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Effect of current direction on the dynamics of Josephson-junction arrays

L. L. Sohn, M. S. Rzchowski, J. U. Free, * and M. Tinkham
Department ofPhysics and Diuision ofApplied Sciences, Harvard Uniuersity, Cambridge, Massachusetts 02138

C. J. Lobb
Center for Superconductiuity Research, Department ofPhysics, Uniuersity ofMaryland, College Park, Maryland 20742

(Received 8 July 1991)

We present an extensive experimental and theoretical study of the effect that the current direction has
on the dynamical properties of rf and dc current-biased overdamped Josephson-junction arrays. We
show that a strong spatial symmetry of the array about the direction of the macroscopic current fiow is
necessary for arrays to show only integer giant Shapiro steps. If this symmetry is broken, arrays will

produce both fractional and integer giant Shapiro steps. A moving-vortex model and a pendulum model
are used to describe our experimental and computational results.

I. INTRODUCTION

When a single overdamped Josephson junction is both
dc and rf current biased, the junction can phase lock to
the rf current at voltages

( V„)=n, n =0, 1,2, . . . ,
2e

where v is the rf frequency. ' When this phase locking
occurs, we say that the junction is on its nth Shapiro step.
Josephson junctions arranged in an N XM square-lattice
array (where N is the number of junctions in the direction
of the current flow) can also phase lock to the rf current
at voltages

(V„)=n,n=0, 1,2, . . . .)ah v
2

When this collective effect occurs, i.e., when all the junc-
tions are simultaneously on the nth Shapiro step, we say
that the array is on its nth giant Shapiro step. In the
presence of a transverse magnetic field which corresponds
to a strongly commensurate number of flux quanta per
plaquette, f =p/q (where p and q are small integers), the
array can again phase lock to the rf current but at volt-
ages

(V ) Nhv

q2e

n =1,2, 3, . . . and q =1,2, 3. . . . (3)

For q ) 1, these particular steps are named fractional gi-
ant Shapiro steps and have been attributed to the driven
motion of a superlattice of field-induced vortices corn-
mensurate with the underlying array lattice. '

Recently, we found that changing the direction of the
applied macroscopic current with respect to the array
unit cell can greatly affect the dynamical properties of
proximity-effect square-lattice Josephson-junction ar-
rays. In particular, we found that if the transport
current is injected along the [11] direction of the array,
the array exhibited only integer giant [Eq. (2)] and not

fractional giant [Eq. (3)] Shapiro steps. We attributed
this to the fact that all the junctions in the [11]-oriented
array are directly injected with equal components of the
macroscopic current (as is not the case for the [10]-
oriented array). Through simulations, we found that this
results in the entire array behaving like M coupled one-
dimensional arrays.

In this paper, we present a more extensive study of the
effect current direction has on the dynamical properties
of proximity-effect Josephson-junction arrays. This study
includes measurements made on square-lattice arrays
whose macroscopic current is injected at 15' with respect
to the [10] direction. These measurements show that 15'
arrays also exhibit fractional giant Shapiro steps, albeit
small ones. We argue that the breaking of the array's
spatial symmetry in the presence of the bias current is
necessary for the array to exhibit fractional giant Shapiro
steps.

We also present our study of triangular-lattice arrays,
arrays in which each superconducting island is surround-
ed by six nearest neighbors in a close-packed geometry.
These particular arrays are of special interest since they
are a better model than the square-lattice geometry for
naturally occurring grains in samples of granular super-
conductor. By changing the direction of the applied
macroscopic current with respect to the array, we were
again able to affect the presence or absence of the frac-
tional giant Shapiro steps in the array. A summary of
our findings can be found in Table I. Finally, we use both
phenomenological and analytical models to describe our
results for square- and triangular-lattice arrays.

This paper is organized as follows. In Sec. II, we
briefly describe our sample fabrication and measurement
techniques. In Sec. III, we present our experimental re-
sults, paying particular attention to the results we ob-
tained for the 15' square- and the triangular-lattice ar-
rays. Section IV describes our numerical simulations of
both the square- and triangular-lattice arrays. In Sec. V,
we present both macroscopic and microscopic descrip-
tions of the dynamics of square-lattice arrays, and extend
them to the triangular geometry. Finally, in Sec. VI, we
present our conclusions.
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II. SAMPLE FABRICATION
AND MEASUREMENT TECHNIQUES

