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First-principles calculation of the electronic structure of sapphire: Bulk states
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The electronic structure of sapphire, a —Al203, was calculated using the self-consistent-field dis-
crete variational method in the local-density framework. Clusters of the size of 26—80 atoms embed-
ded in the infinite host lattice were used to model the sapphire single crystal. A three-dimensional
Ewald summation was used to obtain the Coulomb potential of the infinite lattice. Calculations
were performed on ten clusters centered at four points of different point-group symmetries in bulk
sapphire. The consistency of the calculated electronic structure among these ten clusters and good
agreement with experimental data and recent first-principles band-structure calculations indicate
that the bulk values can be achieved with clusters of modest size. Features in the valence density of
states are interpreted with the help of the bond densities between the 0 atom and its near neigh-
bors. Bulk sapphire is found to be mostly ionic measured by about 2% orbital overlaps between
nearest-neighbor Al and 0 atoms, with no charge accumulation in the bonding region.

I. INTRODUCTION

The self-consistent field (SCF) embedded-cluster
method is a useful scheme for studying electronic struc-
ture and energetics of complex oxide systems, containing
substituent ions and defects. " However, the cluster size
and boundary conditions are always problematic. Re-
cently, improvements in cluster calculations have resulted
from advances in the embedding scheme and more ample
choices of cluster sizes and shapes. Because of the avail-
ability of experimental data and recent first-principles
SCF band-structure calculations, we used n —A1203 to
test our embedded-cluster method with the objective of
extending it to study more difficult problems, e.g. , de-

fects, crystal surfaces, and substitutions in oxide systems,
which are not readily done by band methods. The goal
of the present paper is to establish the size of clusters
needed and the level of accuracy obtainable within the
embedded-cluster model, using the self-consistent charge
scheme and the concept of seed atoms.

Electronic structure of bulk A120s has been exten-
sively studied by many experimental techniques such as
vacuum ultraviolet spectroscopy (VUS),
x-ray-absorption spectroscopy (XAS), x-ray-emission
spectroscopy (XES), ' x-ray photoemission spec-
troscopy (XPS), and electron energy-loss spec-
troscopy (EELS).~0

The early self-consistent-field (SCF) Xn scattered-
wave calculations using a model [A10s] octahedral
cluster failed to give the total width of the occupied
and unoccupied states obtained from XAS (Ref. 14) and
XPS. Later band-structure calculations based on the
semiempirical Mulliken-Rudenberg method, 22 the tight-
binding method, 3 and the extended Huckel method
appeared to be in better agreement with experimental
data. However, due to the lack of self-consistency and
the usage of several adjustable parameters, the calcu-
lated results from these methods sensitively depend on
the parameters which were usually fitted from some ex-

perimental data.
Using the self-consistent local-density embedded-

cluster method, Xia et al.3 have calculated the electronic
structure of sapphire and its Cr substituted defected
structure ruby (A120s.Cr +). Recently, Xu and Ching
have performed first-principles SCF band-structure cal-
culations using the orthogonalized linear combinations
of atomic orbitals method. The optical properties ob-
tained from their calculations compared favorably with
experiment.

This paper is divided into four sections. The next sec-
tion gives a review of the discrete variational embedded-
cluster method, and definitions of physical quantities
present in the paper. Section III presents the self-
consistent results calculated from ten clusters centered
at four points of different point-group symmetry in the
bulk sapphire lattice. Comparisons are made with exper-
irnental data and other theoretical band-structure calcu-
lations. Section IV gives our conclusions.

II. THEORETICAL APPROACH

A. Crystal structure and clusters chosen

The atomic structure of sapphire, 0,—Al~03, is typi-
fied by that of chromium sesquioxide, CrqOs. 2s It, has a
rhombohedral symmetry with two molecules in the prim-
itive cell. The sPace grouP is Dss&. The corresPonding
hexagonal unit cell, a larger cell containing 12 Al and
18 0 atoms, is shown in Fig. 1 with a = 4.76 A and
c = 13.00 A.2s The cell shown in Fig. 1 has the Sz point-
group symmetry with respect to its center. There are
only two chemically distinct atoms, i.e. , Al and 0 atoms.
Their near-neighbor atom coordinations are listed in Ta-
bles I and II and drawn in Figs. 2(a) and 2(b).

