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Hidden Z2 XZz symmetry breaking in Haldane-gap antiferromagnets
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We show that the Haldane phase of the S= 1 antiferromagnetic chain is closely related to the breaking
of a hidden Z2 X Z2 symmetry. When the chain is in the Haldane phase, this Z2 X Z2 symmetry is fully
broken, but when the chain is in a massive phase other than the Haldane phase, e.g., the Ising phase or
the dimerized phase, this symmetry is broken only partially or not at all. The hidden Z2 XZ2 symmetry
is revealed by introducing a nonlocal unitary transformation of the chain. This unitary transformation
also leads to a simple variational calculation which qualitatively reproduces the phase diagram of the
S=1 chain.

INTRODUCTION

Quantum spin systems are full of fascinating surprises.
In 1983 Haldane argued that the spin S Heisenberg anti-
ferromagnetic chain has a ground state with an excitation
gap and exponentially decaying correlation functions
when S is integral, while it has a ground state without a
gap and correlation functions with a power-law decay
when S is half integral. ' This conclusion has been exam-
ined by various numerical, experimental, and rigorous
studies. In this paper we will show that the appearance
of the Haldane gap in the S= 1 chain corresponds to the
breaking of a hidden Z2 XZ2 symmetry.

A rigorous example of disordered ground state in an
integer spin model was provided by Aleck, Kennedy,
Lieb, and Tasaki. They studied an S=1 spin chain with
a specific biquadratic Hamiltonian [see (5) below], and
proved that the model has a unique infinite volume
ground state with a gap and exponentially decaying
correlation functions.

Despite the exponential decay of the correlations in the
Haldane phase of the spin-1 chain, there is a form of hid-
den antiferromagnetic order in this phase. Den Nijs and
Rommelse proposed a nonlocal string order parameter
to detect this hidden order and suggested that the ex-
istence of such a hidden order is essential to the basic
mechanism of the Haldane gap. This order parameter
was studied further by Girvin and Arovas. The connec-
tion between the hidden order and the mechanism of the
Haldane gap was further addressed by Tasaki. The ex-
pectation of this order parameter can be calculated ex-
plicitly for the solvable model of Ref. 3, and is nonzero.

Another interesting feature of the exact solution of
Ref. 3 is that the model on a finite chain with open
boundary conditions has exactly four ground states.
These ground states all converge to the same infinite
volume state as the length of the chain tends to infinity.
In general in the Haldane phase the ground state of the
open chain is not exactly fourfold degenerate, but the

four lowest eigenvalues are very close. The separation of
these eigenvalues converges to zero exponentially fast as
the length of the chain goes to infinity. This phenomenon
was studied by Kennedy and by AfHeck and Halperin.
The geometric picture in Ref. 6 also suggests this
phenomenon. Experimental consequences of this four-
fold near degeneracy of the ground states in a finite open
chain have been studied by Hagiwara, Katsumata,
AfHeck, Halperin, and Renard.

The hidden antiferromagnetic order and the near de-
generacy of the ground state are two distinctive proper-
ties of the Haldane gap systems. In this paper we show
that both of them can be regarded as consequences of the
hidden Z2 XZ2 symmetry breaking. We introduce a non-
local unitary transformation of the S=1 chain which
makes this symmetry breaking quite explicit. We also use
this transformation to do a simple variational calculation
that yields a qualitatively correct picture of the phase di-
agram of the S=1 chain. We can prove rigorously that
the Z2 XZ2 symmetry is broken for the exactly solvable
model of Ref. 3 and in an open region of the parameter
space of Hamiltonians for the S= 1 chain. (Unfortunate-
ly, this region does not include the usual Heisenberg
Hamiltonian. )

Des Nijs and Rommelse argued that the spin-1 chain
is equivalent to a two-dimensional RSOS model. Den
Nijs' then argued that the Coulomb-gas representations
for the long-distance behavior of this RSOS model and
the Ashkin-Teller model are the same. This is interesting
since the latter model also has a Z2 X Z2 symmetry which
is spontaneously broken.

THE MODEL AND THE ORDER PARAMETERS

We consider a quantum spin chain with S=1. The
Hamiltonian is

H = Q S,"S,"+,+SfSr+, +A,S S +, +D(S )
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O««, (H)= lim (S; S )&,
lg

—jl~cc

O„„„s(H}=lim (cr,")~ .
II —jl —~

(2)

Here o;~ is the string operator of den Nijs and Rom-
melse defined by

j—1

o; = —S;exp in g S& S.
1=i+1

In Ref. 11 we prove' that O„„„(H}&O~;,&(H) for
a=x,y or z.

