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Ab initio calculation of local magnetic moments and the crystal field

in %2Fe14B (% =Gd, Tb, Dy, Ho, and Er)
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The local magnetic moments and the valence contribution to the crystal-field parameter A$ at the
rare-earth sites are calculated for %2Fei4B with %'=Gd, Tb, Dy, Ho, and Er within the framework of
the linear-muSn-tin-orbital theory and the local-spin-density approximation. Thereby, the 4f mo-

ments of R are calculated by the Russel-Saunders scheme, but the radial 4f spin density was part of
the self-consistent density-functional calculation. The local moments as well as Af averaged over the

two crystallographically inequivalent 8' sites remain remarkably constant across the series.

The ternary intermetallic compounds %2Fe~4B (% is a
rare earth) are of high technological importance because
of their excellent hard magnetic properties (for a review,
see Refs. 1 and 2). Ab initio calculations of the electronic
and magnetic properties represent a big challenge because
of the following two reasons: (1) The tetragonal unit cell
contains many atoms (68). Therefore, most of the early
band-structure calculations are empirical or not self-
consistent. (2) It is not obvious how to handle the 4f elec-
trons, because the strong intraatomic couplings in the 4f
shell are not adequately described by the usual band-
structure calculations based on the local-spin-density ap-
proximation (LSDA). Coehoorn therefore has per-
formed self-consistent band-structure calculations only for
R =Gd, where the 4f spin-up shell is completely full and
the 4f spin-down shell is completely empty.

In this paper we report on calculations of the electronic
and magnetic properties of %2Fe~4B with R =Gd, Tb, Dy,
Ho, and Er, based on the linear-muffin-tin-orbital
(LMTO) theory using the atomic-sphere approximation
(ASA) and the LSDA, adopting the method of Brooks,
Nordstrom, and Johansson' for the handling of the 4f
shell. In this procedure the 4f states are treated as open
core states, i.e., they are not allowed to hybridize with the
conduction-electron states and the number of 4f electrons
is a fixed integer. Furthermore, the standard Russel-
Saunders scheme is applied for a calculation of the projec-
tion of the 4f spin along the direction of the total 4f angu-
lar momentum. The 4f-spin and -electron densities enter
the effective potential for the LSDA and are calculated
self-consistently, subject to the above constraints (in con-
trast, in the LSDA calculation of Jaswal'' for Nd2Fel48,
the 4f core states are the frozen self-consistent atomic
states). Via this eA'ective potential a coupling between 4f
and conduction electron states is induced, and hence the
influence of different %' atoms on the electronic properties
can be studied. This method has already been applied
successfully to binary rare-earth intermetallic com-
pounds. ' ' It will become obvious from our results for
the magnetic moments (Table I) that the assumption of a
Russel-Saunders coupling for the rare-earth ions con-
sidered in this paper is indeed justified.

We calculated the local magnetic moments as well as
the crystal-field parameter A2 for the two crystallographi-

cally inequivalent R sites. Because for the series %2Fe~4B
the magnetic anisotropy energy is dominated by the rare-
earth contribution (except for % Gd), the quantity A2
may be related to the anisotropy under certain cir-
cumstances. For transition metals the crystal-field split-
ting is very large and therefore the orbital moment is
strongly reduced. Therefore, the calculation of the anisot-
ropy energy in these systems requires an extremely accu-
rate explicit treatment of the spin-orbit coupling. ' The
situation is somehow easier for rare-earth intermetal-
lics. ' ' In most of these systems the intraatomic
Hund's-rule coupling for the 4f electrons is much stronger
than the exchange coupling between 4f states and conduc-
tion electron states, which in turn is much stronger than
the crystal-field coupling. The strong Hund's-rule cou-
pling ensures that the total angular momentum Jof the 4f
ions is an appropriate quantum number. The second part
of the inequality ensures that the magnetic quantum num-
ber mJ remains an appropriate quantum number and that
the ground state is essentially described by (J,tttj J).
Because this state represents an anisotropic 4f charge
density, it is finally influenced by the crystal-field interac-
tion, ensuring an orientation of the magnetization along
the easy-axis direction. When rotating the magnetization
by applying an external magnetic field, the 4f charge den-
sity is corotated rigidly due to the strong spin-orbit cou-
pling. The related increase of the crystal-field energy cor-
responds to an increase of the magnetic anisotropy energy
(we neglect the conduction electron anisotropy, see above,
as well as the feedback of the rotation of the magnetiza-
tion on the crystal field). It has been pointed out by
Givord (cited by Coey' ) that for all %2Fe~4B with non-
5-state 8 ions the room-temperature magnetic anisotropy
energy is strongly dominated by the crystal-field parame-
ter A2, which means that the anisotropy constant Kl is
much larger than the higher constants. In this paper, we
calculate Az at zero temperature subject to the restriction
of moment alignment along the crystallographic c axis.
Because the value of A2 is certainly only weakly tempera-
ture dependent, it still makes sense to associate the zero
temperature A2 to K~ at room temperature. Our restric-
tion of spin alignment along the c axis is justified for
% =Gd, Tb, and Dy for all temperatures, ' whereas for Ho
the ground-state spin structure is complex and for Er the
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zero-temperature easy plane is perpendicular to the c axis.
However, the restriction simulates the situation of Ho
(Er) at room temperature (slightly above room tempera-
ture), where indeed spin alignment along the c axis is ob-
served. '

It is convenient to subdivide A 2 in a contribution origi-
nating from the valence-electron charge density p(R)
within the atomic sphere (radius rAs) of the considered R

l

atom [Aq(val)] and a contribution originating from the
charge density outside [Az(lat)]. Zhong and Ching as
well as Coehoorn have pointed out that in %'qFe

~ 4B the
lattice contribution is probably of secondary importance
and that the point-charge model used in many former cal-
culations (for a review see Ref. 1) is unrealistic. Accord-
ing to Ref. 8 A q (val) is given by

(3cos e —1)p(R)d R„(r&/r & )r p4f(r)dr
A2(val)-

r p4f(r)dr

Here r & (r & ) denotes the smaller (larger) of r and R.
In principle, we can use our self-consistent 4f charge den-
sity both for the numerator and the denominator of (1).
However, experimentally " the product of A 2 and the
denominator is determined and then A2 is obtained from a
division by (r )4f where for the latter quantity the
theoretical results' for the free 4f ion is inserted. Be-
cause we want to compare our results with the experimen-
tal values, we also use these theoretical results for the
denominator.