In the embedded-cluster method, the cluster of mini-
mum size should contain the two chemically distinct Al
and O atoms and their nearest-neighboring atoms. For
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atoms and 0 atoms from the cluster were switched into
the host. Shown in Fig. 2 are the perspective views of
these four clusters.

To investigate how cluster size affects the calculated
results and to check the convergence of calculated re-
sults, we performed calculations on the following larger
clusters: 48 and 60 atoms with radii 4.5 A and 5.1 A
centered at site (b), 44-atom with 4.5 jt radius centered
at site (c), and 38, 62, and 80 atoms with radii 4.4 L,
4.9 A, and 5.5 A centered at site (d).

B. Solving the local-density equation

FIG. 1. A perspective view of the hexagonal unit cell of
sapphire. The filled circles label Al atoms, and open circles
0 atoms. The dark thick lines label the short Al-0 bonds
(1.86 A), the light thin lines the long Al-0 bonds (1.97 A).

The self-consistent local-density discrete variational
method has been used to study the electronic structure of
free molecules and clusters for about two decades.
Its extension into the studies of infinite (bulk) systems
has proceeded over the past several years. '

Using a variational approach with symmetrized basis
funct;ions localized within the region of the cluster, we

solve the local-density Schrodinger equation

clusters of such size, there exist certain Al and 0 atoms
which are chemically compteie in the sense that all atoms
to which they are bonded are also contained within the
cluster variational space. AVe call these chemically com-
plete Al and 0 atoms the seed atoms, and they will serve
to determine the self-consistent potential. To investigate
the eA'ect of the choices of the cluster center on the cal-
culated results, we select the four sites of different point-
group symmetry on the bulk crystal. These four sites
are (a) 0 atom site of C2 symmetry, (b) Al atom site of
Cs symmetry, (c) the inversion center of Ss symmetry,
which is the center of Fig. 1, and (d) the center of the
triangle formed by three 0 atoms labeled as 1,2,3 in Fig.
1 of D3 symmetry. Atoms within the spheres centered
at these four sites and of 4 A radius were chosen as the
cluster atoms, and the remaining atoms were treated as
host atoms. Host atoms enter into formations of the total
charge density and potential, but are not; part of the clus-
ter variational space. Due to the low symmetry of the site
(a), we chose a smaller cutoff radius of 3.8 A, i.e. , two Al

i ) CIvolp@v'ol &

V Al7

or in abbreviated form

(2)

where 4„„&is the symmetrized basis function builtup
from atoms of type v with the principal quantum number
n, angular quantum number I The ir.reducible represen-
tation I' and the partner p completely specify the orbital
symmetry under point group operations. By multiplying
with basis function 4~ on both sides of Eq. (1) and then
integrating over real space, we have

) H, t Cj =s; ) S,t.Ct.
k

(4)

where H = T+V'+ V„,is the three-dimensional periodic
Hamiltonian and e;, 4; are the energy and wave function
of the ith molecular orbital. The wave functions are given
as

TABLE I. The near-neighbor atom coordinations of 0
atom.

Atom type Label Number of atom Distance (A)
TABLE II. The near-neighbor atom coordinations of Al

atom.
Al

0 4
5
6
7
11

1.86
1.97
3.22

2.52
2.61
2.73
2.87
3.79

Atom type Label

Al

Number of atom Distance (A)

1.86
1.97
3.22

2.65
2.79
3.22

'Same as the labels shown in Fig. 2(a). Same as the labels shown in Fig. 2(b).
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or

(S 'H —s, I)C' = 0,
where H&1„-——

(C'& ~H ~@y), S&t. = (4z ~4t-) are evaluated
using a quasirandom numerical integration scheme.
By diagonalizing the above matrix, we obtain the eigen-
values {s,j and eigenvectors {C„').

C. Construction of basis functions

The symmetrized basis functions 4,„&were obtained
as

ber n and angular quantum number / centered at the jth
atomic site of type v, and Y~ is the spherical harmonic
function. The radial wave functions can be obtained in
the following two ways.

