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Relativistic single-site Green function for general potentials
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The fully relativistic single-site Green function is derived for generally shaped and magnetically polar-
ized cell potentials. It is shown that the right- and left-hand-side (i.e., ket and bra) solutions of the Dirac
equations are the necessary ingredients and their generalized Wronskian relation provides important
identities, which play a decisive role in the construction of the Green function.

I. INTRODUCTION

Over the past two decades a considerable amount of
effort has been paid to extend the Korringa-Kohn-
Rostoker (KKR) -type Green function formalism' that
was originally constructed in connection with potentials
of the muffin-tin (nonoverlapping spherically symmetric)
form to be applied to generally shaped cell potentials.
A generalization of the formalism is necessary in the
study of systems where the muffin-tin construct provides
only a rough approximation to realistic potentials, e.g.,
covalently bonded materials, atoms located near a sur-
face, interface, or impurity. ' The development along
this line, however, has been made only in the nonrela-
tivistic frame where the electrons are governed by the
Schrodinger equation. Regarding a recent tendency to
invent new materials such as high-T, superconductors
that contain often high-atomic-number elements, " it
seems rather urgent to develop a relativistic version.
Since the Schrodinger equation itself is an approximation
to describe the motion of electrons, the theory shall give
an ultimate description of the electronic structure of
rnatter within the single-particle approximation. ' '
Among the various steps that are necessary to complete
the theory, I present here a method to obtain the relativ-
istic single-site Green function. The other steps can be
rather easily carried out in the analog to the nonrelativis-
tic case.

In the cases of the muffin-tin or the magnetically polar-
ized muffin-tin potentials, the expressions for the relativ-
istic Green function have been already given by various
authors. ' ' The latter case is sometimes referred to as
the nonspherically symmetric potential, since the Dirac
Hamiltonian has only a cylindrical symmetry along the
direction of the magnetic moment incorporating it with
the spin-orbit interaction. It will be seen, however, that
the nomenclature "nonspherical" may not be suitable
since the assumed potential belongs to the case where its
matrix representation in a spin-angular-momentum space
can be set into a special form. Furthermore, the expres-
sions hitherto presented for both of two above-mentioned
potential models are often incorrect or correct only for
the energy on its real axis. Although the Green function
for the energy off the real axis might be unimportant in
the band-structure calculations, it is desirable to obtain
its expression on the complex physical energy sheet

where the Green function is analytic. The advantage of
knowing the Green function for the complex energy is
not only that we can calculate the density of states
efficiently through contour integration, ' but also that we
can introduce the lifetime to describe the quasiparticles
at least phenomenologically, ' e.g., the photocurrent has
been formulated in terms of the Green function in the
most sophisticated photoemission theory.

Bearing this situation in mind, we proceed to derive
the Green function for general potentials. In Sec. II we
prepare the bra (left-hand side) and ket (right-hand side}
solutions for the homogeneous Dirac equation, both of
which are necessary to construct the Green function, and
obtain the identities that stand on their radial solutions.
These identities play a decisive role in Sec. III where we
obtain the Green function. To avoid any mathematical
ambiguity, we show the equations in every step of the
derivation, in particular, the difference between the right-
and left-hand-side solutions, which is often overlooked
even in the case of the scalar differential equations, such
as the Schrodinger equation.

II. THE DIRAC EQUATION, SOLUTIONS,
AND WRONSKIAN RELATION

where tr=(tr„, cr~, tr, ) are the Pauli spin operators. The
potential matrix V(r} is generally decomposed into the
form

u+(r) u (r)
Vr =

u (r) v (r)

and its elements may be complex (the optical potential).
In the most general case, they can be described by the
effective scalar and vector potentials u (r) and A(r) as' '

u+ (r) = v (r) =v(r), u(r) =tr. A(r) . (4)

The Dirac Hamiltonian is written in the form

ica V+—c P+V(r),
where c is the light velocity in atomic units. ' The ma-
trices a and P are given in Dirac's notation as

0 cr 1 0
o 0 ' ~ 0 —l
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But in view of application to ferromagnets, an approxi-
mation can be employed where the internal magnetostatic
field, B(r)=VX A(r) couples only to the spin of elec-
trons, and we find

(E —8)IZ")=0,
&z'I(E —H)=0,

(6a)

(6b)

where E is the complex energy including the rest mass en-
ergy c . The left-hand-side solution &Z

I
can be under-

stood as the Hermitian conjugate of the right-hand-side
solution for the adjoint equation

v+(r) =v (r)+o"B(r), u (r) =0 .