THE UNITARY

For a finite chain with open boundary conditions we
define a unitary operator U as follows. We work in the
usual basis in which all the operators S&' are diagonal. A
state in this basis may be represented by a string of 0's,
+'s, and —'s corresponding to the eigenvalues 0, +1,
and —1 for S,.'. The unitary U will map each basis state
onto some other basis state or onto a basis state times
—1. Let A be a string of 0's + 'sand —'s. The action of
Uon A is defined as follows. All the 0's in A are left un-
changed. Suppose there is a + at site l in A. We count
the number of +'s and —'s in A which are to the left of
the site l. If this number is odd then we replace the + by
a —.If this number is even we leave the + alone. Simi-
larly, if there is a —at site I and the number of +'s and
—'s to the left of site l is odd, then we replace this—
with a +. If this number is even then we leave the —at
site l alone. Finally we count the number of 0's that sit at
odd sites anywhere in the finite chain. If this number is
odd we multiply the state constructed above by —1.
Here are a few examples of the action of U:

(0+0——0+ + —+0—0)~(0+0+ —0—+ + +0+0),
(0+ —00+00—+0—0)~—(0+ +00+00+ +0+0),
(++0—+00+0—0++)~(+—0——00+0+0+ —) .

It is immediate from the definition of U that U is unitary
and U '=U.

Applying the unitary to the string operators, we find
Ucr, U'=S; S for "a=x or z. (Unfortunately the result
of applying U to the string observable o.~. is not simply
SfSJ~). This leads us to the following important relations
between the order parameters:

where we assume the model to be antiferromagnetic, i.e.,
A, &0. The Hamiltonian is invariant under rotations
about the z axis and under the spin flip with respect to
this axis, so it has a global O(2) symmetry. At the
Heisenberg point A, =1, D=0, the Hamiltonian has the
full SU(2) symmetry. We denote by ( . . . )~ the expec-
tation value in the infinite volume ground state of H.

We define the Neel order parameter, ferromagnetic or-
der parameter, and the string order parameter in the a
direction (where a=x,y, or z) as follows:

O~,,)(H)= lim ( —1)~' ~~(S, S )~,
li —jl—+ ac

O„„„(H)=O&„„(H}for a=x or z, (4)

where H= UHU is the Hamiltonian we obtain by ap-
plying the unitary to the original Hamiltonian.

To see how the Hamiltonian transforms we
note that U(S; S;+, ) U '= —S; S;+, for a=x
or z, U(SEES(+, )U '=S,"exp[in(S +S,"+&.)]Sf+„and
U(S;*) U '=(S ) . The symmetry of the original Hamil-
tonian H is destroyed by the unitary. We find that
H= UHU ' is only invariant under rotations of ~ about
each of the three coordinate axes. It is not invariant un-

der a rotation of ~ about an arbitrary axis. These three
rotations generate the discrete group Z2 XZ2. Of course,
the transformed Hamiltonian H will have the same sym-
metries as the original Hamiltonian H since these two
operators are related by a unitary, but in general these
symmetries for H will be nonlocal. The only local sym-

metry of the transformed Hamiltonian is the discrete

Z2 XZ2 symmetry. We shall think of this group as being

generated by the rotations of m around the x and the z
axes, i.e., 4~exp(in+ SJ")4 and @~exp(in.g S*)4.
Possible spontaneous breaking of these symmetries may
be measured by the order parameters Of,«, (H) and

0«„,(H ), respectively.

THE HALDANE GAP
AND THE Z2 XZg SYMMETRY BREAKING

We will now consider what happens to the Z2XZ2
symmetry in various regions of the parameter space of
Hamiltonian (1). We will show that this symmetry may
be broken fully, partially, or not at all. First suppose that
the original Hamiltonian 8 has strong Ising-like anisot-
ropy, i.e., A. ))1. Then it is well known that H has two
infinite-volume ground states with long-range Neel order.
The ground states are characterized by a nonvanishing
Neel order parameter 0~;,&

(H ) & 0. We also have
0'„„„(H}&0and O~;„(H)=O„„„(H)=0for a=x,y.
Then by the relation (4) we have Or'„„(H)&0and

O«,„(H}=0for the order parameters of the transformed
Hamiltonian. This is consistent with the fact that the
transformed Hamiltonian H describes a ferromagnetic Is-
ing chain with a small perturbation when A, &&1. One can
prove that such a Hamiltonian has two infinite-volume
ground states where the Z2 symmetry corresponding to
the m rotation around the x axis is spontaneously broken,
but the other Z2 symmetry is unbroken. "