(I) The self-consistent local-density solutions of the
corresponding atoms with appropriate electron occupa-
tion numbers n „~.

(2) The numerical solutions of a potential spherically
averaged from the cluster potential.

In both cases, a potential well or parabolic matching
potential are used to localize the wave functions. For
all the calculations presented here the first liind of basis
was adopted, with the occupation numbers n, „~updated
to the corresponding self-consistent Mulliken populations
obtained from the embedded-cluster calculations.

lvj —1 &vj

where A„&„,is the symmetry coefBcient, R,„~(r„&)is
the radial wave function with principal quantum num-

D. Construction of poteutials

In order to construct the potential, we first need to
know the charge density. The charge density associated

ikey

)

(c)

FIG. 2. Perspective views of the four clusters chosen in the calculations. (a) 27-atom cluster of C2 symmetry; (b) 33-atom

cluster of Cs symmetry; (c) 32-atom cluster of Ss symmetry; (d) 26-atom cluster of Ds symmetry. The numbers label the

difterent shells of atoms in the ascending order according to their distances from the center. Same conventions as Fig. 1.
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p(') = ).) p (" i )
p=1 v=1

xvp —I &v Rp

where N is total number of atoms in the unit cell, rv the
nuclear position, and R„is a lattice vector.

The Coulomb potential V' is constructed as

00 N

V'(r) =) ) V„(r„„),
@=1v=1

(9)

where V„'is the Coulomb potential associated with charge
density p . For the oxide materials studied, in general we

have ionic charges

q, = fp, d r, lim V„'=

Therefore, the summation in Eq. (9) converges very
slowly. One generally used an efficient summation scheme
of Ewaldss s which introduces a Gaussian charge density
associated with site v as

with atomic site v in the spherical charge approximation
is given by

p„(r)=).n. ilR. i(r)l',
nl

where n„„~is the electron occupation number to be de-
termined self-consistently. The charge density of the bulk
material is the lattice summation of p„ofthe seed atoms
given as

with o. = 0.7 in all of our calculations. This is in the
same form as the Xa method proposed by Slater, ~~ with
an a value consistent with many-body theory and exper-
imental comparisons.

In more recent electronic structure and total-energy
calculations of atoms, molecules, and metals, nonlocal
corrections in the exchange-correlation potential have
been made to obtain better agreements between theory
and experiment. Application of nonlocal potential
in a large embedded-cluster calculation has not been ex-

plored at the present time.
Because only the basis functions (electrons) associated

with the cluster atoms enter the variational calculation,
the deep core potentials on host atoms close to cluster
atoms will try to pull the electrons of the cluster into
them. This attraction is counterbalanced by the electrons
of the host atoms through the Pauli exclusion principle.
The electrons of the cluster should finally avoid these
exterior atom regions. Consistent with pseudopotential
arguments, we truncated the deep core potentials to a
constant, set at the Fermi level within a certain radius
(usually 2 a.u.). Varying the radius or well depth of
the exterior atom core pseudopotential over a, reasonable
range has very little effect on calculated properties.

E. Evaluations of charge densify and various
properties

The electrons of the cluster are filled successively into
the cluster orbitals 4; according to the Fermi-Dirac
statistics as

p (r) = '
e " /'

( xa)s

where a is the width parameter to be chosen later to
achieve fast convergence. The corresponding Coulomb
potential is

V„(r) = erf — , lim V„g Q. & . g Q.
p Q F~OO

(12)

where erf(r) is the error function. The total Coulomb
potential from these Gaussian charges can be evaluated
in k space as

V (r)= —) ) zexp iK, (r —r„)g 4x . Q„(.
T=1 V=1

(I&,a)~ )
4

/3q i/s

2 i, z') (14)

where 4 is the volume of the crystal unit cell. The width
a can be chosen for rapid convergence of both the real
and I. space summations.

In the local-density approximation, the exchange and
correlation potential V„, only depends on the local
charge density p. Among several different expressions
of V«, ~ we chose the simple form given as

1

~(c,-a p)fkgyT + y

where n; is the occupation number, z~ the Fermi energy,
kgb the Boltzmann constant, and T the temperature set
to be zero in our calculations here. The question now is
how to assign the total number of electrons for the clus-
ter chosen. The answer is trivial if the cluster happens
to contain an integer number of bulk unit cells, i.e., it is
a neutral cluster. However, clusters chosen in Sec. II A

usually do not fall into this category. The charge of the
cluster is generally not known beforehand since noninte-
gral charges Q„areobtained.