Let IZ ) and &Z I be right- and left-hand-side bispi-
nor solutions of the Dirac equation

&rIg"„)= g C(l, ,',j—;p—s, s)Y," *(r)y',
s =+1/2

where YI (x) are the usual spherical harmonics, y' are the
Pauli two-component spinors, and C ( l, —,',j;p —s, s) the
Clebsch-Gordan coefficients, and hereafter we write the
coordinate as r= (r, r) dividing into the radial and angu-
lar parts. The quantum numbers ~ incorporate the orbit-
al and total-angular-momentum numbers l and j, as
x.= —l —1 for j=l+ —,

' and ~=i for j =I —
—,', the mag-

netic quantum numbers are p= —j, —j+1,. . . ,j —1,j.
Expressing the solutions as

+(r) Iy&)

ip„"„(r) Iy" „) (8a)
K,P . P

and

(E' —8 )IZ ) =0 (6b') (8b)

where 8 may not be equal to 8 owing to the complex
potentials. The solutions can be conveniently described
by expansions in terms of the spin-angular functions'

we obtain coupled radial differential equations for the
right-hand-side solutions

E —c 2

ic [d—ldr +(v+1)lr]
—ic [d/dr +( @+1)l—r]

E+c
iL&(r)

i/„„(r) K,P

u„„„.„.(r)+

KPK P

u„„„.„(r) g„".„(r)
v „„„.„.(r) i/„.„.(r) (9a)

and for the left-hand-side solutions

E—c ic [d/d—r +( —a+1)fr]
ic[dl—dr+(v +1)lr] E+ctij(r), i b„(r—) ]

+
v „.„„„(r) u„,„„„(r)

(9b)
v „„.„„(r)

where the potentials, in the angular-momentum represen-
tation, are defined by

v.+„„„(r)=&y"„Iv (r)Iy"„'),

v„„,„.(r)=&y" „Iv (r)Iy" „),
u„„„„(r)=&y"„Iu(r)ly" „),
u „„„„(r)= & y~, Iu (r) Iy„" ) .

(10a)

(lob)

(10c}

(10d)

f (r) ic +— —=ic +—f (r)Ej 1 . Gj 1

GIr 7 87 7

for an arbitrary function f (r). Equations (9a) and (9b)
are, therefore, identical if the potential matrices defined

by Eqs. (10}satisfy the following special conditions:

+ +
KPKP KP KP& KPKP KP KP

In the following discussion we do not describe the direc-
tion of the magnetic field B (or the vector potential A)
explicitly unless it is necessary, since its information
is already included in the above potentia1 matrices. Re-
calling Eq. (6b'}, we immediately recognize that the
diff'erentiation in Eq. (9b) should be understood as

Note that these conditions are satisfied in the cases of the
muffin-tin potentials and of the magnetically polarized
muffin-tin potentials choosing the z axis parallel to the
magnetic field B in Eq. (5}. Contrary to the case of the
Schrodinger equation where the potential matrix can be
always chosen in a symmetric form [the corresponding
condition to Eq. (11)] employing the real spherical har-
monics, it is, however, generally impossible to find such
a set of angular functions in our case.

Fortunately there is a relation between the right- and
left-hand-side solutions that is particularly useful if the
potential is not magnetically polarized. Introducing the
time-reversal operator K as

o. 0
K= —i 0 Ko (12)

where Ko is the complex-conjugation operator, we find

8 (B)=ItQ( —B}E (13)

We obtain, therefore, the left-hand-side solutions for the
magnetic field B (or the vector potential A) from the
right-hand-side solutions for —B (or —A) through the
relation
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& z'(B)
~

= [Ic~zR( —B)) ]' . (14)

Knowing the time-reversal operation on the spin-angular
functions as

i—~,rc, ~y~) =( 1 i—~+'"s„~q„~),

the relation is translated into the radial solutions

(15)

(16)

where S„=a/~R~. We now recognize that the left-hand-
side radial solutions can be always obtained from the
right-hand-side solutions in the nonmagnetic case
(8=0), even if the potential matrices in Eqs. (10) do not
satisfy the conditions of Eq. (11), i.e., the right- and left-
hand-side radial solutions are not identical. This relation
is also useful for the magnetic case in view of program-
ming a computer code, since all necessary solutions can
be calculated by the right-hand-side-type differential
equation solver.

