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Elastic moduli of B&z and its compounds
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We have calculated the bulk modulus and all the elastic moduli that can be obtained from uniaxial
strains of 8», B»C3, B»C2, B»02, and B»As2. All atoms are allowed to relax to their equilibrium posi-
tions under strain and the errors incurred by failure to do so are revealed.

I. INTRODUCTION

Boron and B4C are, diamond and perhaps cubic BN
excluded, the two hardest substances known. Boron is
listed at 9.5 on the original Mohs scale where diamond is
10 and B4C is listed at 14 on the modified Mohs scale
where diamond is 15 and cubic SiC is 13; B4C is listed im-
mediately below diamond and above SiC on the Knoop
scale. ' Although there is no direct connection between
hardness and bulk modulus, the hardest substance, dia-
mond, has the largest bulk modulus known and, in gen-
eral, hard substances have large bulk moduli. We there-
fore determined to calculate the bulk moduli of rhom-
bohedral 8,2, B,2C, (commonly referred to as B4C),
B»C2, B1302, and B,3As2 for which we have previous-
ly performed electronic structure calculations. Although
the stable polymorph of elementary boron is rhom-
bohedral B32Q it is likely that metastable B,2 is slightly
harder because it has a reciprocal density of 51.1
bohr /atom compared with 52.0 bohr /atom for B32o.
Diamond and graphite are, of course, an extreme exam-
ple of the metastable polymorph being denser and harder.

Typically, bulk moduli are obtained by fitting the total
energy of the crystal as a function of uniform compres-
sion and dilation with the relative positions of the atoms
kept fixed. Liu and Cohen obtained remarkable agree-
ment with the experiment for p-Si3N4 in this manner. In-
terestingly, they also found that the hypothetical corn-
pound p-C3N4 has a bulk modulus comparable to dia-
mond. The only calculation of which we are aware in
which the internal parameters were allowed to relax to
equilibrium is one by Chelikowsky et al. ' for (Si02)3.
They took fixed volume changes and allowed c/a as well
as the atomic positions to relax. In order to obtain elastic
constants as well as bulk moduli, we have chosen to apply
+3%%uo uniaxial strains c. „and c„where z is the threefold
rotation axis direction and y is the direction of the nor-
mal to the reflection plane. After allowing the atoms to
relax to their equilibrium positions using the Hellmann-
Feynman forces as a guide, we calculate the stresses o.;
induced by these strains. The calculations in the strained
case are identical to those in the unstrained except
that in every case, except B12C3, the c. strain reduces
the symmetry so that the number of independent k points
to be sampled in the Brillouin zone is increased. From

CT; = C;~CJ-

and the fact that we apply only one c. , at a time, we have
c;i=o';/ej yielding c„, c21, c31, c», c33 c13 and c23.

22 11 32 c31 c52 c51 c46 =c52, and
c66= —,'(cll —c12) we are able to obtain every nonzero
elastic constant except for c44=c». Incorrect versions"
of these relationships appear in the literature and so we
calculated them independently and found they agreed
with Fumi's' version.

Note that we obtain independent values for c» and c13.
We report their average value and take their difference as
an estimate of the computational error. Now, B12C3 con-
sists of B»C icosahedra plus CBC interstitial chains and
is rhombohedral only because the icosahedral carbon is
randomly situated on the top and bottom triangles of the
icosahedra. In our calculations, however, we must as-
sume a particular site is occupied and this reduces the
symmetry from D3d to C». Thus for B12C3 we apply cyy
as well as c „and c and obtain all c;, with j &3. The
only nonzero elastic coefficients we do not obtain are c44,
c&5, and c66. The bulk moduli 8 are obtained from

P/B =b V/V=(s„+s~3+s33+2s, 3+2s,3+2s33)P, (2)

where P is the pressure, V is the volume, and s,j are com-
ponents of the elastic compliance matrix. The s;. are
then obtained in terms of the c," by inverting the elastic
modulus matrix to obtain, in the rhombohedral case,

C33(Cll +C12) 2C13
2

8=
ll 12 13 33

(3)

Note that the c; with i or j or both ~ 4 do not in general
cancel out of the expression for 8, so in the case of B12C3,
which is macroscopically but not microscopically rhom-
bohedral, we average c» with c22 and c,3 with c23 and
then apply Eq. (3).

II. RESULTS

In Table I we display elastic moduli for B,3C2 calculat-
ed for both positive and negative strains together with
their average both before and after the atoms were al-
lowed to relax to their equilibrium positions. The c»,
c21 c3 „and c5„were calculated with c, , —=c „=+0.03
while c,3 and c33 were obtained with c.3 —=c„=+0.03.
The first thing we notice is the large asymmetry between
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TABLE I. Elastic moduli of 813C2 calculated for positive and negative uniaxial strains, without and

with atomic relaxation in units of 10"N/m .