We determine the Fermi energy rF and the total num-
ber of electrons in the cluster N,~„,t,„using the follow-
ing procedures, which guarantee a stoichiometric crystal
model potential. First we approximate the full charge
matrix by a diagonal matrix similar to the scheme pro-
posed by Mulliken as

N,i„,t,„——) n; = ) N~,

) 2K~i ¹~g
Nqq + Nyy

'

where n; is given in Eq. (15), and Nzy given as
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N)y = ) n;C'Cl'. S~ i,
. . (17)

with j as short label for (vnl7} and C the eigenvector,
and S&y the overlap matrix element. L is the Lorentzian
line shape

The ¹z are thus effective occupation numbers of the basis
orbitals. For n& seed atoms of type p in the cluster, there
exists a unique value of P„such that P„n„equalto the
number of atoms of type p in the unit cell. The neutrality
of the unit cell requires that

L(e
e2 + y2

(25)

with y the half-width set to 0.5 eV in the present payer.
The bond density between two atomic orbitals vn. t, aiicl

v'n'l' is defined as) P„n„N„=) P„n„Z„, (18)
8„""„'&(s) = ) ) C,'C„'S,qI(s —s, ), (26)

where the summation is over the number of seed atom
types, Z„is the atomic number, and N„given as

N& ——) N&, j = (p, n, l, I', p}.
nlrb

(19)

From Eqs. (15) and (16)—(19), the Fermi energy eF and
occupation number n; can be uniquely determined. The
role of P„is to guarantee a stoichiometric (charge neu-
tral) crystal model potential. A similar scheme was pro-
posed by Goodman el al. in calculations of electronic
structure for copper oxides and high-Tc compounds.

Given the occupation number n, , the cluster charge
density is obtained as

OCC

where j and k are short labels for (vnll'p} and
(v'n'ill'p'} T.he bond density measures the energy dis-
tribution of overlap between the two atomic orbitals con-
sidered and thus provides a quantitative measure of the
covalency in the interaction between these two atoms.
Positive bond density means that the overlap of the two
atomic orbitals is in phase, and the kinetic energy is lower
around the interatomic region, which is a criterior for
bonding orbitals On the. other hand, negative bond den-

sity indicates antibonding interactions which in a simple
one-electron picture lead to interatomic repulsion.

III. RESULTS

l ciuster(r) = ) .ni l@;l', (2o) A. Optimized basis functions

which can be projected into each atomic site p according
to the weighting scheme given in Eq. (16) as

pciuster(&) = ) pv(+ ) & = r rv

~.(r') = ).n. il~. i(r')I'
(21)

where Rv„& is the same as in Eq. (7).
The Mulliken population n„„iassociated with atomic

orbital vnl is given by

nv„i——) Nq, j = {v,n, l, l', y}
r~

(22)

Here I"„'„&is given as

+en& = ) .C,'CaSiy
pk

with N& defined in Eq. (16). By mixing nv„i with the
n„„Iin the previous cycle, we can construct the charge
density associated with atomic site v and using Eq. (8)
to obtain the total charge density of the bulk material,
where only the p„associated with the seed atoms are
used. This process is reiterated until the n„„~converge
to a desired degree of precision.

The partial density of states associated with atomic
orbital vnl is defined as

In all of electronic structure calculations using vari-
ational methods to solve the Schrodinger equation, the
flexibility of the basis functions is an important factor
in determining the accuracy of the calculated results.
We can improve the basis flexibility by the following two
schemes.

(1) Increasing the number of the basis functions of a
chosen form, e.g. , adding further vnlm radial and angular
functions.

(2) Keeping the number of basis functions to the mini-
mum and optimizing their shape for the particular system
considered.

