPERATION

In Sec. III B we have explicitly calculated the retarded
Green's function P(Qi, Qq, (d) and shown that it has
poles on the real cu axis. However, this calculation is
correct only to the first order in exp( —e/2RT CId, ) « 1,
and thus one may wonder if SET oscillations really have
infinitely long time correlation. To answer this question,
we rigorously prove here that P(Qi, Q2, cu) has poles on
the real u axis in constant-current operation.

In the limit V ~ oo and Rs ~ oo with V/Rs ——Id„
the series expansion of P(Qi, Q2, ~), Eq. (B.15), becomes
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P(k)e, k)e;~) = Pe(Qek), e;~) (e(k)e —kie)+ e'- ". P(q ) + e2icde/Idc

/2
dq2P(q~) dqgP(qg)

where A:—maxjQ(, e/2),

3$&t-'/ Idd-

/2
dqsP(qs)

q3+e
lq~+~

dq2P(q, ) dq) P(qi) + (AI)

e'cd(q~ —qi )/ld. Q
1

2
Id,

Po(Q(, Q~;~) = & (A2)

aIl 0

q
—e/2 (q —e/2)'

exp —,e/2 & q & 3e/2
ega CId, 2eRT CId,

P(q) = i

, eRT Idc T dc

rents where the condition exp( e/2R—z CId, ) « I is sat-
isfied. Thus f(a) and g(a) are approximately written
as

f(ee) = f dk)eie exp( — )

Equation (Al) shows that P(Q), Qz', ~)/Po(Qi i Q2; ~)
is a function of u with period 2@Id,/e. On the other
hand, it can be easily shown from Eq. (3.27) that, in

general, P(Qq, Qq, kd) has a pole at u = 0. These two
observations lead to the conclusion that P(Qq, Q2., cu) has
poles at u = 2xnIdc/e (n = 0, +1, k2, . . .). Hence the
SET peaks in the power spectra S&+(u) have no linewidth.

A PPENDIX 8: ASYMP TOTIC FORM
AND SUM RULES FOR S~ (~) AND Sg (~)

In this appendix we briefly derive Eqs. (4.16), (4.17),
( I. 18), and (4.19). We consider the case of low bias cur-

= +2eRTCId, dt exp(t —T ),

g(~) =

«RT CId, e RT C~")

where

eRz CT=4)
~~dc

From Eq. (4.12) we have

~Q / Q'
dQ cos exp ~—

Id, ), 2e CId,

(81)

(82)

(83)

e

2Id,

Q
' dku1 . ~Q

dQ exp — —sin
2eRTCId, ~ ~ Id,

(
k)(+k)e

) ,„(,~(k)i —
k)e))

e (e Q2
dQ exp ~—

(84)

Q' ) e
dQ Q exp

0 2eRz CId, ) 2Id,

2 e=e Rzt 1 —exp
2RTCId, y 4

S~' (0) =
Q z

Combining Eqs. (4.5) and (84), we obtain Eq. (4.19).
S&~' (u) = 0) can also be calculated from Eq. (4.12) as

dQ exp (
—

)
(85)

which is equal to Eq. (4.17) to the zeroth order in exp( —e/2RTCIdc). On the other hand, using the asymptotic
expansion,
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2 g2 1 1 1 x 3 1 x 3 x 5
e dte = —+ 2 s+ s z+ 4 7 + (z»1),

o 2z 2z 2z 2z

and Eq. (Bl), the asymptotic behavior of S&~ (~) for ~ && /Id, /eRT C is obtained as

(B6)

gped( )
dc

~

1
Idc

~2eRz C ~4e2R2 C2 )
e4,

1 (' 4, t' 4.
(~2eRT C 'q~2eRz C)

eId, ( Id, 3Id~,1+ + + 0 ~

24J ( 4l eRTC 4J e RT2C )

APPENDIX C: POLES OF P(Qg, Q2., (u) FOR SHUNTED OPERATION

From Eqs. (3.20), (3.21), (3.22), and (4.21), the equation determining the poles of the Green's function P(qq, Q2,
.~)

is given by

/'CV —q+. i "'"'.(q) t ~,.(q') I
(Cl)

The problem here is to solve this equation for nearly constant-current operation; we solve Eq. (Cl) up to the lowest
order with respect to RT/Rs.

Introducing the quantities p—:e/2CV and q—:(Q —e/2)/CV, we have

i(uCRg C i~CRc

l
2 2 2

(C2)

Such an expansion is justified because moments of q rapidly converge as the ratio Rs /RT becomes large

dQ . exp — dQ' . , =
~

xp(1 —p)
Q —e/2 r(q) ( q, r(q') ~ /' RT ~

'/

e/2 i ( e/2 i ) 4 S )

~q —./2i' ~(Q) „,.(q )~ R~

./2 E CV ) i(Q) (,/2 i(Q') ) Rs

Combining Eqs. (Cl), (C2), (C3), and (C4), we obtain

~~CRs

(CV —e/2)
1+i~CRs,

~
np(1 —p)

( RTl '
1 —p2 Rs)

8 1 — R+, ri~CRs —p(cuCRs)2] + O((RT/Rs)s/2) . (C5)

Hence the logarithm of Eq. (Cl) reads

CV+e/2 . 2p /' RTb "
2vrin =iuCRs ln + ln 1+ iuCRs

2 l
7rp(I —p)CV —e 2 1 —p2 i Rs)

821 — R
i~CRs —p(~CRs)' + 0((RT /Rs)'/')

CV+ e/2 2p RT l RT 8p (1 —p)= i~CRs ln, + 7rp(I —p) ~
+CV —e/2 1 —p2 Rs ) Rs 1 —p

R 2sl-
-i(~CRs)'(4 —~),, + O((RT/Rs)" ),Rs 1 —p2 2 (C6)

where n is an integer. We finally obtain
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27m

CV+ e/2 2p RT l RT 8p (1 —p)CRs ln + vip 1 —p +CV —e/2 1 —p2 Rs) Rs (1 p )

—(4--) '"",",' ""' ..~(R./R. )'&')
Rs (1 —P')' & CV+ e/2)'

CRs
I

»
CV —e 2y

(C7)
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