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High-m spin excitations in the one-dimensional Ising ferromagnet [(CH;);NH]FeCl,-2H,0
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The differential magnetic susceptibility of [(CH;);NH ]FeCl;-2H,0 has been measured as a function of
temperature in the range 4.2 K < T <20 K in fields of 0, 500, 1000, and 1500 Oe. To interpret the data, a
simple model for a fermion gas of noninteracting clusters of various sizes is presented. The analysis sug-
gests that single-spin reversals make only a small contribution to the susceptibility and that to obtain
even qualitative agreement with data the effects of large spin clusters and interaction between spin clus-

ters must be included.

In this paper we present ac susceptibility data for the
one-dimensional (1D), spin one-half (S =1), Ising fer-
romagnet [(CH,);NH]FeCl;-2H,0 (FeTAC)! and com-
pare the results to the Ising model for a 1D ferromagnet.
Employing simple calculations for the Ising model, we
conclude that the presence of large domains of reversed
spins and interactions between these domains are neces-
sary for a correct description of the susceptibility. Ex-
ploiting the equivalence of these domains to Ising bound
magnons and classical Ising solitons, and examining the
Heisenberg—Ising limit, we qualitatively extend these
conclusions to bound magnons and classical solitons in
the nearly isotropic case.

A single crystal of FeTAC weighing 0.403 mg and
measuring 1.7 mm X0.6mm X0.4mm was selected using
a polarizing microscope. The crystal was mounted with
its long (z) axis, the magnetic easy axis, parallel to the ap-
plied field. ac susceptibility measurements were made us-
ing an off-balance mutual inductance method which uti-
lized an rf SQUID as a flux detector. The amplitude and
frequency of the excitation field were 6 mOe and 80 Hz.
No relaxation effects were observed. Temperature was
measured using a calibrated carbon glass resistor. The
data were corrected for demagnetization effects. Figure 1
shows the susceptibility data for FeTAC (zero field data
not shown) and fits of the exact Ising model?® to the data
using the previously reported values J/k=17.5 K,
g=7.5 (Ref. 1) for FeETAC. Relative error bars fall
within the symbol indicator for each data set.

Greeney et al.! and Landee, Kuentzler, and Williams>
have characterized FeTAC as a nearly ideal S =%, Ising
ferromagnetic chain (IF). Interchain coupling is
2'J'/2J ~—1073, and there is no overt spin canting.
Zero-field 3D ordering occurs at T, =3.12 K, and the
magnetic phase diagram is metamagnetic with H,.(0)=90
Oe. The Ising model fits our data nicely in zero field, but
as is apparent from Fig. 1, shows systematic deviations at
high fields. Mean-field corrections using J' to account
for interchain coupling does not improve the fits. Howev-
er, variations of the data from the Ising model may be
due to field enhanced interchain coupling.*

To understand how spin dynamics affects susceptibili-
ty, we consider Ising excitations. The Hamiltonian for an
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N-spin, S =1, IF is

N N
H=—21 3 SiSi —gupH 3 S/,
i=1 i=1
where J >0 is the exchange energy and H is the magnetic
field. Dispersion curves are given by the energies of spin
clusters (domains of reversed spins, antiparallel to the ap-
plied field). For m spins in a cluster,

E, =1+mA+E,,

where all quantities are dimensionless, with energy
E,=E, /2, field H=gugH/2J, m=1,2, 3,..., and
ground-state energy EO=( —N/4)—(NH /2). In an IF,
spins within a reversed cluster couple with an exchange
energy identical to that in the ground state, so AE=1is
entirely due to domain wall interactions. The zero field
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FIG. 1. Susceptibility vs temperature for a single crystal of
FeTAC, with the applied field along the easy axis, for fields of
500 (A), 1000 (0O ), and 1500 (O) Oe. Theoretical fits of the ex-
act susceptibility for the Ising chain ferromagnet with
J/k=17.5 K, g =17.5 are shown as solid lines. The curve la-
beled x,(500 Oe) is for single-spin reversals, and is multiplied by
a factor of 25.
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energy of a cluster equals that of an isolated reversed
spin, so at finite temperature multispin clusters will be
more numerous than single spin flips. Spin clusters in the
IF have been observed in ESR*® and FIR’ absorption ex-
periments. An IF spin cluster is the extreme anisotropic
limit of a sine-Gordon kink-antikink soliton pair in the
XY chain.