Subtracting Eq. (9b) from Eq. (9a) after multiplying Eq.
(9a) by (g„„(r), —i jt „„(r)) from the left-hand side and Eq.
(9b) by (g„"„(r),iP„"„(r)) from the right-hand side and
taking the summation over ~ and p, we obtain a general-
ized Wronskian relation between the right- and left-
hand-side solutions

[&zL~ ~zR) ]
—y 2[yL ( )yR ( ) yl ( )qR ( )]

=const. (17)

Since this Wronskian value does not depend on r, we can
perform its calculation at an arbitrary position, for exam-
ple, where the potential is zero or where it takes a simple
asymptotic form.

So far we have learned a general property that solu-
tions of the Dirac equation should possess. Let us now

(18a)

(18b)

for the right-hand-side solutions and

& J„'„=y (y„'„(l.'„( )&y".:I, —y„'„'l.'„( )&x"'.I),
K «)M

&H„„~= g(g„„"„'„(r)&y"„~,—ig„„"„)„(r)&g"„I), (18d)

(18c)

K «P

for the left-hand-side solutions. Their asymptotic forms
are given outside the cell by

consider the boundry conditions by which the solutions
can be characterized. Since the Hamiltonian has no
spherical symmetry due to a general form of the poten-
tial, the angular momentum is not constant through the
scattering any more; that is, for the incident wave with a
certain angular momentum specified by («r, p), the
scattering wave contains various angular momenta
(R', )M'). It is, however, obvious that these kind of scatter-
ing states are still well characterized by the angular
momentum of the incident waves, i.e., ()~,p). ' More
precisely, for any incidence condition, the scattering state
(so-called regular solutions) can be uniquely described by
the linear combination of these solutions owing to the
linearity of the Dirac equation. Now suppose a set of
solutions. Each has only an outgoing wave characterized
by one kind of angular momentum (a,p) outside of the
cell. These solutions are irregular, since they cannot be
expressed by any linear combination of the scattering-
state (regular) solutions. In the same manner as the regu-
lar solutions, these irregular solutions can be character-
ized by their own outgoing waves. We write the regular
(J) and irregular (H) solutions as

j t'(kr@v p up+ ht'' '( ) z'p'r)I,

„'„'(r) , ckS„ l(E+c )[jt,(kr)o„.„.„„+h)(,"(kr)t„.„' ~ z]
(19a)

and

h,' "(kr)5, .

Q,.„.,'„)(r) ckS, /(E+c )ht(, "(kr)6 „,„ (19b)

where 1=1—S, k = (/E c lc, and the sph—erical Bessel jt(z) and the first kind of spherical Hankel ht")(z) functions
are defined in the usual manner. Kronecker's 5 .„„stands for 5 .„5„.„.

Since the %'ronskian relation Eq. (17) holds for any pair of right- and left-hand-side solutions, using the asymptotic
forms given by Eqs. (19a) and (19b) we obtain

[&J „~, ~H"„)]= g cr [g.(„') „(r)P „'„.,' .„.(r) P„-'„"„(r)P'„..'„.„.(—r)]
K «P

KPK P (20a)
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and also for another couple

1
J((z)nl &(z) —ni(z)j I &(z)=, ( l )0),Z'

1j I(z)ni+, (z) n((z)j—I+ i(z) =
2

(I ~ 0)
Z'

(22)

where n&(z) are the spherical Neumann functions and
stand in the relation hI'"=jI+ini. We have two other
identities between the regular (irregular) solutions them-
selves

(23a)

(23b)

While Eq. (23b) is rather clear, Eq. (23a) is also recog-
nized in the following. Suppose the asymptotic form of
the potential at the nucleus, where the spherically sym-
rnetric nuclear Coulomb potential is dominant, i.e., the
potential matrices defined by Eqs. (10) are entirely diago-
nal (equivalent to the case of the nonmagnetic muffin-tin
potentials). Then we can choose a set of right- and left-
hand-side regular solutions of which radial solutions are,
at the nucleus, identical and diagonal with respect to the
angular momentum (I(,p). The Wronskian relation is
zero for any pair of these solutions and also for any pair
of right- and left-hand-side solutions that are expressed
by their linear combinations. Since regular solutions of a
linear differential equation system can be expressed by
the linear combination of another set of regular solutions
that satisfy the other boundary conditions, we can obtain
Eq. (23a). Calculating Eq. (23a) with use of the asymptot-
ic form of Eq. (19a), we find the relation between the
right- and left-hand-side t matrices as

