
PHYSICAL REVIE% 8 VOLUME 45, NUMBER 7 15 FEBRUARY 1992-I

Configuration-averaged Green s function within the Korringa-Kohn-Rostoker
cluster coherent-potential approximation

S. S. A. Razee and R. Prasad
Department ofPhysics, Indian Institute of Technology, Kanpur 208 016, India

(Received 19 September 1991)

~e derive an exact expression for the configuration-averaged Green s function within the Korringa-
Kohn-Rostoker cluster coherent-potential approximation for a general cluster size. In an earlier publi-

cation [Phys. Rev. 8 42, 9391 (1990)],the expression for the configuration-averaged Green's function was

derived using the restricted-averaging method. Using these two expressions, we have calculated the den-

sity of states for a one-dimensional mu5n-tin alloy, which shows a very small difference between the re-

sults of the two methods; the gross features remain the same, except for the height of some of the peaks.

However, for the dilute alloy, there is a qualitative difference between the two results in the impurity

band.

I. INTRODUCTION

The Korringa-Kohn-Rostoker (KKR) Green's-
function method has emerged as a powerful tool for cal-
culating the electronic structure of disordered substitu-
tional alloys from first principles. Within the coherent-
potential approximation (CPA), this method' 3 (KKR-
CPA) has been very successful in predicting the electron-
ic properties of a wide variety of disordered alloys. How-
ever, the KKR-CPA, being a single-site approximation,
might fail when applied to systems in which correlated
scattering from different atoms is important. In a recent
publication, we developed a self-consistent-field cluster
generalization of the KKR-CPA by combining the aug-
mented space cluster CPA (Ref. 5) and the conventional
KKR Green's function formalism. This formulation,
which we called the KKR cluster CPA (KKR-CCPA),
can be made fully charge self-consistent within the local-
density-functional theory, and therefore is a first-
principles parameter-free theory of the electronic struc-
ture of disordered alloys.

In Ref. 4, the configuration-averaged Green's function
was calculated by the restricted-averaging method. This
method is essentially a single-site approach, and therefore
is an approximate one. In this paper, we show that this
approximation can be avoided and the configuration-
averaged Green's function can be determined exactly
within the KKR-CCPA. We find that, for a general clus-
ter size, the expression for the configuration-averaged
Green's function obtained by this method is different
from that obtained by the restricted-averaging method.
However, for a one-atom cluster, the two expressions are
identical, thus giving the correct limit.

We have calculated the averaged density of states
(DOS) for a one-dimensional muSn-tin alloy using these
two methods. For the numerical calculations within the
KKR-CCPA, we have taken a two-atom cluster. We find
that, for the dilute alloy, there is a qualitative difFerence
between the two results in the impurity band; using the
exact method we find two peaks in the impurity band in
contrast to the one obtained by the method of Ref. 4.

Otherwise, in general, the two approaches give almost
identical results. But, nevertheless, one should use the
present expression for the configuration-averaged Green's
function, since it is the exact expression within the
KKR-CCPA, unlike that in Ref. 4.

The outline of the paper is as follows. In Sec. II, we

briefly outline the KKR-CCPA formulation. Also, we
discuss some of the features of the KKR-CCPA, which
were not discussed in Ref. 4. In Sec. III, we derive an ex-
pression for the configuration-averaged Green's function
within the KKR-CCPA. In Sec. IV, we present our re-
sults for the one-dimensional muffin-tin alloy, and in Sec.
V, we give our conclusions.

II. THE KKR CLUSTER CPA

The Green's function for an array of mufBn-tin poten-
tials is

i j (iwj)
(3)

In Eq. (3) we have suppressed the angular momentum
indices L,. C is the inverse t matrix for a single muSn-tin
potential on the ith site and B'J are the real-space version
of the KKR structure constants. We now express A in
terms of random variables n,-, which take the value 1

where r; and r' lie on the ith and jth cells, respectively.
The functions ZL(r;) and JL(r;) are, respectively, the
regular and irregular solutions of the Schrodinger equa-
tion for a single muffin-tin potential centered on the ith
site, and L (—:l, m) is a composite index. TtiL are on-the-
energy-shell matrix elements of scattering-path operators
and are given by

TLet =(A ')gl.

where
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B"li &&jl, (4)

when the ith site is occupied by an A atom, and 0 when
occupied by a 8 atom. Thus we have

A( In, ) )=C gli &(iI+5C Q Ii &(iln,

braic manipulation, one easily gets

y (c'—j~)li&&~I —y (B'+&II)l~ &&jl
iEC i,g EC(i' )

e y IF.&&F.I+5cy li&&ilM', (10)

where

i j (i&j )

where

F eC iEC

g( ( A CB (5)

By the augmented space theorem, the configura-
tion-averaged path operators are given by

(6)

where

A((M'I)= c'gl &( I

— g B"I &&jl'
i j (i')

g g IF &(F I+5C g Ii &(i I M'.
F eC

(7)

0 for i Ecr
IF. &

= P If.' & with n = (8)

The state IF & appearing in Eq. (6) is the ground state
in the full configuration space, and corresponds to the
case o =8 (the null set} in Eq. (8).