Next consider the case where the anisotropy parameter
D in H is very large. The infinite-volume ground state of
H is then unique, has exponentially decaying correlation
functions and has a finite excitation gap. All the order
parameters are vanishing in this ground state. The
ground state of the corresponding H has similar proper-
ties. It is unique, disordered, and breaks no symmetry at
all. " Similar conclusions hold for a Hamiltonian with
strong dimerization. "

Finally we consider the Haldane phase which is be-
lieved to take place in a region of parameter space includ-
ing the isotropic Heisenberg point A, =1, D =0. Here the
infinite-volume ground state of H is also unique, has ex-
ponentially decaying correlation functions, and has a
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finite excitation gap. In particular we have ON;, &

=0 for
a=x,y, z. However the ground state is believed' to have
a hidden antiferromagnetic order characterized byO„„.„s(H)&0for a=x,y, z. Then from relation (4) we
find that the order parameters for the unitary
transformed Hamiltonian H must satisfy Of„„(H)&0
and Or*„„(H)&0. Therefore the full Z2XZ2 symmetry
of H is spontaneously broken.

This observation leads us to the somewhat puzzling
conclusion that in the Haldane phase H has four distinct
infinite-volume grounds states, while H has a unique
infinite-volume ground state. Recall that the numbers of
infinite-volume ground states are unchanged by the uni-
tary when we are in the Neel, the large-D, or the dimer-
ized phases. Of course our unitary is nonlocal, so the
number of infinite-volume ground states of H does not
have to equal the number of infinite-volume ground states
for H. The four infinite-volume ground states of H when
we are in the Haldane phase do have an important conse-
quence for the original Hamiltonian H. For a finite open
chain the Hamiltonian H must have at least four eigen-
states with very low energies. For a finite open chain H
and H have the same eigenvalues, so the Hamiltonian H
must also have four eigenstates with very low energies.
We conclude that the near degeneracy in the Haldane
phase is an inevitable consequence of the Z2 XZ2 symme-
try breaking.

A VARIATIONAL CALCULATION

The above picture can be recovered by a surprisingly
simple variational analysis. We consider states which can
be written as 4=/P tgtg where P is a state on a
single site, and minimize the expection value (41H14&
of the transformed Hamiltonian.

In the parameter region D & 4, 2A, —D & 4, A, & 0, we
find that the minimum is attained at four di8'erent varia-
tional states: P=a10&+Pl+ &, P=a10&+Pl —

& where
a=v (4+D —2A, )/(8 —2A, ), p=&(4—D)/(8 —2A, ).
(Surprisingly, these states at the Heisenberg point A, = 1,

Energy -0.5
(rel. units)

D =0 are the exact ground states of the solvable model
discussed below. ) Figure 1 shows the energy landscape
for the Heisenberg model in this simple variational ap-
proach. As we increase A, with D (4 fixed we see a van-
ishes at a critical value. For A, larger than this critical
value the minimum is attained at the two variational
states /=1+ & and /=1 —&. These states, which break
only half of the Z2 XZ2 symmetry, are the minimizers in
the region 2A, —D )4, k) D, A, & 0. Finally, in the region
D )4, D & A. )0, none of the Z2 XZz symmetry is bro-
ken. The minimum is attained at one state, /=10&.
Thus our variational calculation qualitatively recovers
the phase diagram of the model.

THE SOLVABLE MODEL AND RIGOROUS RESULTS

The SU(2)-invariant biquadratic Hamiltonian

L —1

H= $ J;[S; S;+)—P(S;.S;+)) j,
with J;&0 is solvable for P= —

—,'. The above scenario
can be rigorously verified in this case. In Ref. 3 it was
proved that the infinite-volume ground state of this Ham-
iltonian is unique, has exponentially decaying correla-
tions and a finite excitation gap. However, it was also
found that in a finite open chain there are four distinct
ground states. We will not need explicit formulas for
these ground states here, but we should emphasize that
none of these ground states can be written as a single ten-
sor product of states at each site. As we will now show
the ground states of H = UHU ' can be written as a sim-
ple tensor product. (If P= —

—,
' and the J s are all posi-

tive then the ground state is independent of the J s. We
include them for later use. )

One can easily diagonalize the two-site Hamiltonian
corresponding to H. The ground state subspace is four
dimensional and is spanned by P„P„with v=1,2, 3,4,
where

y, =v'I/310&+v'2/31+ &,

$z =&1/310 &
—v'2/31+ &,

$3=v 1/310 &+v'2/31 —&,

(()4=v'1/310 &
—v'2/31 —

& .