L R (24)

where the Wronskian 8'is cornrnon for any diagonal and
is given by

1 c
ik E+c2

In the derivation of Eqs. (20a), (20b), and (21), we have
used the formulas

&R(i,Z)
VK PK P

(27)

Any solutions of the linear differential equation can be
described by a linear combination of regular and irregu-
lar solutions. This general statement is expressed in our
case as

and

lZa) =g(C~~~~
l
J~ )+Cs~2~ lH~ ) )

KIP,

&z~l =g((.~~~~
&
JL l+( ~~2~ &H~

l )

KIP

(28a)

(28b)

for any right- and left-hand-side solutions lZ ) and
&ZLl. The coefficients can be determined through the
Wronskian relations given by Eqs. (20a), (20b}, (23a}, and
(23b) as

(29a)

(29b)

(29c)

(29d)

The Wronskian relation Eq. (17) can be also described in
terms of these coefficients as

[&Z l, lZ )]=~[(, "'(. ' —C~' '(." "] (30)
K,P

Since lZ ) and &Z l are arbitrary solutions, we can ob-
tain various identities for the radial solutions comparing
Eq. (17) with Eq. (30). Recalling Eqs. (8a) and (8b) if we
set

.AR
gp

K P KP

&H,„(B)l=( —1)" ' S„[KlH„" „(—B))], (26b)

and for the radial solutions

Since t is related to tR through successive operations,
time reversal, and Hermitian conjugation, the relation is
understood as the reciprocity theorem for the single-site
scattering

.AL
K P KP

t„"„,„„(B)=(—1)" "S„.S„r„„„„(—B) . (25)
at a certain position r, we obtain the identities

While Eq. (24) holds for the r matrices of the same mag-
netization direction, the reciprocity theorem gives the re-
lation between opposite magnetizations. This simply
means that the theorem holds if the whole system is tak-
en into account. In a similar way, Eqs. (14) and (16) can
be rewritten more concretely including the boundary
conditions as

&J~ (B)l=(—1}" ' S [KlJ„" „(—B))]

QP ~ I II II f I ~ II P

II II

—P„"„'~ -( )P"'„" ( )]=W5„ (31a}

QP I I II II P II II P

K,P
—P„,„',,',.„.,(r)+'„"„-(r)]= —W5„„„„; (31b)

and also for
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II II I I5

0

K P KP

r

~K"P"K'P'

7

K P KP

G»(r, r')= g (r~y"„)G„'„',.„.(r, r')(y"„.~r'),

KtP

G,2(r, r') = g (r~y"„)G'„„.„.(r, r')(y]' „.~r'),
K,Pt
K,P

(36a)

(36b)

we have

g cr [P'~v~ ~ -(r)P„"'„:(r)—P„'„'-&-(r)g„„'„"-(r)]=0,
Ktt

(32a)

G2, (r, r')= g (r~y" „)G„„],„.(r, r')(y",.~r'),
KtP,
K tP

G22(r, r')= g (r~y", )G2i„.„.(r, r'}(y"„~r') .
Kt Pt
K,p

(36c)

(36d)

Klt II

(32b)

as

III. GREEN FUNCTION

We define the retarded (outgoing wave) Green function

g(r~J„„)(H„„~r') for r(r'
KtP

G(r, r', E)= '

g(r~H„"„)(J„„~r') for r )r',
W„„

(33)

and it will be seen that G (r, r', E) satisfies the following
inhomogeneous equations:

If the right- and left-hand-side radial solutions are identi-
cal [for the potentials satisfying the conditions of Eq.
(11)],then Eqs. (31a) and (31b}are equivalent, but none of
the identities becomes trivial. Only if all radial solutions
are diagonal (e.g., in the case of the spherically symmetric
nonmagnetic potential), the identities Eqs. (31a) and (31b)
are equivalent to the Wronskian relation. ' Comparing
with the Wronskian relations Eqs. (20a), (20b), (23a), and
(23b) in which the summation is taken over the former
subscript, these identities might be called the second kind
of Wronskian relation. The relation between the first and
second kind of Wronskian relations may be understood as
an analog to that of the matrix products between unitary
matrices and their inverse, which also yield unity for the
interchanged multiplication order.