Now, we invoke the KKR-CCPA. We partition the
augmented space 4 into subspaces %'& and %2, such that
subspace 4

&
is spanned by I I i;F &, i E C, F E8 I where

C is the chosen cluster. Subspace %z is the complement
of '4& in O'. The space 4'2 is now replaced by an effective
medium. If we partition A([M I ) in this scheme, then
the inverse of A ( t M'J ) in subspace qi& is given by

(A '), =(A, —A, 2Ap 'A2, ) '=A

In Eq. (7), M' is an operator in the configuration space,
and in matrix notation it is a 2X2 matrix in the basis

If0 & and Ifi &, respectively called the ground state and
excited state in the configuration space of the ith site. 8
is the set of all possible vectors j IF & J in the
configuration space of the lattice. The vectors IF & are
given by xlF & +(x y)'~ IF &, o'=cr+i

when i gcr
M'IF &= '

yIF &+(xy)'~2IF

when iEcr,

(12)

where x (y) is the concentration of A (B) atoms in the al-

loy. The four constituent matrices of A are thus given

by

A, = g (C g)Ii;F &—(i;FI
iEC

g (B"+Q)li;F&(j;Fl,
ij &C(i' )

A „=~g li;F &(i;F,I,
i E'C

(13)

(14)

B',~T',fr'"'B",s for i,jEC .
k, itic'

In Eq. (11), T',z'"' are the path operators of the effective
medium calculated with the cluster removed from the lat-
tice. We will show later that these can be completely el-
iminated from the computational procedure.

In the second step of the KKR-CCPA, 4, is parti-
tioned into subspaces P, and $2 such that P, is spanned
by tli;F&, i ECI, and its complement Pz is spanned by
(Ii;F &cr%8, i&CI. Since, for a general cluster, this
step was not described in detail in Ref. 4, we give the
necessary details in this paper. The expressions derived
here will be used in the next section. We partition A in
the above scheme. The four constituent matrices of A

can be obtained explicitly by using the following identity
in the configuration space:

where the matrices A&, A&z, Az„and A2 are given by
Eqs. (2.21), (2.22), and (2.23} in Ref. 4. By simple alge-

I

and

A„=co g li;F, &&i;FI,
iEC

(15)

y(c' —g,")li &&il —y (B'~+gI()li &(Jl
iEC i,jEC

(i&j )

g IF. &&F.I+5cy li&(ile y g IF. &&F.IM'IF. &&F. I,
owp i Ec crag a'%8

(16)

where

C=xC +yC (17)

Now, the inverse of A in subspace P& is given by

(A '), =(A, —A,~2 'A2, )

and

co=(xy)'i 5C . (18)

From Eqs. (14), (15), and (16) we get

A )~p Ap) ci)I cg (20)
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where

ij Ec
'jl;F, &&j;FI . (21)

Configuration averaging Eqs. (29) and (30), we get

( Gsz(r, r') ) =Tr( T"F')—g[xZI"(r; )J~"(r,')
L

From Eqs. (6) and (19) we get

&T"&=&i;FIA 'jI;F&=(i;FI(A,—corno) 'Ij;F) .

(22)

and

&GNsD(r r )&=T1'&T F

+yZI (r,. )JL (r,'. )]

(32)

For a translationally invariant effective medium, the
path operators in the cluster subspace are given by

T'J, =(iI y (c„—g")lk &«I
keC F'=F +5Fn (33)

The joint averages appearing in Eqs. (31}and (32) can
be evaluated by the augmented space formalism if we ex-
press them in terms of the random variables n, , i.e.,

k, leC
(kAl )

(B"'+g"')lk)(il Ij) . (23)
F =F +F)n nj +F2)li +F3n)

where

(34)

The self-consistency condition ( T' ) = T',z implies that

&Fl(&1—~r~)IF &= g (c„—gc)li&&11
iEC

{B",g+ gI{)li & &j I (24)
i j EC
(iAj)

By comparing the corresponding matrix elements on
both sides of Eq. (24), we get the KKR-CCPA equations

and

SF=FA —F',
F —FA A+FBB FAB FBA

1

F =FAB FBB
2

F =FBA FBB

(35)

(36)

(37)

(38)

c„=c &;F;I~—'I;F, &

b'~=co(i;F;IA2 'jI;F )co for i j (i' ) Ec .