We adopted the second scheme here, since it preserves
the validity of the usual chemical bonding and orbital
analyses. The Mulliken orbital populations and effective
atomic configurations provide a very useful interpretation
of the chemical state of the crystal. Unfortunately, in the
first scheme these useful analyses lose their utility due to
the diffuse nature of the extended functions. The total
charge density and its derived properties should be the
same of course, provided both schemes are carried out
properly.

We optimized our minimum basis functions for all the
calculations presented in this paper as described in Sec.
II C. We have checked the uniqueness and convergence of
our basis optimization scheme by performing the calcula-
tions of the 26-atom cluster centered at site (d) from two
extremes. We started our calculations from bases and
initial orbital populations of the neutral Al, 0 atoms
and fully ionized Al +, 0 ions. After achieving the
self-consistency, they both arrived at the same config-
uration with orbital occupations of Al 38 3p " and
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B. Density of states

Shown m Fig. 3 are partial density of states (PDOS)
for 0 2s2p states and Al 3s3p states from the four clus-
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TABLE III. The locations and widths of valence and conduction bands calculated for the ten
clusters studied. The data given are in units of eV.

Type Lower valence band
Emi n +max

Upper valence band
&min Embox AE

Conduction band
Emi n &max DE

27 atom
33 atom
48 atom
60 atom

-28.2
-27.9
-27.4
-28.0

-26.2
-25.9
-25.2
-25.7

2.0
2 P

2.2
2.3

-15.6
-15.5
-15.1
-15.7

-10.4
-10.1

5.2
5.4
5.6
6.1

1.0
1.0
1.3
1.1

9.0
9.9

10.2
10.0

8.0
8.9
8.9
8.9

32 atom
44 atom

-27.4
-27.8

-25.4
-25.4

2.0
2.4

-13.0
-15.3

-9.8
-9.8

5.4
5.4

1.4
1.7

9.4
10.0

8.0
8.3

26 atom
38 atom
62 atom
80 atom

-27.6
-27.7
-27.9
-28.0

-25.6
-25.6
-25.5
-25.6

2.0
2.1

2.4
2.4

-14.G
-15.5
-15.8
-1G.P

-9.8
-9.8
-9.8
-9.8

4.8
5.7
6.0
6.2

1 ' 7
0.2
1.6
1.6

9.0
9.5

10.0
10.2

7.3
9.3
8.4
8.6

the seed Al, 0 atoms. This is demonstrated by the close
similarity in the PDOS between the 26-atom cluster cen-
tered at site (d) shown in Fig. 3 and the 44-atoms cluster
centered at site (c) shown in Fig. 4. We summarize in Ta-
ble III the positions and widths of the two valence bands
and the unoccupied conduction band for the ten clusters
studied.

A comparison of our calculated bandwidths and inter-
band gaps with band-structure results and experimental
estimates is given in Table IV. We see that our calcu-
lated valence DOS compare well with band calculations
and experiments. In addition, the relative intensities
and locations of major features in our total valence den-
sity of states agree well with the recent band-structure
calculation. A band within the energy range of 6.3 eV
to 10 eV above the top of the valence band found in the
band calculation, which gives the 6.3 ev energy gap, is

not present in our calculation. This is due to the es-
sential difference of quasilocalized states obtained in the
ground-state potential for a cluster model as opposed to
a delocalized band model. s

C. Bond density

In the rest of this paper we will discuss the results
obtained from the 80-atom cluster centered at site (d).
Since our basis function optimization scheme mainly op-
timizes the bases for the occupied valence states, it pro-
vides a better description for the ground state. Due to
the limited basis functions flexibility for the continuum
states above the vacuum level (Al 3d and 0 3s3p states
were not included in our bases), our calculated unoccu-
pied states are not as accurate as the valence states.

TABLE IV. Comparison of calculated lower and upper valence bandwidths and interband gaps
(eV) of sapphire with experiments.

Type

Present work
OLCAOb
ETB'
ETH

Width (LVB)

2.4
3.3
3.0
9.5

Gap (LVB-UVB)

9.6
8.5

10.0
6.3

Width (UVB)

6.2
7.4
6.0

11.8

Energy gap

11.4
6.3

~8.0
8.7

Expt'
Expt'
Expt~
Expt"

-15.0
9.2

'Data obtained from the converged results of the 80-atom cluster centered at site (d).
First-principles SCF orthogonalized linear combinations of atomic orbitals method.

