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Magnetic ordering in the three-dimensional frustrated Heisenberg model
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Monte Carlo simulations of moderately frustrated three-dimensional Heisenberg spin systems show

evidence for two distinct ordering events. The upper one, at T„marks the onset of long-range ferromag-

netic order and exhibits fluctuations which scale as the system size. The lower event, at T ~, marks the

freezing of transverse degrees of freedom and does not affect the long-range order in the system. Critical

levels of frustration for the onset of ferromagnetism have been determined on several lattices and a phase

diagram is presented.

Experimental studies of frustrated magnetic systems
show that the presence of competing ferromagnetic and
antiferromagnetic interactions leads to a loss of collinear-
ity in the low-temperature state and to the formation of a
spin glass. However, if the concentration of antiferro-
magnetic interactions is small enough, it is possible to
form a system which, despite the presence of mixed ex-
change, possesses many of the characteristics of a Heisen-
berg ferromagnet. ' Such materials exhibit two distinct
ordering events as the temperature is lowered. The upper
one (at T, ) is a ferromagnetic transition, marking the on-
set of long-range collinear (ferromagnetic) order. Below
T„, the temperature of the second event, the system
ceases to be collinear as the spins acquire a significant
transverse component. This event is characterized by a
local ordering in the system, which we will call transverse
spin freezing.

In this paper we present results of an extensive numeri-
cal study of this phenomena. We use the Monte Carlo
method to investigate the simplest model which could be
expected to show transverse spin freezing, namely, the
moderately frustrated Heisenberg model in three dimen-
sions. We find that the model is capable of reproducing
all the experimentally observed features of transverse spin
freezing. By analysis of the fluctuations occurring at the
point of freezing, we conclude that it involves only a
change in short-range order, and therefore is not a phase
transition.

Previous work on low levels of frustration in Heisen-
berg spin systems has not led to a conclusive description
of the magnetic ordering. The mean-field solution of the
random-exchange Heisenberg model with a Gaussian dis-
tribution of exchange strengths predicts magnetic transi-
tions, first from the paramagnetic state to a collinear fer-
romagnet, then at a lower temperature, to a mixed state
where the transverse degrees of freedom order, and final-

ly to a state where replica symmetry is spontaneously
broken at a still lower temperature. Recent local mean-
field simulations of the two-dimensional XY model by
Saslow and Parker were aimed at obtaining a physical
picture of reentrant magnetic transitions. Below the fer-
romagnetic transition, they reported two transitions, at
Tz and a lower temperature T, : As one decreased the

temperature below Tz, the frustrated bonds made them-
selves felt, and the system began to order in the trans-
verse direction, while at T„ their results were interpreted
in terms of spin canting, mediated by the melting of frus-
trated spins. However, despite the appeal of a canting
transition, on repeating these calculations, and doing
Monte Carlo work in three dimensions, we have found
that the system is easily trapped in metastable states, and
that the apparent canting transition is an artifact of
insufficient system equilibration.

The spin canting picture differs qualitatively from that
of transverse spin freezing. On cooling through the onset
of spin canting, the average magnetization, M, will de-
crease with respect to the average moment, S, , (since
the spins tilt away from their initially collinear
configuration), while S, , itself will only exhibit the nor-
mal increase due to reduced thermal fluctuations. The
opposite occurs during transverse spin freezing: here
transverse components, ordering with random directions
in the x-y plane, have no influence on M, but cause S, ,
to increase. Experimentally, there is a marked change in
the behavior of S, , at T,y often displaying an apparent
discontinuity in the slope, but no such changes are seen
inM ''

We consider the classical Heisenberg spins on a
simple-cubic lattice governed by the nearest-neighbor
Hamiltonian:

&=—g JiS; S —H gS
(ij) j

with exchange strength J;j and unit spin. The second
term includes the effect of an external magnetic field.
The Heisenberg ferromagnetic (all J;.= +J) ordering
temperature is TII=1.44J. Exchange frustration is in-
troduced by randomly replacing a fraction, f, of the in-
teractions by antiferromagnetic bonds. Numerical simu-
lations were performed by the Monte Carlo method. In
order to investigate the behavior of the transverse spin
components, we specified the z axis using two methods.
The first method defines the z axis externally by applying
a small magnetic field (in our case H, =0.03J), as done in
most experimental observations of transverse spin freez-
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ing. In the second method, the z axis is defined by the in-
stantaneous direction of the spontaneous magnetization.
The data presented below were obtained using the second
method. In order to study fluctuations we calculated the
variation in S, , from configuration to configuration,
(S, , ) —(S, ,), where the brackets indicate an average
over bond configurations.