(25)

(26) (T"F')=T F +(T"n )5F . (39)

With the help of Eq. (33), we can write the joint aver-
age in Eq. (31) as

Note that Eqs. (25) and (26) are self-consistent equa-
tions, which involve c,1r, b'J, and Q on the right-hand
side as well. These equations can be solved iteratively;
the starting values for C,z and b'J may be taken as C and
0 respectively. Note that Pg can be calculated in terms of
[ T'ejs ], [B'~z] (i,j E tL'), and C,z using Eq. (23).

It can be seen from Eq. (25) that, as in the KKR-CPA,
the first-order correction to the KKR-CCPA inverse t
matrices is of the order of co =xy(5C) . This implies
that the KKR-CCPA, like the KKR-CPA, is exact in the
limit when the concentration of either constituent van-
ishes, and also in the limit when the difference between
the scattering strengths of the two constituents is small.

Applying the augmented space theorem, we get

(T"n;)=(i;FI[A([M'])] 'M'Ii;F) .

With the help of Eq. (12) we get

(T"n; ) =xT,~+(xy)'~'(i;F
I
A 'li;F, ) .

Substituting Eq. (41) in Eq. (39) we get

( T"F')= T,frF+(xy)' (i;Fl A 'Ii;F; )5F,
where

F=xF "+yF

(40)

(41)

(42)

(43)

and

6sD ( r, r' ) =Tr( T"F') QZL ( r; )Ji ( r,'. )—
L

(27)

GNsD(r~r')=Tl(T F )

where Tr stands for trace over I.and

FL,I =ZL(r;)Zz. (r,'. )

{28)

(29}

III.THE CONFIGURATION-AVERAGED
GREEN'S FUNCTION

The Green's functions for site-diagdnal (SD) and non-
site-diagonal (NSD) cases can be written from Eq. (1) as

(44)

The only unknown term in Eq. (42) is
(i;FIA Ii;F;). This can be determined within the
KKR-CCPA by following the same procedure that led to
the KKR-CCPA. After the first partitioning of the aug-
mented space, the element (i;FIA 'Ii;F;) is the same
as (i;FIA Ii;F;). After the second partitioning, this
element falls in the top right-hand-side block of A, i.e.
if we partition a ~ as

E) E)2
A

E2i E2

then (i;Fl A Ii;F, ) will fall in the E,2 block, which by
partition theorem is given by

and

Fgz =Zj(r')ZL. (r;) . (30)

E12 (~1 ~1&2 ~21) ~1&2
With the help of Eqs. {20)and (45}we can write

(45)
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(i;Fl A 'li;F;) = —(i;FI(A, —coI co) 'A, zA 'li;F, )

= —gyp[&i;FI(&) —~r~) 'Ij;F.&&j;F.I&i2lk;F. &&k;F. I&2 li;F;&] .
jkF F,

(46)

From Eq. (14}we have

and thus Eq. (46) can be rewritten as

(47) and

( T"n, ) =xT", +(xy)' '(i;Fl A 'jl;FJ ),

(n; T"n, ) =x'T", +x(xy)' '((i'Fl A 'jl;F )

(56)

'li;F; &
= —g[&i;Fl(a& —~r~) 'Ij;F &~

J

x (j;F,IA2 'li;F, ) ] . (48)

From Eq. (22) we know that

(i;FI(A, cur—co) 'jl;F) =T'~

and from Eqs. (25) and (26) we have

(j;F,IA2 'li;F, ) =a) '[(C—C,~)5;,

+b J'(1 —
5;~. ))co

Substituting Eqs. (49) and (50) into Eq. (48) we get

(i;Fl A 'li;F, ) =T,~(C,ff C)co ' ——g T',fth~'~
jEC

Thus from Eq. (42) we finally get

( T"F')= T fr[F+(C,fr C)(5C) '5—F]
—g T'~P"(5C) '5F .

jEC

(49)

(51)

(52)

We note that the expression for the joint average
within the KKR-CCPA given by Mookerjee [Eq. (16b}of

+(i;F; I
A 'jI;F) )

+xy(i;F, I A 'Ij;F& .