We have studied square- and triangu}ar-lattice arrays
of proximity-efFect Josephson junctions in which the
transport current is injected along a variety of directions.
All arrays were fabricated and measured in a similar
manner. A 0.3 p,m thick Cu film was thermally evaporat-
ed onto a previously patterned sapphire substrate. After
Ar ion etching the Cu (to clean the surface and therefore
create a better interface), a 0.2 pm Nb film was sputtered
onto the sample. A liftoff of the underlying photoresist
then was done in order to define the edges of the array.
For square-lattice arrays, Nb cross-shaped islands were
patterned (and formed using SF& reactive-ion etching)
such that macroscopic current was injected along the [10]
and [11] direction of the array unit cell (see Table I). An
additional array was fabricated such that the macroscop-
ic current was injected 15' off the [10] orientation of the
array unit cell (see Table I). The square-lattice arrays we

studied were 10 mm long and 1 mm wide. Each square-
lattice array had a lattice constant of 10 pm and junction
length of 2 gaum. The [10]-oriented arrays contained
1000X 100 junctions, the [11]-oriented arrays 1414X 141,
and the 15' array, 967X97.

For the triangular-lattice arrays, Nb six-sided asterisk
islands were patterned (and again, formed using SF6
reactive-ion etching) such that the macroscopic current
was injected along the [101]and [21 I] direction of the
array unit cell (see Table I). Unlike the earlier square-
lattice arrays, the differently oriented triangular-lattice
arrays were fabricated on the same substrate in order to
minimize fabrication inconsistencies. The lattice con-
stant of these arrays was 16 pm. The junction length was

TABLE I. Strengths of fractional giant Shapiro steps pro-
duced by various geometries of Josephson-junction arrays. The
black crosses and asterisks are Nb islands. The applied macro-

scopic current Aows horizontally and "geometry" indicates the
direction of the current with respect to the array unit cell. All

array types showed integer giant Shapiro steps.

2 pm, as in the [10]-oriented square-lattice arrays. The
macroscopic dimensions were 10 mm by 3 mm. While
the [101]-oriented triangular-lattice array contained
722 X 188 junctions, the [21 I ]-oriented array contained
625 X 217 junctions.

The [10], [11], and 15 square-lattice arrays exhibited
normal state resistances, r„,ranging from 2.6 to 5.0 mQ
per junction and possessed Kosterlitz-Thouless transition
temperatures (TxT) ranging from 1.2 to 3.3 K. The
triangular-lattice arrays showed slightly different proper-
ties: r„ranged from 1.40 to 1.67 mQ per junction, and

TKT from 4.5 to 4.75 K. Using a lock-in amplifier to
make four-point measurements, we characterized the ar-
rays in terms of magnetoresistance and in terms of dy-
namic resistance (d V/dI) versus dc voltage or current for
various external magnetic fields, rf frequencies and ampli-
tudes, and temperatures.

III. EXPERIMENTAL RESULTS
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Some of our data on the magnetoresistance of square-
and triangular-lattice arrays are shown in Figs. 1(a) and
l(b). As had been reported earlier through experiments
by Brown and Garland and through simulations by Shih
and Stroud, ' the magnetoresistances of the two types of
array lattices differ greatly. While the strongest resis-
tance minimum (apart from f =integer) for both the
square- and triangular-lattice arrays is at f =

—,', the next

strongest minimum for the square-lattice array is at
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FIG. 1. Dynamic resistance vs number of flux quanta, f, per
unit cell for the (a) square- and (b) triangular-lattice arrays.
Data were taken at (a) T =2.S1 K and {b) T =3.97 K. Both ar-

ray lattices show strongest vortex pinning at f =—'; however,

the next strongest pinning for the square-lattice array is at

f =
—,', for the triangular lattice, f = —'.
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f=
—,'; for the triangular lattice, it is at f=

—,'. Such resis-

tance minima indicate pinning of the vortex superlattice.
We have found that although the main features of the
low-current magnetoresistance are dependent on the fun-
damental lattice of the array, these features are indepen-
dent of the orientation of the array with respect to the
transport current. "

As we have reported earlier, both the [10]- and [11]-
oriented square-lattice arrays exhibit integer giant
Shapiro steps at voltages corresponding to Eq. (2), but
only the [10]-oriented and not the [11]-oriented arrays
display fractional giant Shapiro steps for commensurate f
values at voltages corresponding to Eq. (3). In our
present study, we find that both integer and fractional gi-
ant Shapiro steps appear in the 15' array (see Fig. 2), but
the fractional step, n/q =1/2, in the 15' array is quite
weak, as determined by the minimum dynamic resistance;
fractional giant Shapiro steps of n/q &3/2 are nearly
nonexistent. This is in striking contrast to the [10]-
oriented arrays, ' in which we observed strong fractional
giant Shapiro steps for n/q & 3/2. Subharmonic steps,
which were so prevalent in our [10]-oriented arrays at rf
frequencies 0 & 3 (where 0=hv/2ei, r„,andi, and r„are
the critical current and normal state resistance per junc-
tion, respectively ), also appear in the 15' array, albeit
weakly, for 0. 18 (Q (1.24.