C31

Csl

C33

c., =0.03

5.6297
0.6238
0.3052

—0.2631
0.3617
5.8934
2.193

Unrelaxed
c = —0.031

6.3115
0.6947
0.4422

—0.2536
0.3868
6.7872
2.495

average

5.9706
0.6593
0.3737

—0.2584
0.3743
6.3403
2.344

cj =0.03

4.9662
1.1821
0.6714
0.0937
0.7033
4.1883
2.107

Relaxed
c. = —0.03J

5.0431
1.3237
0.7998
0.0593
0.7753
4.4146
2.230

average

5.0047
1.2529
0.7356
0.0765
0.7393
4.3015
2.169

c; s calculated with positive and negative strains. This is
a consequence of the rather large e 's we used, but their
average should eliminate most of the error associated
with large cj.'s. We also calculated c» +c,2 using

=0.02 obtaining 6.1980 X 10" N/m for the
average relaxed value, compared with c»+c2& = 6.2576
X 10" N/m from Table I, indicating that discrepancies
between symmetry-conserving and symmetry-destroying
strains are small. The second thing to notice is the huge
changes in the individual c; when the atoms are allowed
to relax. For example, c33 decreased from 6.34 to 4.30
while cz, increased from 0.66 to 1.25. These changes are
somewhat muted in the bulk modulus which decreased
from 2.344 to 2.169. The last thing to notice is that c,3

and c», which were calculated from c.„and c„strains,
respectively, are very close to being identical, as symme-
try requires they must be. All these discrepancies are
typical for the other crystals as well.

In Table II we list the calculated unit-cell volumes and
cohesive energies ' together with all the independent

c,"'s we have calculated. The bulk moduli are seen to in-

crease with increasing cohesive energy per atom and, if
one excludes B,2 as being inherently different because of
the lack of an interstitial chain, they increase with de-
creasing volume per atom. There does not appear to be
any direct correlation between any of the c;-'s. B&2C3
with the largest bulk modulus has no individual largest
c

&
~ B&2AS2 with the smallest bulk modulus has all its c;J's

smaller than any other crystal except for c3&, whose rela-
tively large value must be a consequence of the inordi-
nately large value of its rhombohedral angle (70.18' while
the other crystals range between 65.54' and 58.12'). Con-

sidering the hardness of boron and B,2C3, their bulk
moduli are exceedingly small. For example a few experi-
mental values are, in units of 10" N/m, 3.72 (for Re),
2.78 (for Pt), 2.70 (for Rh), 1.68 (for Fe), and 2.56 (for
P-Si3N&}. There are no reliable experimental values with

which to compare our results, therefore we performed
similar calculations for diamond and obtained (with ex-
perimental' results in parentheses) c&& =10.4356 (10.76},
c,2 =1.5955 (1.25), B = 4.542 (4.43), so that the individu-

al c; 's are in only fair agreement with the experiment but
the bulk modulus is in good agreement. The experimen-
tal value of the bulk modulus of boron given in Ref. 14
(B= 1.78 X 10" N/m ) can be traced back to a measure-
ment of the compressibility of a boron rod under uniaxial
stress made in 1929 by Bridgeman' assuming boron to be
cubic. Bridgeman suspected it was not cubic and stated
that in that case the compressibility could be consider-
ably smaller. Hence our value of 2.072 X 10" N/m is
completely consistent with Bridgeman's result. There are
a few other results quoted in the literature' for boron but
it is unclear exactly what was measured and fairly certain
that the samples were very impure. We could Snd no ex-
perimental values for any elastic moduli of any of the
compounds in Table II, thus the values for the elastic
moduli listed in Table II are the best currently available
for these crystals.

This work was supported by the Robert A. Welch
Foundation (Houston, Texas}, the Texas Advanced
Research Program, the University of Texas Center for
High Performance Computing, and the U. S. National
Science Foundation under Grant No. DMR-9015222.

TABLE II. Calculated unit cell volumes, cohesive energies, and elastic moduli for 812 and its compounds. In addition, for BlzC3,

c22:5 3648' c23 0.6329, c» = —0.3874, c53 —0.0103~

B12As2
B,2
B13C2
BlzO2
B12C

0
(bohr )

870.22
582.31
751.08
693.38
729.85

(eV/atom)

6.5733
6.8314
7.1321
7.1465
7.2508

(10" N/m )

4.3033
4.4838
5.0047
5.8688
5.6180

CZ1

(10" N/m )

0.9049
1.1042
1.2529
1.3319
1.2356

C31

(10" N/m')

0.6565
0.4110
0.7375
0.4741
0.6959

Csl
(10" N/m )

—0.0231
0.2449
0.0765
0.2275
0.1777

C33

(10" N/m')

3.5261
5.8890
4.3015
4.4387
5.1772

8
(10" N/m')

1.817
2.072
2.169
2.222
2.339
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