'Extended tight-binding method.
Extended Huckel method.

'Polarized x-ray emission. '
Vacuum ultraviolet spectroscopy.
X-ray photoemission. '

"X-ray spectroscopy.
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However, as demonstrated in our previous works,
these calculated unoccupied states above the vacuum
level do give some approximate measure of the existence
of these Al 3a3p states and their relative energy posi-
tions, which are accessible by photoelectrons from x-ray
near-edge absorptions.

Since in this paper we are mainly interested in the
ground-state properties, we plot in Fig. 5 the bond den-
sities of the 80-atom cluster in the valence-band region,
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FIG. 5. Bond densities (s) between the seed 0 atoms 2s
states and neighboring 0 2s, Al 3s (dotted curves), 0 2p,
Al 3p (solid curves) states; (b) between the seed 0 atoms 2p
states aud the same states ss in (s). Curves for atoms on
diR'erent shells are shifted upward for a better view. From
bottom upward, the first five groups of curves are for atoms
label as 1, 4, 3, 5, 6 in Fig. 2(d). The top ones are for the
0 atoms 3.79 A away from the seed 0 atoms aud are beyond
the cutoff radius of the cluster shown in Fig. 2(d). The bond
lengths (A) of the two atoms involved are printed on the top
of their bond densities curves.

between the seed 0 2s, 2p states and the neighboring
0 2s, Al 3s (dotted curves), 0 2p, Al 3p (solid curves)
states. From Fig. 5 we see that the features in the lower
valence band and in the upper valence band are mainly
due to the splitting of the bonding (positive bond den-
sity) and antibonding (negative bond density) 2s states
and 2p states of the 0-0 bonds with bond lengths less
than 3 A. Around the main peak of the lower valence
band at —26 eV, the 0 2s states have weak covalent
bonding with the nearest Al 3p states, since the value
of their bond density shown in Fig. 5(a) is about 2'%%up of
the PDOS shown in Fig. 4. The corresponding bond-
ing interaction with Al 3s and 0 2p states is less than
1'%%uo. In the energy range from —14 eV to —10 eV within
the upper valence band, the 0 2p states have about 2'%%uo

covalent bonding with the nearest Al 3p states, and 2%
antibonding interaction with the 2s states of the 0 atom.

D. Charge density

From the definitions in Eqs. (17) and (26), the off-
diagonal terms of the charge matrix are the integrals of
all the corresponding bond densities over the occupied
energy range. The bond densities shown in Fig. 5 indicate
that the off-diagonal terms of the charge matrix are only
about 2% of the diagonal terms given as the PDOS shown
in Figs. 3 and 4. Thus the approximation used in Eq.
(21) and the Mulliken charge analysis are valid. We listed
in Table V the Mulliken orbital populations and charges
of the seed Al, 0 atoms for the ten clusters studied. As
in the case of the PDOS discussed in Sec. III C we see
the same trends in the charge analysis.

To have a better picture of the charge distributions in
bulk sapphire we plotted in Fig. 6 the valence charge-
density contour diagrams on (a) the basal plane contain-
ing the three 0 atoms labeled as 1,2,3 in Fig. 1; (b) the
cross-section plane formed by the 0 atom labeled as 2
and its two long bonded (3.72 a.u. or 1.97 A) Al atoms
shown in Fig. 1; (c) the cross section plane perpendic-
ular to the above two planes and containing all the Al
atoms shown in Fig. 1. Due to the reflection symmetry
of the center of the unit cell shown in Fig. 1, only the
lower half of the unit cell is covered in the charge-density
contour diagrams shown in Fig. 6. The charge density
of the whole crystal on these three planes can be easily
produced by symmetry operations.