The general dynamical properties of the triangular-
lattice arrays have many parallels to those of the square-
lattice ones. In Fig. 3(a), we see that, as in the case of the
[10]-oriented square-lattice arrays, the [101]-oriented
triangular-lattice arrays exhibit both integer and fraction-
al giant Shapiro steps' at voltages corresponding to Eqs.
(2) and (3). In Fig. 3(b), we see that the [21T]-oriented
triangular-lattice arrays, like the [11]-oriented square-
lattice arrays, show only integer giant [Eq. (2)] Shapiro
steps. One remarkable feature which is unique to the
[211]-oriented triangular-lattice arrays is that the even
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FIG. 3. Dynamic resistance vs normalized voltage for the (a)
[101]-oriented and (b) [211]-oriented triangular-lattice arrays
in the presence of perpendicular magnetic fields corresponding
to f=0, z', —,', and ~~. (a) T =3.40 K and rf frequency v=0.9
Mhz (Q=hv/2ei, r„=0.33). (b) T=3.61 K and rf frequency
v=0. 7 Mhz (Q=hv/2ei, r„=0.96). Only the [101]case shows
fractional giant Shapiro steps. Integer giant Shapiro steps in the
[21 1] case alternate in strength, the even steps being stronger
than the odd ones.

IV. NUMERICAL SIMULATIONS

integer steps are much stronger than the odd ones. We
have found that this unusual behavior is both field- and
frequency-independent.

A summary of our results can be found in Table I.
Briefly, we have found that the [10]-oriented and 15'
square- and [101]-oriented triangular-lattice arrays pro-
duce both integer and fractional giant Shapiro steps. The
[11]-oriented square- and [21 1]-oriented triangular-
lattice arrays, however, produce only integer giant
Shapiro steps.
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The RCSJ model' is often used to describe rf current-
biased single Josephson junctions. ' This model assumes
that a Josephson junction is a parallel combination of a
resistor r„,a capacitor C, and a nonlinear Josephson ele-
ment with critical current i, . The equation of motion for
this system when it is current biased is

I

2

2e V/Nhv

FIG. 2. Dynamic resistance vs normalized voltage for the 15
square-lattice array in the presence of perpendicular magnetic
fields corresonding to f =0, —', and —'. Data were taken at
T =2.52 K and rf frequency v= 3.5 Mhz (Q =h v/2ei, r„
=0.41).

AC d2y g dy
z

+ +i,siny =id, +i&sin(cot),
2e dt 2er„dt (4)

where y is the gauge-invariant phase difference between
the two superconducting islands that make up the junc-
tion, id, and i& are the applied dc and rf current per junc-
tion, and i, is the critical current of the junction. In the
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overdamped limit [P, =(2e/A)i, r„C«1], Eq. (4)
reduces to a first-order differential equation.

In this section, we study both square- and triangular-
lattice arrays of overdamped Josephson junctions.
Rzchowski, Sohn, and Tinkham' have shown that the
dynamics of an entire [10]-oriented square-lattice array at
f =

—,
' can be modeled with a 2X2 unit cell of the array.

In Sec. IV A, we present our analysis of a 2 X 2 unit cell of
the [11]-oriented square-lattice array at f =

—,'. This
analysis centers on the detailed response of the gauge-
invariant phase difference across each junction in the
2 X 2 cell. In Secs. IV 8 and IV C, we extend this "micro-
scopic" model to the unit cells of the [101]-oriented and
[21 1]-oriented triangular-lattice arrays, respectively, and
describe our results.

'io

A. The 2 X 2 unit cell of the [11]-oriented array

As has been previously discussed, the [11]-oriented
square-lattice array at f =

—,
' can be described as a 2X2

unit cell. Following Rzchowski et al. ,
' we demand that

the superlattice unit cell carry a net current equal to the
external drive current. For the [11]geometry, we model
this as equal current Rows of I«t/2=id, +i&sin(cot)
where I„,is the applied current per node (normalized to
the single-junction critical current, i, ), in the orthogonal
[10]and [01]directions in the cell (see Fig. 4). If we satis-
fy Auxoid quantization and total current conservation at
the central node, we can write the following equations,

a+y+P'+P=~ (mod2~),

dp' . , dp . Itot+ sing' — —sinP =
d7 d7 2

d tx . Itot+siny — —sinn =
di. di- 2

(Sa)

(5b)

(5c)

where a, P, P', and y are the gauge-invariant phase
differences as denoted in Fig. 4, w=(2ei, r„/A)t, and

I„,=Id, +I,fsin(cot) is the applied dc and rf current per
node. Making the following substitutions, x =(y —a)/2,
y =(y+a)/2, u =(P—P')/2, and v=(P+P')/2, the
above equations become

dx Itot
+cosy sinx =

d'T 4

du . . tot—siny sinu =
d7.