It is clear that the four states

+ =P„gPg gP @P„for v=1,2, 3,4,

FIG. 1. The energy for the Heisenberg model (k=1, D=0)
is plotted as a function of the variational parameters x and y.
The variational state is /=10&+xl+ )+yl —). The minimum
is attained at four points, indicating the full Zz XZ2 symmetry
is broken.

are ground states for H. It is easy to prove that they are
the only ground states. As was discussed in Ref. 3, the
corresponding four ground states of the original Hamil-
tonian H converge to a single infinite-volume ground
state. The four states above will converge to four distinct
ground states. One can easily show this by computing
the expectations of some local observables, e.g., S,",S~,S,
in these four states. In Ref. 11 we prove that these four
infinite-volume ground states are the only infinite-volume
ground states of H. Of course we have nonvanishing or-
der parameters, Of„„(H) =0f, ,(H ) = 4, in these states.

For the dirnerized chain in which J;=1 for even i and
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J,=5)0 for odd i, we have obtained rigorous results for
small 5 in a neighborhood of P= —

—,'. The precise state-
ment is as follows. There is a constant c such that if 5 is
sufficiently small and ~P+ —,

'
~
(c5, then the order parame-

ters Or", ,(H ) and Or, ,(H ) are nonzero and the
transformed Hamiltonian H has four infinite-volume
ground states. Furthermore in the original system the
truncated correlation functions decay exponentially and
there is a gap. We stress that the ground states of the
models with PA —

—,
' are not as simple as those for

P= —
—,'. Unlike the VBS states they cannot be written in

the form of Eq. (7}.

CONCLUSION

We have argued that the appearance of the Haldane
gap corresponds to the full breaking of a hidden Z2 XZz
symmetry. The hidden antiferromagnetic order and the
fourfold near degeneracy of the ground state can be re-
garded as consequences of this hidden symmetry break-
ing. By introducing a nonlocal unitary transformation of
the S= 1 chain we have made the hidden Z& XZ2 sym-
metry explicit and given a simple variational calculation
that predicts the Haldane phase.

One might further conclude that the Z2 XZz symme-

try breaking is the origin of the Haldane gap phenomena
since a breaking of a discrete symmetry usually leads to a

gap and exponentially decaying correlation functions.
We stress that the relation between this symmetry break-
ing and the appearance of the Haldane phase is not that
simple since the unitary we have used is highly nonlocal.
Exponential decay of the correlations in the transformed
system has, a priori, nothing to do with exponential decay
of the correlations in the original system. A gap in the
transformed system might seem to imply a gap in the
original system since their energy spectra for a finite
chain must be the same. However, a proper definition of
the existence of an energy gap must be done in the
infinite-volume setting and involves the local observables
of the system. The set of local observables for the origi-
nal system is not the same set of operators as the set of lo-
cal observables for the transformed system, so there is no
immediate connection between a gap in the original and
transformed systems. However we wi11 present" an argu-
ment (not yet rigorous} that the Z2 X Zz symmetry break-
ing in the transformed system should lead to a unique
ground state and a gap in the original system.

ACKNOWLEDGMENTS

T.K. was supported in part by N.S.F. Grant No.
DMS-8902248. H.T. was supported in part by a grant-
in-aid from the Japanese Ministry of Education, Science
and Culture. The authors thank Tohru Koma and Elliott
Lieb for useful discussions.

~F. D. M. Haldane, Phys. Lett. 93A, 464 (1983);Phys. Rev. Lett.
50, 1153 (1983).

For a review, see I. AfHeck, J. Phys. Condensed Matter 1, 3047
(1989).

I. AfBeck, T. Kennedy, E. H. Lieb, and H. Tasaki, Phys. Rev.
Lett. 59, 799 (1987);Commun. Math. Phys. 115,477 (1988).

4M. den Nijs and K. Rommelse, Phys. Rev. B 40, 4709 (1989).
5S. M. Girvin and D. Arovas, Phys. Scr. T27, 156 (1989).
H. Tasaki, Phys. Rev. Lett. 66, 798 (1991).

7T. Kennedy, J. Phys. Condens. Matter 2, 5737 (1990).
I. ASeck and B.I. Halperin, private communication.
M. Hagiwara, K. Katsumata, I. AfBeck, B. I. Halperin, and J.

P. Renard, Phys. Rev. Lett. 65, 3181 (1990).
M. den Nijs, Phys. Rev. Lett. 64, 435 (1990).
T. Kennedy and H. Tasaki, Commun. Math. Phys. (to be pub-
lished).

' If we use the open boundary conditions then the only con-
straint on the parameters is that A, ~ 0.

' At the isotropic point A, =1, D=O, the order parameters
O, t g(H) should have the same value for a=x,y, z since the
ground state is rotation invariant. It is natural to expect that
they all take nonvanishing values throughout the Haldane
phase.