To calculate the aspherical valence charge density p(R)
we first determine by the LMTO-ASA method the self-
consistent effective potential, which is spherically sym-
metric in each atomic sphere. Then the Bloch states for
this potential are evaluated by one further LMTO step,
yielding the aspherical valence charge density. The feed-
back of the asphericity of the charge density on the
effective potential is neglected. It should be noted that
our LMTO approach for the calculation of p(R) corre-
sponds to method (b) of Ref. 18, whereas in the original
augmented-spherical-wave (ASW) approach ' a some-
what different procedure is used [method (a)], which is

superior for the calculation of the electric-field gradient in

hcp metals.
Our LMTO calculations include the combined correc-

tion term as discussed in Ref. 20. It turns out that the re-
sults for A2 determined without the combined correction
term differ by up to a factor of 2. Therefore, technical de-
tails of the implementation of the combined correction

term are relevant. This becomes important when compar-
ing our results with those of Coehoorn, because in his
ASW approach a procedure is used which corresponds to
the combined correction term but which is not totally
equivalent. We used the scalar relativistic approach of
Koelling and Harmon. ' To test for the influence of
different scalar relativistic approaches, we calculated the
electric-field gradient for some hcp metals also with the
approach of Gollisch and Fritsche and found differences
of typically 1 0%-20%. All calculations have been per-
formed at the experimental lattice constants, ' and they
were converged for 12 k points in the irreducible Brillouin
zone.

Our results for the local magnetic moments are present-
ed in Table I. The local moments on the Fe and B sites
remain remarkably constant across the series, and the cal-
culated total moments agree excellently with the experi-
mental values reported in Ref. 1 . In these calculations we
used a fixed atomic-sphere radius of r As =2.688a0 for Fe
and rAs =1.989ao for B, and for % the radius is chosen in

such a way that the sum of all atomic-sphere volumes is

equal to the volume of the unit cell, thus taking into ac-
count the lanthanide contraction. It should be noted that
the moments are only weakly aN'ected by diA'erent choices

A2(Kao )

TABLE l. Local magnetic moments (in p8) and total mag-
netic moment of .R.Fe [48. We have used the site notation by
Herbst er al. (Ref. 23).
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FIG. l. The valence contribution A2(val) averaged over the

two crystallographically inequivalent % sites, for different

choices of atomic-sphere radii. ( x ) r (%As):r A (Fse):rAs(B)
= 1.35:1:0.74; (O) including the lanthanide contraction as in

Table 1, see text; (0) rAs(R):rAs(Fe):rAs(B) =1.25:1:0.73.
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of the atomic-sphere radii. However, it turns out that 2 2

depends rather sensitively on the atomic-sphere radii (Fig.
1), in contrast to the finding of Coehoorn. One possible
reason for this discrepancy may be the diff'erent im-
plementation of the combined correction term (see above)
which corrects for the overlap of the atomic spheres.
Furthermore, we obtain different 22(val) values for the
two crystallographically inequivalent R sites (between
about 25% and 50%), again in contrast to Coehoorn,
probably because of the same reason (the overlap of the
atomic spheres is drastically diff'erent for the diff'erent %
sites). In Fig. 1 we present Az (val) averaged over the two
lattice sites. When we want to compare our results for
% =Gd with the one of Coehoorn we must use the same
atomic-sphere radii (symbols x or 0 in Fig. 1). Further-
more, we must insert (as Coehoorn did) for (r )4f the
self-consistent value obtained in our calculation instead of
the free-ion value used in Fig. 1. This changes A2 by
about 20%. Finally, we must subtract from our value the
contribution of the so-called cross term, which has been
neglected by Coehoorn but taken into account in our
calculation, again changing A2 by about 20%. This
yields a value of 82 =338 Kao, which compares to
A2 =376 Kao of Coehoorn.

In agreement with experiment, ' our values for A2
remain remarkably constant through the series. This as
well as the insensitivity of the iron moments confirm the
experimental finding of Sellmyer et al. that all com-
pounds of the form %'2Fe~48 have very similar electronic
structures except for the 4f levels. The experimental
values of about 300 Kao are smaller than our values
(Fig. 1). The discrepancy is not astonishing because we
have neglected the lattice contribution. We have estimat-
ed this contribution by a point charge model using the cal-
culated charges in the atomic spheres. Typically, we ob-
tain Az (lat) values of the order of —100 Kao, improv-

ing the agreement with the experimental values. It will be
of interest to calculate the lattice contribution more accu-
rately from the aspherical charge density outside the con-
sidered atomic sphere.

The authors are indebted to M. S. S. Brooks, K. H. J.
Buschow, R. Coehoorn, H. Ebert, and H. Kronmiiller for
helpful discussions. Our computer code is based on a
LMTO-ASA program developed in the group of O. K.
Andersen at the Max-Planck-lnstitut fur Festkorperfor-
schung in Stuttgart. Part of the calculations have been
performed at the HLRZ at KFA Jiilich.
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