(6a)

(6b)

dy da . . dP dg'+ +siny+ sina — — —sinP —sinP' =0,
d7 d7 d7 d'T

(5d)

FIG. 4. 2X2 unit cell of the [11]-oricnted square-lattice ar-
ray. The gauge-invariant phase differences of the individual
junctions are as indicated. I„,is the applied current per node
while i to and i„arethe components of I„,in the [10]-oriented
and [11]-oriented array lattice direction. Both ito and it, are as-
sumed to be I„,/2.

dg 1 . Itot+ sing=
d'r 2 2

(7)

where g=y —n./4. In order to derive Eq. (7), we had
previously assumed that the voltages across the junctions
in a plaquette were equal to one another. The numerical
solution to Eq. (6) shows us that this assumption is
correct.

We comment again that Eq. (7) is equivalent to an
equation of motion for a single overdamped Josephson
junction. Renne and Polder' have analytically shown
that these junctions produce only integer Shapiro steps.
It follows then that [11]-oriented arrays produce only in-

teger steps as well.
The analysis we have just outlined can be used only for

cases in which the square-lattice array can be described
by a periodically repeated 2X2 unit cell. Presently, we
believe that only the [10]-oriented and [11]-oriented ar-
rays are able to satisfy this requirement. The size of the
superlattice cell in the presence of a drive current at
f =

—,
' for intermediate angle arrays, such as the 15 array

we experimentally studied, is not known at this time.
Large scale simulations are needed to determine this and
to understand the finer details of these intermediate ar-
rays.

2 +siny cosx —cosy cosu =0 .
d7

(6c)

If we numerically solve Eq. (6), we obtain I Vcurves-
which show only integer giant Shapiro steps. In addition,
we learn that dy/d~=0. Using this fact, we find that we
can reproduce the equation derived from our simulations
in a previous paper, " namely

B. The [101]-oriented array unit cell

Like the [10]-oriented square-lattice array, the [101]-
oriented triangular-lattice array produces both integer
and fractional giant Shapiro steps. Satisfying fluxoid
quantization, current conservation, and net current flow,
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we can write the following equations for the [101]-
oriented array unit cell when f =

—,':

a+P+y =m. (mod2n. ),
de +siny —sina =I. . .di- di.

dy da . . dP+ +siny+ sinu — —sinP= 0,
di- d i. d7.

(8a)

(8b}

(8c}

where a, p, and y are the gauge-invariant phase
diff'erences denoted in Fig. 5(a). If we let x =(y —a}/2
and y =(y+a)/2, Eq. (8) becomes

dx
2 +2 cosy sinx =I„,,di.

2 ——sin2y+siny cosx =0 .dy 1

di. 2

(9a)

(9b)

Numerically solving Eq. (9) for a variety of rf powers, we
obtain I-V curves which show both integer and fractional
giant Shapiro steps. A plot of the stepwidth versus rf
power is shown in Fig. 5(b). The general features of Fig.

5(b), namely an oscillatory behavior similar to that of a
single junction and a decrease in stepwidth with an in-
crease in step number, are similar to those found in the
stepwidth versus rf power of the [10]-oriented square-
lattice array. '

C. The [21 1]-oriented array unit cell

We have simulated a [21 1] triangular-lattice unit cell,
such as the one shown in Fig. 6(a). Based on our
knowledge of the phase evolution of the junctions in the
[11]-oriented square-lattice array on an integer step at
f =

—,
' and at low rf frequencies, we make the assumption

that the phase di8'erences of the diagonal junctions,
denoted as y in Fig. 6(a), are equal. Because the sum of
the total current is conserved at each node and because
fiuxoid quantization requires 2y a= 2m—f, then, for
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FIG. 5. (a) Diagram of the unit cell in the [101]-oriented
triangular-lattice array. The gauge-invariant phase differences
of the individual junctions are as indicated. I„,is again the ap-
plied current per node. (b) Simulated stepwidth vs rf power for
the [101]-oriented triangular-lattice array at f = —'. Oscillatory
behavior and a decrease in stepwidth with an increase in step
number are similar to single-junction behavior.