It is clear from its definition that G(r, r';E) satisfies Eqs.
(34a) and (34b} when rAr'. On the other hand, the radial
Green functions have a discontinuity at r =r', of which
values are obtained from Eqs. (31a), (3 lb), (32a), and (32b)
as

KPK Pcr
(37a)

=0 (37b)

5(r—r') = 5(r ——r')g( r~y"„) (y"„~r'),
r K,P

(38)

we obtain Eqs. (34a) and (34b) and have, therefore, prov-
en that the Green function for general potentials is given
by Eq. (33).

Taking the Hermitian conjugation after operating the
time-reversal operator E from the left-hand side and its
inverse from the right-hand side on Eqs. (34), we obtain
the reciprocity of the Green function

G (r, r', E, —8)= [EG (r', r;E,B)K '] (39)

This can be also proven directly from the definition of the
Green functions Eq. (33) and the analogous relations to
Eqs. (26), paying attention on the operation of K such as

This discontinuity is to be dNerentiated in the operation
of the Hamiltonian [refer to Eqs. (9a) and (9b)] and pro-
duces the 5 function. Knowing the expression of the 5
function

(E —8')G(r, r', E)=5(r—r') (34a) (viz') )'=(z'isc-' .
and

G(r, r';E)(E —8)=5(r—r') . (34b)

(35)

and decompose its elements into the radial and angular
parts by means of the angular-momentum expansion as

In Eq. (34b} the Hamiltonian operates on the Green func-
tion through the coordinator r'. For the sake of conveni-
ence, we write the Green function in a 2X2 matrix
form'4

In the case of the Schrodinger equation where the time
reversal and Hermitian conjugation operations are for-
mally identical, the reciprocity is given simply by the
interchange between r and r'. Equation (39) can be writ-
ten more precisely in terms of the radial Green functions
as

G„'„'„.„,(,r', —8}=(—1)" "S„S„.G„", „.„„(r',r;8),
(40a)

G„'„,„.{r,r', —8)= —( —1)]' "S„S„.G~' „, „(r',r;8),
(40b)
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G„„'.„(,r', —8)= —( —1)" "S„S„.G„'. „.„„(r',r;8),
(40c)

6„„.„(r,r'; —8)=(—1)" "S,S 6, „„(r',r;8) .

(40d)

For the nonmagnetic and spherically symmetric (muffin-
tin) potentials, the radial Green functions are diagonal
with respect to ()c,p) and independent of )(t, and Eqs. (40)
are reduced to a very simple form, i e.,
G,"(r,r')=G„"(r', r), G, (r, r')=G, (r', r), and
6' (r, r')= —6„'(r', r). These simple relations are also
true for the free-electron [V(r)=0;t =t =0] radial
Green functions which can be explicitly given by

j ((kr)h)'"(kr') for r & r'
G,' (r, r')= — S„X 'h())(k ) (k ) f +, , (4!b)r Jt r

j((kr)hI "(kr') for r & r'

I

(41c)

2 jt(kr)h("(kr') for r & r'
6 (r r')= ik X '— (4!d)

h) "(kr)jr(kr') for r ) r' '

2 j)(kr)h) '(kr') for r & r'
G„"(r,r ') = ik— X (, ) , , (4!a)

j( kr') for r &r' *

In the above one should recognize that the oF-diagonal
radial Green functions 6' and G, ' take the diFerent
function forms for the cases r &r' and r &r', i.e., the
Green function for r & r' cannot be obtained from that
for r (r' by the simple interchange between r and r'.
This attributes to the fact that the right- and left-hand-
side bispinor solutions Eqs. (Sa) and (Sb) are, in contrast
to the case of the Schrodinger equation, given essentially
in different forms. Together with Eqs. (36) we obtain the
special relations for the free-electron Green function
6' '(r, r', E) as

6(0)(r r~) — 6(0)(r r~)
C2

E+c (42a)

G2, '(r, r') =6 (2' (r, r') . (42b)