Ising excitation are dispersionless, i.e., E,, is wave vec-
tor independent. Since they have zero group velocity,
they can only undergo thermally activated diffusion, and
possess no intrinsic dynamics. If anisotropy is reduced
slightly, more interesting processes are possible. For the
nearly IF cluster mobility decreases as size increases, so
thermally activated dynamics still predominates, but non-
commuting spin components allow forbidden IR and
ESR transitions.® Calculations by Ishimura and Shiba’
and experiments by El Massalami et al.!® reveal a spin
structure consisting of very long, thermally activated,
essentially static kink-antikink pairs, with excitations in-
volving only a few spins rapidly traversing the static
structure. An analogy between spin-lattice and spin-spin
relaxation and kink-lattice and kink-kink relaxation has
been suggested.'® By contrast, for the nearly Ising anti-
ferromagnetic chain, creation of a kink-antikink pair of
any length requires reversal of only two spins, producing
excitations which are dispersive and display an interest-
ing intrinsic dynamics.*!!

To study how various sizes of spin clusters affect sta-
tistical mechanics in the pure IF, we examine a simple
model in which a fermion gas of noninteracting clusters
of size m are taken to be the only excitations in the chain.
This is formally analogous to an m =1 (magnon) model,
except that the Zeeman energy per excitation is increased
by a factor of m, and the maximum possible number of
excitations is reduced by a factor of 1/m. For general m
the dimensionless susceptibility per spin is found to be

exp(—%,,/T)
T(1+(1/m)exp(—%,, /T’

Xm =

where the dimensionless excitation energy and tempera-
ture are given by ¢, =1+mH and T=kT/2J. X, in-
cludes effects of kinematic interactions, '? so that no spin
can be reversed more than once, and no more than N
spins in the chain can be reversed (clusters are treated as
fermions). Dynamic interactions, 12 however, which
would allow clusters to break apart, combine to form new
clusters, etc., are not accounted for. The line labeled
X1(500 Oe) in Fig. 1 shows the susceptibility for single-
spin flips in 500 Oe. Comparing this curve to the exact
IF susceptibilities, it is clear that m =1 clusters cannot
account for the magnitude and temperature dependence
of the exact result. Unlike the exact zero field susceptibil-
ity, X,,(H =0) does not diverge at T =0. To obtain this
divergence the m — o limit must be taken before the
(H,T)—0 limits, further indicating that the large m exci-
tations determine the behavior of y.

Xn(T) for m=2,6,10,20,50,100,200,300, with
H =1000 Oe is shown in Fig. 2. General behavior is
similar for other fields. The (m,H,T) dependence of ¥,,
is summarized in Fig. 3, where the magnitude of the sus-
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ceptibility at the peak, (X, Jmax is plotted as a function of
the temperature at which the peak occurs for a series of
(m,H) values. Peaks in susceptibility correspond to the
largest possible change in magnetization 8M for a field
change 8H. As the temperature is decreased from the
paramagnetic regime, a peak in x,,(T) is expected, quali-
tatively, when the sum of the exchange, Zeeman, and ki-
nematic interaction energies exceed the thermal energy.
At this temperature, clusters of reversed spins begin to
fall back into the ground state, thereby saturating the
magnetization and reducing the susceptibility from its
maximum.

Small clusters, m <20, have small susceptibilities
which decrease uniformly as applied field is increased.
The temperatures of the maxima (for a given m) increase
only slightly as field increases, but (for a particular field)
decrease with increasing m. Since these excitations carry
small magnetizations and have minimal Zeeman energies,
the small peak heights and weak dependences of peak
temperatures on field are expected. The decrease in the
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FIG. 2. Theoretical susceptibility vs temperature for a gas of
noninteracting, Fermi-like m-fold spin clusters in an applied
field of 1000 Oe. (a) m =2,6,10,20. (b) m =50,100,200,300.
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FIG. 3. Maximum (peak) values of theoretical susceptibility
vs temperature at peak for a gas of noninteracting, Fermi-like,
m-fold spin clusters, as a function of cluster-size m and applied
field H. Lines are guides to the eye.

temperature of (Y, )n.x @S m is increased is apparently
due to kinetic interactions. With small Zeeman energy,
the main limitation on the number of spin clusters be-
comes the availability of excited state energy levels, i.e.,
the number of spins available to be reversed. When
5 =m =20 comparatively few excitations are allowed, so
that the required thermal energy is small, and the peaks
occur at lower temperature. For m =1 and m =2 a
larger number of clusters can be excited, so more thermal
energy is required, giving rise to peaks at higher tempera-
tures. The range 10 S m <20, where the bends occur in
Fig. 3, is a crossover region between kinetic interaction
and Zeeman interaction dominated behavior.