FIG. 6. (a) Diagram of the unit cell in the [211]-oriented
triangular-lattice array. The gauge-invariant phase differences
of the individual junctions are as indicated. Again, I„,is the
applied current per node. (b) Stimulated stepwidth vs rf power
for the [211]-oriented triangular-lattice array at f =0. Odd
steps are smaller than even steps agreeing with experimental re-
sults. Even steps never go to zero.
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f =0, we obtain the equation

GCX . Q
2 +2sin —+since=It f2

(loa)

Iff =
—,', Eq. (10a) is replaced by

dc' Q
2 +2 cos—+sina=I„, .

d7. 2
(10b)

Numerically solving Eq. (10a), we obtain I Vcu-rves
which show only integer giant Shapiro steps. Interesting-
ly, identical I-V curves are obtained when solving Eq.
(10b). Using the I Vcur-ves we obtained, we plotted the
stepwidth versus rf power. In Fig. 6(b), we show such a
plot for f =0 and 0=0.5. Here we see that, as in our ex-
perimental results, the odd steps are indeed smaller than
the even ones. Interestingly, the widths of the even steps
never go to zero for any rf power.

V. DISCUSSION

Our experimental results and simulations show that the
macroscopic current direction plays an important role in
the observed step structure of square- and triangular-
lattice arrays. In the systems we have studied, we found
that the [10]-oriented square- and [101]-oriented
triangular-lattice arrays produce strong fractional giant
Shapiro steps. These arrays have junctions which are
perpendicular to the transport current and hence do not
carry any component of the external current. !n con-
trast, we found that the [11]-oriented square- and [21 1]-
oriented triangular-lattice arrays produce only integer gi-
ant Shapiro steps. A11 the junctions in these arrays carry
some component of the external current. More impor-
tantly, however, a strong spatial symmetry of the array
unit cell about the direction of the macroscopic current
How exists in these particular arrays. This results in the
entire array being mathematically reducible to a single
junction for f =

—,'. The 15 array is an intermediate case,

as we have found that this array produces weak fractional
giant Shapiro steps. Like the [ll]-oriented and [211]-
oriented arrays, all of the array's junctions carry some
component of the external current; however, unlike the
[11]-oriented and [21 1]-oriented arrays, the spatial sym-

metry of the unit cell about the direction of the macro-
scopic current flow no longer exists.

Summarizing, we have found that transport current
flows which retain a strong spatial symmetry in the array
produce only integer giant Shapiro steps. %'hen this spa-
tial symmetry is broken, both integer and fractional giant
Shapiro steps are observed. From our study of the
square-lattice arrays, we observe that the widths of the
fractional steps vary as a function of the angle of current
injection. The maximum fractional stepwidth occurs
when there are junctions in the array that are perpendic-
ular to the transport current and correspondingly do not
carry any component of the external current.

In the following sections, we present two models which
describe the dynamical properties of proximity-e6'ect
Josephson-junction arrays.

A. The moving-vortex model

( V) =N rr=-Av N hv
2e 2 2e

(12)

which is Eq. (3) with n = 1 and q =2.
There is some ambiguity involved, however, in using

the vortex model when f =
—,'. This happens because

every plaquette is occupied by a circulating current, so it
is not completely clear whether to count clockwise
currents, counterclockwise currents, or both as "vor-
tices." Nonetheless, we have found that the vortex model
is a useful phenomenologicaE description. The basic as-
sumptions are that the overall macroscopic motion of the
vortices is perpendicular to the external current direc-
tion, and that each junction will undergo a phase slip of
2m in the time it takes for the driven vortices to return to
their original configuration. (A more precise, but less in-

tuitive, model' is presented in the next section. )

Consider first [11]-oriented square arrays. In this case,
the overall macroscopic motion of the vortices is in the
direction of the Lorentz force and toward the next-
nearest-neighbor cells (see Fig. 7). This motion leads to a
phase slippage of 2m per junction per rf cycle, or, from
Eq. (11),

( V) =N 2ir=NAv hv
2e 2e

(13)

Equation (13) says that the lowest voltage step is an in-

Lore ntz
For ce

iext

FICx. 7. Vortex configuration in the [11]-oriented square-

lattice array at f = —'. Large vertical arrow indicates the direc-
2

tion of the Lorentz force resulting from i,„,. Small arrows indi-

cate macroscopic motion of vortices during one rf cycle on the

n/q =1 step.

The behavior of [10] proximity-effect Josephson-
junction arrays has been described in terms of the driven
motion of a superlattice of field-induced vortices com-
mensurate with the underlying array lattice. For ex-
ample, when f =

—,', the 2X2 vortex superlattice moves

one array unit cell in a direction perpendicular to the
transport current after one rf cycle. This motion leads to
each junction in the array having an average phase slip of
~ per rf cycle. From the Josephson voltage relation-
ship, "

( ) R(dy)

it follows that the average voltage across the entire array
1s
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teger step.
For any other field, f =p /q, the macroscopic motion

of the vortices is again in the direction of the Lorentz
force and toward the next-nearest-neighbor plaquettes.
Each junction correspondingly phase slips 2n.n per rf cy-
cle and consequently, fractional giant Shapiro steps are
not produced.