The scaling results presented here are averages over at
least 100 distinct bond configurations on various system
sizes, with f=0.15, while the data used to determine
points on the phase diagram are averages over at least 20
distinct bond configurations for each value of f on 8 lat-
tices. In most cases our procedure was as follows: for
each bond configuration the system was prepared well
above T„ then cooled in 50 temperature steps using a
Monte Carlo algorithm with Glauber dynamics. At
each temperature, the system was allowed to equilibrate
for 2000 Monte Carlo steps before averages were taken
over 4000 Monte Carlo steps. The exception to this pro-
cedure was that used to determine the bond fraction
above which the system is no longer ferromagnetic. In
this case we prepared the system with f=0.5 at a partic-
ular temperature and then progressively replaced antifer-
romagnetic bonds with ferromagnetic bonds. For these
systems, we examined the susceptibility as a function of

We calculated two local time-averaged quantities. The
first, a time average of the spin components at each site:

linearity must persist even at T=O. More significantly,
although Q„» is initially zero below T„as in the fer-
romagnetic case, it becomes finite at a temperature T
well below T„marking the onset of transverse spin freez-
ing. On cooling from T, to T, the root-mean-square
spin length S, , is essentially equal to the bulk magneti-
zation M, but at T„, S, , begins to exceed M and
remains larger down to T=O. We attribute the excess
growth in S, , to transverse spin freezing. Above T
the configurations show that a particular spin possesses a
transverse component, but it is in motion and the time
average of that component vanishes. Thus, I; only has a
z component for T~~ & T & T„making S,m, and M
equivalent and Q„»=0. Below T, the transverse spin
components freeze in random directions so the sum of
their site average cancels, leaving M unafFected. The
transverse components, however, do contribute to the
sum so that S, , increases. The persistence of large Qi
above T„and the existence of finite Q„» only at tempera-
tures less than T„reinforce the experimental and
theoretical observations of the increase of S, , over M as
direct evidence of transverse spin freezing. These data
are incompatible with a spin canting model of this behav-
ior.

As f is increased, T, and T„converge: T, falls
reflecting a decline in the average exchange strength, and

1
7

m;= —g S;(v'),
0

where time ~=4000 Monte Carlo steps and i is the site
index. The second was the average of the square of the
transverse spin components at each site:
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These were then used to obtain the following bulk aver-
ages: the root-mean-square spin length S, ,
=[N 'g;(m; m;)]'; the bulk magnetization
M=N '~g;m;~; the mean-square transverse spin, which
is a measure of the average component of the spins which
lie perpendicular to the z axis independent of angular
motion in the x-y plane, Qi =N 'g; m i;; and finally, the
mean transverse spin length, which averages over rota-
tional motion of the spins in the x-y plane and measures
the ordering of transverse spin components,
Q„»=N 'g;[m, —(m; z)z] .

Figure 1 shows the temperature evolution of the mac-
roscopic quantities defined above for a number of frustra-
tion levels. For f=0, all bonds positive, the system is a
Heisenberg ferromagnet below TH. Since S, , is identi-
cal to M at all T & TH, the system must be ordered col-
linearly. Qi decreases smoothly from —', above TH, corre-
sponding to the isotropic spin distribution of a paramag-
net, to zero at T=0, as expected for a collinear ferromag-
net. Q» =0 at all temperatures, indicating that there are
no ordered transverse components.

New features appear for f & 0. First, since Qi does not
reach zero for any f & 0, some degree of spin noncol-
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FICx. 1. Temperature dependence of longitudinal and trans-
verse spin lengths for di8'erent levels of exchange frustration.
The temperature scale is normalized to the Heisenberg fer-
romagnetic transition temperature, TH.
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T rises due to the increase in frustration. Finally, at
f, =0.25, T, and T merge and Qt remains —,

' for all

temperatures. This indicates that the spin directions are
isotropic, a spin-glass-like configuration. On three-
dimensional lattices with higher coordination numbers
(bcc q =8 and fcc q =12) further simulations have indi-
cated that the ferromagnetic behavior persists to higher
levels of frustration (bcc f=0.30, fcc f=0.32). The or-
dering behavior is very similar to that deduced from ex-
periments, ' ' however, we caution that the low-
temperature behavior of the fully frustrated three-
dimensiona1 Heisenberg model is still an unresolved is-
sue. ' ' In this work we address the ordering of systems
in a regime of moderate frustration distinct from that of
the spin-glass model.