Putting Eqs. (55), (56), and (57) in Eq. (54), we get

( T JFJ') = T'JF

+(xy)'~2[(i;Fl A 'jl;F )(xF~+F3)

+(i;F, IA '.jl;F)(xF, +F2)]

+xy(i;F, l
A ' j;F )F&,

where

F & 2F A A +y 2FBB+xyF AB+xyFB A

(57)

(58)

(59)

The matrix elements of A ' appearing in Eq. (58) can
be determined by the partitioning technique discussed
above The . element (i;FIA 'lj;FJ) falls on the E&2
block of Eq. (44), and with the help of Eqs. (45), (47), and
(49) we can write

'jI;F, &
=—XI' = —& T'.~~ & k'Fk I&2 ' jl'F &

k

(60)

Using Eq. (50) in Eq. (60) one finally gets
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Substituting Eqs. (58), (60), (61), and (64) into Eq. (32),
we get

(G~so(r, r')) =Tr[T'~F+(xy)' [X'((xF&+F3)

+X/(xF, +F2)]

+xyxyF, I .

(n(E) ) = ——Im f (Gsn(r, ,r;) )dr;1
(67)

and

& p(r ) ) = ——Im f ( G sn(r, r ) )d r . (68)

The configuration-averaged DOS and the charge densi-

ty for the alloy are given by

8.0-

~ 40-

~ 0.0I—

V)

8.0-
CO

I—
U)

~ 4.0-
O

(G) x=0.1

KKR- CCPA

Present method

---Ref.4

(b) x =0.5
K KR- CCPA

Present method

--- Ref. 4

The average Green's function (site-diagonal form) by
the restricted-averaging method (RAM) is given by

[Gsn(r, r')]a~M=Tr(xD "T frF" +yD T,ffF )

0.0
-0.4

I I

0.0
ENERGY {Ry)

0.4 0.8

where

—g[xZI"(r)JI"(r')+yZL (r)J~(r')],
L

(69)

FIG. 1. Averaged density of states for the one-dimensional
mufBn-tin alloy for (a) x =0.1 and {b) x =0.5, calculated by the
present method (solid line) and that of Ref. 4 (dashed line).

D =[I+T ff(C C fr)] (70)

Note that, for a general cluster size, Eqs. (53) and (69)
are quite different. However, for a one-atom cluster, Eq.
(53) reduces exactly to Eq. (69), thus giving the correct
limit.

IV. RESULTS AND DISCUSSION

We have applied this formulation to a one-dimensional
muffin-tin alloy model A„B (Ref. 9). Various expres-
sions regarding the wave functions, the scattering rna-

trices, and the method of calculating the path operators
for this model are presented in detail in Appendix B of
Ref. 4. We have implemented the KKR-CCPA for a
two-atom cluster on this model. The form of KKR-
CCPA equations that can be used directly on the corn-
puter are given in Appendix A of Ref. 4. The lattice pa-
rameters (a =6.00 a.u. ) and the muffin-tin radii (r =2.25
a.u. ) of the two components of the alloy are taken to be
identical. The depth of the two constituent potentials are
Vz = —0.3 Ry and Vz = —0.5 Ry, respectively.

In Fig. 1(a) we show the averaged DOS calculated by
the present method and that of Ref. 4 for x =0.1. We
observe that in the first band there is no apparent
difference between the two results. However, in the
second band, which is due to A-type impurities, ' the
present calculation shows two peaks around E= —0. 13
Ry and —0. 10 Ry in contrast to a single peak around
E=—0. 13 Ry in the DOS of Ref. 4. Also, we note that

in the third band the peak around E=0.68 Ry is slightly
shifted towards the lower-energy region in the present
calculation. In Fig. 1(b) we show the averaged DOS of
the present calculation and that of the restricted-
averaging method (Ref. 4) for x =0.5. In this case we ob-
serve that, apart from the differences in the respective
heights of the peaks, the results of the two calculations
are more or less the same. But, nevertheless, there is a
small but observable dip around E= —0.30 Ry in the
present calculation, which is absent in the DOS calculat-
ed by the method of Ref. 4.

V. CONCLUSION

We have calculated the configuration-averaged Green's
function exactly within the KKR-CCPA, while the corre-
sponding expression in Ref. 4 is an approximated one.
For a general cluster size these two expressions yield
different results. However, for a one-atom cluster both
expressions are identical, thus giving the correct limit.
We calculated the averaged DOS for the one-dimensional
alloy using these two methods. We found only small
differences between the two results except for the impuri-
ty band of the dilute alloy.
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