The vortex model can also be used to describe the re-
sults we have obtained for the 15' square-lattice array. In
this orientation, the Lorentz force directs the vortices
into the nearest-neighbor plaquette rather than the next-
nearest-neighbor one. Therefore, fractional giant Shapiro
steps can occur in this type of oriented array.

As we have stated previously, the experimental results
we have obtained for the square- and triangular-lattice
arrays are very similar. Like the [10]-oriented square-
lattice array, the [10T]-oriented triangular-lattice array
exhibits fractional steps at voltages corresponding to Eq.
(3). In Fig. 8(a) we have drawn the f =

—,
' state of the

[101]-oriented array. Here we see that the macroscopic
motion of the vortices is toward the nearest-neighbor pla-
quette. Thus, the junctions in the array can slip 2mn/q

Lorentz
Force

per rf cycle and correspondingly produce fractional giant
Shapiro steps.

The [21 1]-oriented triangular-lattice array is the most
interesting of all the arrays we have studied. In Fig. 8(b)
we have drawn the f =

—,
' state of this array and have in-

dicated by arrows the macroscopic motion of the vor-
tices. Note that under the inAuence of the Lorentz force,
there are really two different types of vortex motion in
the array. One macroscopic motion, denoted by the sin-
gle arrows in the figure, consists of overcoming the low
energy barrier of the egg-carton potential and entering
the nearest-neighbor plaquette. The other, denoted by
the heavy-set arrows, consists of overcoming the high en-

ergy barrier of the egg-carton potential and entering the
next-nearest-neighbor plaquette. A plausible scenario,
then, would be for the vortices to undergo the two types
of motion on successive rf cycles. It would thus appear
that an n/q =1/2 step would occur in the array. Based
on our experiments and simulations, we know that such a
step does not. We deduce that a necessary condition for
a step to appear in the array is that, just as in the [10]-
and [11]-oriented-array case, the vortex motion(s) on a
step must be identical for each rf cycle. This means that
the vortices in the [21 1]-oriented array must undergo the
two different types of motion we have just outlined in
each rf cycle. Hence, the array phase slips 2m.Nn per rf
cycle and only integer giant Shapiro steps are produced.

As we have stated previously, changing the macroscop-
ic current direction does not affect the general features of
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FIG. 8. Vortex configuration in the (a) [101]-oriented and (b)
[211]-oriented triangular-lattice array at f=—'. Again, large
vertical arrow indicates the direction of the Lorentz force re-
sulting from i,„,. For (a), arrows indicate macroscopic motion
of vortices during 2 subsequent rf cycles on the n /q = 1/2 step.
While the light arrows indicate vortex motion during one rf cy-
cle, the heavy arrows indicate vortex motion during a subse-
quent rf cycle. For (b), light and heavy arrows show two possi-
ble vortex motions occuring sequentially in one rf cycle.

B

FIG. 9. Gauge-invariant phase differences, y, for junctions in
a 2X2 unit cell on the n/q =1/2 step at the (a) beginning and
(b) end of an rf cycle in the [10]-oriented array at f=—'. Arrows
indicate the direction of the supercurrents. The motion of y~
and yz over the same time period is shown in the "pendulum"
diagram (c). At the end of one rf cycle, the pendula have inter-
changed positions; y& has advanced 3m. /2 while y~ has ad-
vanced by ~/2.
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the magnetoresistance of square- and triangular-lattice
arrays, although it does affect the rf response of the indi-
vidual arrays. The field modulation in a magnetoresis-
tance measurement comes from the fact that the resis-
tance, R, is a function of T/T, (f), which in turn is a
function of field, not current. When we apply a small
current, regardless of its direction with respect to the ar-
ray, the wells in the egg-carton potential tilt slightly.
Thermal fluctuations lead to the unpinning of the vortices
and to the subsequent creation of a small voltage across
the array. In an rf experiment, we are driving the system
very hard, literally dragging the vortices from well to
well. Therefore, current direction should and does play
an important role in the outcome of these types of experi-
ments.

The moving-vortex model is only a phenomenological
model which explains in general terms why fractional gi-
ant Shapiro steps can or cannot exist in certain oriented
arrays. However, we have been unable to explain, in con-
text of this model, the detailed motion of how the vor-
tices are able to by-pass the high energy barrier of the ar-
ray lattice and move into the next-nearest-neighbor cell. '

In addition, we have not been able to even qualitatively
explain stepwidths using this model. In the section
below, we take an entirely different approach towards ex-
plaining the presence or absence of fractional giant
Shapiro steps in Josephson-junction arrays. This ap-
proach centers on examining the individual junctions in
an array unit cell and applying Kirchhoff's voltage law.