The phase diagram given in Fig. 2 summarizes the
frustration dependence of the ordering events. The sys-
tem is paramagnetic at high temperatures. Notwithstand-
ing the reservations noted above, for f)0.25 the system
enters a spin-glass-like phase on cooling through T, .
The vertical line at f, =0.25 separating that phase from
the ferromagnet was located by the peak of the fluctua-
tions in M, as a function of frustration. For 0 &f & 0.25,
the system goes through a transition at T, to a ferromag-
netic phase. For a given f, this line marks the tempera-
ture where S, , and M deviate from zero. Immediately
below T, the order is ferromagnetic with a significant
transverse spin component which time averages to zero.
The dotted line, T„,marks the temperature at which Q„
ceases to be zero, which coincides with the temperature
at which S, , and M separate. The system exhibits fer-
romagnetic order on both sides of the line, but below T„„
the transverse spin components are frozen; above it they
average over time to zero.
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FIG. 2. The phase diagram for the model showing two mag-
netic transitions in the concentration region between f=0 and
the spin-glass-like phase at f)0.25. At T„collinear order sets
in, followed by the freezing of transverse spin components
below T ~. f, marks the boundary between the ferromagnet
and the spin-glass-like phase. The temperature scale is normal-
ized to the Heisenberg ferromagnetic transition temperature,
TH. Open circles indicate the temperature at which Q„» be-
comes finite, while the solid circles represent the temperature of
the maximum of the susceptibility.
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FIG. 3. The configuration to configuration fluctuations in

S, , as a function of t =(T—T, )/TH. Note that the peak at T„~
does not grow with system size, while that at T, grows as the
system size is increased.

The configuration to configuration fluctuations in S, ,
shows a peak at both T, and T„y. We examined the effect
of finite system size on the amplitude of these peaks. Fig-
ure 3 shows these fluctuations, averaged over at least 100
different bond configurations, as a function of tempera-
ture for system sizes with edge length L =6, 8, 10, 12, 14,
and 16 (-25 bond configurations for the L =14 and 16).
It is clear that, while the peak at T, grows as system size
is increased, the peak at Tzy saturates and does not in-
crease. We therefore interpret the results at T„as
characteristic of local ordering events which do not in-
duce fluctuations on the order of correlation length. In
finite-size scaling analysis, where we expect the amplitude
of critical point fluctuations to scale as L~ ", ' we ob-
tained a value for y/v=1. 91+0.01 corresponding accu-
rately to the accepted values of the critical exponents for
the Heisenberg ferromag net in three dimensions.
Furthermore, when we use the scaling form,
y~ ~t~ rf(Lt"), where t=(T T, )/TH, wi—th L's vary-
ing by a factor of 2, a very good collapse of the curves is
obtained with the three-dimensional Heisenberg fer-
romagnet exponents, as shown in Fig. 4, although there
are some systematic deviations at high temperatures.
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FIG. 4. The static susceptibility, y, rescaled by
y~ ItI rg(Lt"), where t=(T T, )/TH. (T, is taken —at the po-
sition of the maximum of y for L =12, and f=0.15.) The
values for the exponents were y = 1.33 and v=0. 692 (Ref. 7).
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This reinforces the interpretation that below the critical
fraction of antiferromagnetic bonds (f =0.25) the system
is a Heisenberg ferromagnet.

To conclude, our Monte Carlo simulations are in good
qualitative agreement with experimental observations. In
particular, we found two magnetic ordering events for
the low levels of frustration: ferromagnetic ordering at
T, followed by transverse spin freezing at T„. The criti-
cal behavior at T, is consistent with a Heisenberg fer-

romagnetic transition in three dimensions, while we inter-
pret the behavior at T y

in terms of a change in short-
range order rather than a phase transition.
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