In Fig. 6(a), we see the charge accumulations along
the nearest (4.76 a.u. or 2.52 A.) and the second nearest
(4.93 a.u. or 2.61 A) 0-0 bonds. In Fig. 6(b), the two
Al atoms and the 0 atom on the right are on the plane,
and are bonded through the long bond. The two 0 con-
tours on the left are from the 0 atoms labeled as 4 and
5 in Fig. 1, which are 0.21 a.u. (0.11 A.) off the plane and
bonded to the Al atoms through the short bond (3.51
a.u. or 1.86 A.). We see little difference in charge density
between these two kinds of bonds, and there is no charge
accumulation along the two Al-0 bonds, indicating es-
sentially ionic bonding. The dense and nearly spherical
contours around 0.5 a.u. away from the Al nuclei are from
the peaking in Al 3s3p orbitals. The Al 2s2p core orbitals
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FIG. 6. The valence charge-density contour diagrams on (a) the basal plane containing the three 0 atoms labeled as 1,2,3
in Fig. 1; (b) the cross-section plane formed by the 0 atom labeled as 2 and its two long bonded (3.72 a.u. or 1.97 A) Al atoms
as shown in Fig. 1; (c) the cross-section plane perpendicular to the above two planes and containing all the Al atoms shown in

Fig. 1. The minima and maxima contours are 0.005e/ae and 0.050e/ae, and contour interval is 0.005e/aa.
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TABLE V. The Mulliken orbital populations and charges Q (e) of the Al and 0 seed atoms for

the ten clusters studied.

Type

27 atom
33 atom
48 atom
60 atom

0 28

1.90
1.99
1.99
2.00

0 2p

5.90
5.89
5.93
5.91

-1.80
-1.88
-1.92
-1.91

Al 3s

0.22
0.07
0.05
0.09

Al 3p

0.07
0.11
Q.06
0.05

4Al

2.71
2.82
2.89
2.86

32 atom
44 atom

1.94
2.00

5.91
5.94

-1.85
-1.94

0.14
0.03

0.07
0.05

2.79
2.92

26 atom
38 atom
62 atom
80 atom

2.00
2.00
2.00
2.00

5.94
5.90
5.96
5.95

-1.94
-1.91
-1.96
-1.95

0.04
0.08
0.01
0.01

0.04
0.06
0.05
0.06

2.92
2.86
2.94
2.93

not shown here have peaks around 0.5 a.u. and then de-

cay to zero exponentially. Therefore, we see a valley of
low (valence) electron density (( 0.005e/ao ) within the
shell from 0.6 a.u. to 1.0 a.u. from the center of the Al
nucleus. From 1.0 a.u. on the density increases monoton-
ically in the directions toward the nearest 0 atoms up to
the cutoff density of 0.05e/aso.

In Fig. 6(c), all the Al atoms shown are on the plane,
and all the 0 atoms are ofl' the plane, the distances of
which away from the plane can be estimated by the radii
of the cutoff contour line. The two 0 contour lines near
the center of the plot are from the two 0 atoms labeled
as 1 and 3 in Fig. 1, which are 1.38 a.u. (0.73 A) off the
plane. We see that no charge accumulates between the
Al atoms and the near-neighbor AI atoms. There exist
two equivalent low charge-density (0.005e/ati) cages of
about 1.89 a.u. radius on the the upper left and lower

right of the figure. The center of these two cages are the
inversion centers of the sapphire crystal, one of which
is the center of Fig. 1. These cages may serve as the
interstitial sites for transition metal ions like Cr and Ti.
Impurity cluster calculations are in progress and will be
presented elsewhere.

In summary, the charge-density contour diagrams to-
gether with the density of states, bond density, and Mul-
liken charge analyses given in the preceding subsections
indicate that the bulk sapphire has a highly ionic elec-
tronic structure, in accord with the earlier first-principles
extended tight-binding calculations2s and recent first-
principles band-structure calculations.

IV. CONCLUSIONS

In this paper, we have shown that the embedded-
cluster method gives consistent results regardless the
choice of different cluster centers, and provides all the
major features of electronic structure for bullc sapphire
with cluster size of 30 atoms, and reaches convergence
in the results around 60 atoms. Our calculated density
of states agree well with experiments and recent first-
principle band-structure calculation, which give us the
confidence on further surface and interface studies. Fea-
tures in the valence density of states are interpreted with
the help of the bond densities between the 0 atom and
its near neighbors. Bulk sapphire is found to be mostly
ionic, as indicated by the small ( 2%) orbital overlaps
between nearest-neighbor Al and 0 atoms and absence
of charge accumulation in the bonding region.
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