B. The pendulum model

The equation of motion for a single Josephson junction
[Eq. (4)] is identical to that of a damped driven pendulum
with mass ~ C, damping ~ 1/R, and with constant and
ac applied torques. In an array, the equations are cou-
pled, via Kirchhoff's laws, and an array becomes
equivalent to a network of coupled pendula. Thus,
representing the gauge-invariant phase differences, y;,
where i and j are the ith and jth island in the array as
pendula, is a pictorial and quantitative description of the
dynamical properties of the array. '

When driven by an rf current with frequency v, a sin-
gle junction can phase lock to the rf current. When the
junction is overdamped, y swings around a total of 2~n
in one rf cycle. If dy /dt equals 2m n v as we have indicat-
ed, Eq. (11) transforms into the equation of an integer
Shapiro step [Eq. (1)].

The above model has been successfully applied to the
[10]-oriented square-lattice array. ' For f =0, the junc-
tions parallel to the direction of the transport current act
like isolated Josephson junctions and the perpendicular
junctions play no role in the array. Equation (2) is ob-
tained by considering Xy s swinging 2~n times per rf cy-
cle.

For the f =
—,
' state, the pendulum model must be ap-

plied to a 2 X 2 unit cell. ' In Figs. 9(a) and 9(b), we have
drawn two alternative versions of the f=

—,
' ground state

of such a cell. We take the phase differences, denoted as

y~ and y~, of the junctions parallel to the external
current to be equal to +sr/4 [the array's ground state at

'ex'
(a)

(b)

C' D

FIG. 10. (a) Gauge-invariant phase differences, y, for junc-
tions in a unit cell on the n =1 step in the [11]-oriented square-

lattice array at f= —'. Arrows indicate direction of the super-

current. (b) The motion of y& and y& over the same time is

shown in the "pendulum" diagram (c). Unlike in the [10] case,
in the [11]case, each pendulum has advanced by 2m at the end

of one rf cycle.

f =
—,
' (Ref. 22)] at the beginning of the rf cycle. When

i,„,is applied in the direction shown in the figure, it
winds y„and y~ counterclockwise, y~ by 3m/2 and yz
by ~/2, in one rf cycle [see Fig. 9(c)] such that the cell is
now in the other f=

—,
' ground state shown in Fig. 9(b).

In the following rf cycle, the external current, i,„„again
winds y ~ and y~ counterclockwise: this time y „bym. j2
and y~ by 3m/2. Since half of the junctions in the array
act like junction 3 and the other half act like junction 8,
we obtain an average phase slip of ~ per rf cycle per junc-
tion. Equation (3) is thus obtained.

For the [11]-oriented square-lattice array in the f =0
case, every junction is directly and equally injected with
the transport current. Thus, all junctions in the array act
like a single Josephson junction and will correspondingly
phase slip 2vrn per rf cycle. Again, we see that we have
obtained Eq. (2).

For f =
—,', we look at a particular plaquette in the ar-

ray. Figure 10(a) shows a plaquette with the direction of
the transport current as indicated. We see in this figure
that there are two different paths by which current trav-
els across the [11]-oriented array. By Kirchhoff's voltage
law, V~ + Vz = Vc+ VD. This additional constraint
forces y~+y~ to rotate rigidly with yD+yc by 2~ per
junction per rf cycle as shown in Fig. 10(b). (Our simu-

lations show that at low rf frequencies the array remains
in the staircase state. By definition this means that
y ~ =y~ and is m /2 out of phase with yD =yc ).

The results we have obtained from studying the
triangular-lattice array can also be explained using the
pendulum model. As in the [10]-oriented square-lattice
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case, in the [101]-oriented triangular lattice, we find that
the gauge-invariant phases are not forced to be locked to-
gether and move at some fixed rate per rf cycle in order
to satisfy Kirchhoff's voltage law. The perpendicular
junctions allow the other junctions to rotate more freely.
Therefore, the phases can evolve such that fractional
steps can exist in this type of an array.