The latter relation has been incorrectly stated in many ar-
ticles following Rose's textbook. '

Although any particular assumption was not made on
the form of potentials in the derivation of the Green
function, it might be a problem to compute the radial
solutions directly for the cell potentials, which are zero
outside of the cell polyhedron, i.e., a potential jump is in-
troduced at the boundary of the cell in both the radial
and angular directions. %e expect, therefore, a rather
slow convergence in the angular-momentum expansion. '

Fortunately, this diSculty does not become a real prob-
lem in the aim of electronic structure calculations or oth-
er applications where we need the Green function only
inside of the cell, i.e., r, r E V&. If we introduce an addi-
tional potential outside the cell to smooth out the poten-
tial jump, then the Dyson equation becomes

G(r, r';E)=6' '(r, r';E)+ I G' '(r, r";E)V(r")6(r",r';E)dr" +I G' '(r, r";E)V(r")6(r",r', E)dr",
C Vc

(43a)

ic f G' )(r—, r",E)a6 (r",r', E).dS,
C

(43b)

where the surface normal vector dS is outwardly direct-
ed. We recognize now that the potential outside of the
cell ean be formally eliminated from the Dyson equa-
tion. It is worth noting that even this surface integral is
to be canceled out with the contribution of the other cells
in the multiple-scattering theory. We thus need the radi-
al solutions only for the reasonably smooth cell potentials
to construct the Green function.

Taking into account scatterings by the other crystal

where V& denotes the volume outside the cell. Since r
and r' are not included in the integral region Vc, i.e., 6' '

and 6 are the solutions for the homogeneous Dirae equa-
tions, the last term on the right-hand side can be
transformed into the surface integrals on the boundry of
the cell and on the sphere far apart from the cell. Know-
ing the asymptotic forms of G' ' and G, and ImE )0 for
the retarded Green functions, the latter surface integral is
found to vanish. After the partial integration, we obtain
the expression for the last term as

I

atoms, the single-site Green function 6 can be written
in the form

G (r, r', E,k)= g (r~J,„)r„„„,„,(E,k)(J„,„.~r')
K,P,

IK,P

+6(r, r';E) . (44)

The determination of r,„,„(E,k) is a subject of multiple-
scattering theory in which the wave vector k is three di-
mensional for the bulk and two dimensional for the sur-
face systems. It should be emphasized, however, that
(J„.„.~

cannot be general!y replaced by (J„,„, ~

in Eq.
(44). It can be done only if the energy E is real and the
real potential V(r) satisfies the conditions of Eq. (11), and
their radial solutions, therefore, can be chosen as real
functions. These conditions are far apart from what is
called general.

Our procedure to derive the retarded Green function
can be applied to other types of Green functions
specified by those specifi boundary conditions. For ex-
ample, we obtain the advanced (incoming wave) Green
function, if we employ the second kind of spherical
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Hankel functions instead of the first kind in Eq. (19b). In
the calculation of the ground-state electron structure
where we need not specify which waves are incident or
scattered, the boundry condition can be chosen at the nu-
cleus. Since the numerical methods to obtain right-
hand-side solutions, which also give left-hand-side solu-
tions through Eq. (14), have been thoroughly studied al-
ready for various boundary conditions, ' we do not dis-
cuss them here.

IV. CONCLUDING REMARKS

The fully relativistic single-site Green function has
been rigorously derived for the generally shaped and
magnetically polarized complex cell potential. In the
derivation we have introduced the identities (the second
kind of Wronskian relation) by which the jump condition
of the Green function at r =r' has been determined. The
obtained expression for the Green function is also correct
even if the energy is chosen as complex, so that it can
make the application possible to the electronic spectros-
copies where the lifetime of electrons may play an im-
portant role.

It has been shown that the left-hand-side solutions are
the necessary ingredients as well as the right-hand-side
solutions, to construct the Green function, which is gen-
erally not the Hermitian conjugate of the right-hand-side
solutions. The importance of recognizing this fact has
been demonstrated through the whole of our discussion,
in particular, in the explicit expression for the free-
electron Green function.

In numerical respect, it has also been shown how to ob-
tain the left-hand-side solutions from the right-hand-side
solutions. They are related to each other through succes-
sive operations, time reversal, and Hermitian conjuga-
tion. This relation provides a proof for the reciprocity of
the relativistic Green function.
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