Zeeman energy appears to exceed kinetic interaction
energy for clusters of size m 20. Large thermal ener-
gies are required for excitation, giving rise to high-
temperature peaks in (x,, )., With peak temperatures
which increase as m is increased. As expected, the in-
creased Zeeman energies in higher fields allows fewer ex-
citations, so susceptibilities decrease monotonically with
field. Peak height increases indefinitely as cluster size is
increased, attaining values much larger than the exact
susceptibility. This feature results not only from the
large magnetizations carried by large cluster, but also
from a fundamental flaw in the model.

Considering the temperature dependence and magni-
tude of x,,, it is clearly not possible to reproduce the ex-
act susceptibility by any simple combination of cluster
sizes. For a particular field all y,, peaks occur at temper-
atures above the exact y peak temperatures. The high-m
excitations must be mixed with the small-m excitations in
a way which will drastically reduce the temperature of
the high-m peaks, but still retain much of their magni-
tude. Examining the response of the high-m clusters to a
magnetic field provides insight into the underlying
difficulty.

When a large cluster is thermally excited at a given
temperature in a dc magnetic field it is part of an equilib-
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rium distribution of clusters. If the field is increased by
an amount 8H, as in an ac susceptibility experiment
where Y=8M /8H, the cluster’s energy will increase by
an amount m 8H, and it will (temporarily) be out of equi-
librium. In the cluster gas model described above the
only remedy is a complete reversal of the whole cluster
back to the ground state. The resultant energy decrease
is m(H+8H), which overcompensates by mH. In the
real physical system it is possible for the cluster to be re-
duced in size, presumably by an amount Am =m 8H,
rather than being entirely eliminated. Alternatively, in
order to reduce energy by m 8H, Ap +1 clusters can
combine to provide the decrease m 8H =Ap. Obviously,
cluster-size reductions or increases and cluster combina-
tions or splittings can provide the required equilibration
without the need for large cluster destruction or creation
which gives excessively large susceptibilities at unreason-
ably high temperatures. Spin cluster interactions must
play an crucial role in determining the observed suscepti-
bility.

We have also partially developed a cluster gas model
for an isotropic chain, the S =1, Ising-Heisenberg fer-
romagnet (HIF), and preliminary results indicate that
conclusions drawn from the IF are also valid in this more
complex system. The correspondence is not unexpect-
ed.’>!* Johnson and Bonner!® have noted that the exact
dispersion relation for the HIF becomes Ising-like as the
number of reversed spins (m) in a bound state becomes
large: The excitation gap increases monotonically to a
constant value, and the dispersion curves flatten. (This
limiting process is not, however, applicable in the pure
Heisenberg case.) Our analysis reveals that for 1% an-
isotropy this limit is >99% complete when m = 40.
High-m clusters (bound magnons) are virtually Ising even
in nearly isotropic chains. Therefore, the above con-
clusions for an IF should also be valid in much of the iso-
tropic regime. Since spin clusters in the IF are just high-
ly anisotropic kink-antikink solitons, this correspondence
with isotropic chains corroborates theoretical arguments
for the existence of quantum solitons in spin one-half iso-
tropic chains. !>16

The striking importance of interactions between spin
excitations in determining the essential physics of the IF
chain is also relevant to the difficult problem of soliton
interactions in the classical XY ferromagnetic chain.!’
Magyari'® has shown that as anisotropy is increased the
wall width in 180°-Bloch-type solitons gradually de-
creases, reaching a single lattice spacing—identical to an

Ising kink soliton—when the anisotropy becomes Z of

the exchange. Consequently, it appears that spin cluster
(kink-antikink) interactions, shown here to be essential
for a proper description of thermodynamics in the Ising
ferromagnetic chain, should also be important in isotro-
pic soliton bearing systems.
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