In the [211]-oriented triangular-lattice array, we see
that the array really has two types of junctions: straight-
feed-through junctions, A, and diagonal ones, 8 and C, as
shown in Fig. 11(a). By KirchhofPs voltage law, we see
that y z must move twice as fast as yz and y& per rf cy-
cle. Thus, while junctions 8 and C are on their first giant
Shapiro step, junction A is already on its second step [see
Fig. 11(b)]. This corresponds nicely to the two-vortex
motion we described in the preceding section for this type
of an array; the motion the vortices undergo to travel
into the next-nearest-neighbor cell corresponds to the
phase evolution of junctions 8 and C. The motion the
vortices undergo to travel into the nearest-neighbor cell
corresponds to the phase evolution of junction A. Based
on our analysis of the [11]-oriented square-lattice case, we
propose that Kirchhoff's voltage law and the absence of
perpendicular junctions again constrain the evolution of
the gauge-invariant phase differences per rf cycle such
that the only periodic solution is one in which the phases
of the junctions rotate in multiples of 2m per rf cycle.
Thus, only integer giant Shapiro steps are produced by
the [21 1]-oriented triangular-lattice array

The alternating step widths produced by the [21 1]-

oriented triangular-lattice array can be accounted for by
examining Eq. (9). In this equation, we see that the
sin(al2) term, the term describing the diagonal junc-
tions, contributes to only the even harmonics of the
time-dependent voltage since its fundamental period is
4m.n. The term describing the straight-feed-through junc-
tions, sin(a), contributes to both the even and odd har-
monics of the time-dependent voltage as its fundamental
period is Z~n. When the array is on an odd step, only
the straight-feed-through junctions are on the step; the
diagonal ones still have not locked to the rf frequency
and are therefore not on a step. When the array is on an
even step, however, all the junctions are on a step, al-
though not on the same step. As a result, the even steps
are much wider than the odd ones, and do not go to zero
width because the two steps go to zero for different power
levels.

We stress that because of the perpendicular junctions
in the [10]-oriented square- and [101]-oriented
triangular-lattice arrays, the phase differences of the oth-
er junctions are not tightly locked together and therefore
do not have to rotate at the same rate each rf cycle. Con-
sequently, fractional giant Shapiro steps can be produced
by the array. Contrast this to the [11]-oriented square-
and [21 1]-oriented triangular-lattice arrays in which
there are no perpendicular junctions. In this case, the
phase differences of the junctions are locked together and
must phase slip at the same rate each rf cycle, so that the
only periodic solution is one in which integer giant
Shapiro steps are produced.

VI. CONCLUSION

ext

(a)

(b)

FIG. 11~ (a) Gauge-invariant phase differences, y, for a pla-
quette in the [211]-oriented triangular-lattice array at f= 2.
Arrows again indicate the direction of the supercurrent. (b) By
Kirchhoff's voltage law, V& = V&+ V& and accordingly, y&
must rotate 4mn per rf cycle while y& and yz each rotate 2~n
per rf cycle on the nth giant Shapiro step.

In the course of our study, we have seen the impor-
tance of current direction on the dynamics of proximity-
effect Josephson-junction arrays. When the spatial sym-
metry of the array is maintained in the presence of
current fiow, only integer giant Shapiro steps [Eq. (2)] are
produced. The [11]-oriented square- and [21 1]-oriented
triangular-lattice arrays we studied showed such a spatial
symmetry, and indeed, these arrays produced only in-
teger giant Shapiro steps. If, however, this spatial sym-
metry is broken, both integer giant [Eq. (2)] and fraction-
al giant [Eq. (3)] Shapiro steps are produced. In our ex-
periments, the bias current broke the spatial symmetry of
the [10]-oriented and 15' square- and [101]-oriented
triangular-lattice arrays. These arrays produced integer
and fractional giant Shapiro steps.

The exact relationship between decreasing fractional
giant stepwidth and current orientation is presently un-
known since rounding of the steps due to thermal fluctua-
tions, noise, and inhomogeneities in the array make it
difticult to experimentally measure the actual stepwidths.
This prevents us from making a quantitative comparison
between the results of our experiments and those of
theory; only a qualitative comparison can be made.
Based on our study of the square-lattice arrays, however,
we hypothesize that this relationship might be cos(28) or
cos (28), where 8 is the angle off the [10]orientation.

The vortex model presented in this paper provides a
phenomenological explanation of why fractional giant
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Shapiro steps can or cannot occur in the various types of
arrays studied. The pendulum model, however, gives a
detailed description of how the gauge-invariant phase
differences of the individual junctions evolve per rf cycle.
In this model, we see that Kirchhoff's voltage law con-
strains the evolution of the phase differences so that for
the [11] square- and [21 1] triangular-lattice cases, the
only periodic solution allowed is one which corresponds
to integer giant Shapiro steps. The perpendicular junc-
tions in the [10]-oriented square- and [101]-oriented
triangular-lattice arrays, however, allow the phase
differences of the other junctions in the array to evolve
more freely per rf cycle. As a result, the allowed periodic

solutions correspond to both fractional and integer giant
Shapiro steps.
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