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A model that includes instability of the magnetic moment in a frustrated lattice has recently been

proposed for RMn2 systems (R rare earth). An ordered mixed phase induced by a magnetic field in

which magnetic and nonmagnetic sites coexist has been predicted by Monte Carlo simulations. The
existence of this transition is now confirmed by a neutron-diAraction study of TbMn2 in a magnetic
field.

The interesting physics provided by frustration in anti-
ferromagnetic systems is under active discussion in the
literature. Frustration has been widely studied in disor-
dered systems (spin glasses). It can also occur in both me-

tallic and insulating periodic systems, either because it is

inherent to the crystal structure, or due to competing in-

teractions. The low-temperature behavior of such systems
is very rich because of the existence of many states with
similar energies. In rare-earth (R) metals helimagnetic
(Tb, Dy) and antiphase (Tm) ordering have been recog-
nized for a long time. More recently, other unusual be-
haviors have been reported: G13Gas0~2 remains disor-
dered even at low temperature, "order from disorder" has
been proposed for Fe2Ca3(Ge04)3 and for the kagome lat-
tice SrCrsGa40]9. '

In all the previous cases all relevant sites are magnetic.
In recent work, however, in order to explain the peculiar
properties of RMn2 systems another possibility has been
considered: the instability of the magnetic moment. Frus-
tration near the magnetic-nonmagnetic (M-NM) transi-
tion yields complex magnetic-ordered phases in which

magnetic and nonmagnetic sites coexist and which show
unusual dependence on external parameters such as mag-
netic field, temperature, applied pressure or alloying. A
similar situation can occur in frustrated Ce compounds
due to the Kondo effect or in compounds where the lowest
crystal-field level is a singlet.

Since in the RMn2 compounds the R-R and R-Mn ex-
change interactions are an order of magnitude smaller
than the Mn-Mn interactions, we restrict the discussion to
the Mn lattice. Magnetic properties of the Mn lattice are
then described by a Hubbard model, where the on-site

Coulomb repulsion U is of the order of the bandwidth W,
close to the M-NM instability. As the anisotropy of the
Mn sites is very large transverse Auctuations of the Mn
moment are neglected and only the longitudinal com-
ponent of the local moment, p; =&n;1 —n;1), is considered.
The effective Hamiltonian can be mapped into a Blume-
Capel Hamiltonian:

H =ASS; + 1j2+ JJStS)

where d and JJ are related to the parameters of the Hub-
bard model. Close to the M-NM transition d & 0 and S;
can take three values: S; =+ 1 if the site has a magnetic
moment p; = + p, and S; =0 if p; =0. We take antiferro-
magnetic nearest-neighbor interactions J ~

& 0, the
second-neighbor interactions J2 can be & 0 or & 0.
Rather than introduce the complexity of the Laves phase
RMn2 structure, a triangular lattice has been used to
model frustration. This model leads to a rich phase dia-
gram that can be related to different RMn2 compounds:
(a) Nonmagnetic phase where p; =0 in all Mn sites
(ScMnq, ErMn2); (b) magnetic phases in which p;&0 in

all Mn sites (YMn2, NdMn2); and (c) a new mixed mag-
netic phase (ThMnz, DyMnq) in which because of frustra-
tion the molecular field on some Mn sites, but not all, is

too small to compensate the energy h, necessary to stabi-
lize the moment. The effect of an applied magnetic field is
interesting: Several transitions are induced, their number
depending on the initial state in zero held. Furthermore,
Monte Carlo simulations show an unexpected feature: At
some critical fields the number of magnetic sites decreases
with increasing field. Figure l shows the evolution of an
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cal field increases.
In the S2 structure, analysis of the magnetic structure

factors of the antiferromagnetic peaks and especially the
fact that ( —,', &, —,

' ) is relatively stronger than ( —', , —,', —', )
and ( —', , —,', —,

' ) requires that the Tb atoms at —„' —,
'

—,
' and

are coupled antiferromagnetically, parallel,
and antiparallel, respectively, to the Mn moment at

2 2 —,'. This implies that the center of symmetry at the
origin is combined with time inversion. This time inver-
sion symmetry together with the propagation vector
(-,', 2, & ) is not consistent with the existence of moment
on the other three Mn atoms of the Mn tetrahedra, which
are at the centers of symmetry which like that at the ori-
gin are combined with time reversal. However, it is not
possible to distinguish between paramagnetic or nonmag-
netic sites. The same S2 structure has been observed by
powder neutron diffraction in Tb~ „Sc„Mni (x =0.03).
For this compound NMR measurements have indeed

proved the coexistence of magnetic and nonmagnetic sites.
Figure 3 shows the magnetic structure of the Mn sub-

lattice of TbMn2, corresponding to the S2 state. In this
mixed phase only 25% of the Mn sites are magnetic. The
same S2 structure is obtained for a Mn-Mn distance just
below a critical value d, = 2.7 A, as has been shown by
neutron experiments on Tb(Mno96Feoo4)2 (Ref. 3) and
TbMn2 under pressure. ' The S2 structure is also ob-
served in DyMn2 where the Mn-Mn distance is very close
to the critical value, and both neutron" and NMR (Ref.
6) experiments indicate this same mixed structure.

To summarize, this neutron experiment on TbMn2
confirms that the mixed ordered phase can be stabilized
by the application of a magnetic field, showing the sound-
ness of the proposed model in which frustration and insta-
bility of the magnetic moment control the behavior of the
RMn2 systems.

On leave from CONICET, Centro Atomico Bariloche, 8400
Bariloche, Argentina.

'For a recent review on frustrated systems, see P. Chandra and
P. Coleman, in Proceedings of Ecole d'ete de physique
theorique: Strongly interacting fermions and high T, supe-r

conductivity, Les Houches Summer School Proceedings Ses-
sion LVI, edited by J. Zinn-Justin and B. Dou9ot (North-
Holland, Amsterdam, in press).
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