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Magnetism of Fe impurities in alkaline-earth metals and Al
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First-principles electronic-structure calculations were performed for embedded clusters representing
an Fe impurity in the metal hosts Be, Mg, Ca, Sr, and Al. The discrete-variational method was em-

ployed in the framework of local-spin-density theory. BeFe was found to be nonmagnetic, as well as
A/Fe, this last if local relaxation is taken into account. For Fe in the other alkaline-earth metals, local
magnetic moments & 2p& were encountered. Mechanisms leading to moment stability or moment

quenching are discussed. The contact hyperfine field at the Fe nucleus in CaFe was calculated, and a
small positive value was found. Magnetic susceptibilities were estimated employing the virtual-bound-
state model, with parameters derived from the calculations.

I. INTRODUtmrON

The problem of localized magnetic moments (p) of im-
purities in metallic hosts attracted great interest in the
1960s and early 1970s, being the subject of numerous ex-
perimental and theoretical efforts. ' In spite of the con-
siderable amount of work, the understanding of this
problem is far from complete and many questions have
been left unanswered.

Experiments devised to investigate the magnetism of
dilute alloys include both bulk (macroscopic) and local
properties. On the theoretical side, the "virtual-bound-
state" (VBS) model of Friedel and Anderson provided a
basis for the understanding of what conditions would
lead to the existence of stable moments of transition-
element impurities in s-p metals. In this model the transi-
tion impurity d level is broadened by interaction with the
host conduction band, resulting in a resonance near the
Fermi level. The existence or not of local magnetism
would depend on a delicate balance between the impurity
(d) —host (s-p) hybridization and the intraatomic correla-
tion energy.

The VBS model provided a static picture for T=O;
however, the discontinuity brought in by the sharp tran-
sition between magnetic and nonmagnetic regimes was
sometimes found unsatisfactory. On the other hand, the
theory developed by Kondo and, later, Wilson to ex-
plain the behavior of the resistivity of dilute alloys with
temperature presented a quite different picture. Accord-
ing to this theory, magnetic moments, below a charac-
teristic temperature, are screened by correlations with the
conduction electrons and thus cannot manifest them-
selves. The Kondo theory was successful in explaining
the logarithmic dependence with T of the resistivity for
systems with stable magnetic moments (sometimes called
"Kondo systems"). These systems have characteristic
peaks in the variation with temperature of the specific
heat and thermopower, and Curie-Weiss behavior of the

macroscopic magnetic susceptibility. ' However, at
T~0 the resistivity of many alloys exhibits a T depen-
dence that cannot be accounted for by the Kondo
theory. ' This behavior was better explained in the con-
text of the theory of spin fluctuations, ' which postulates
for the impurity spin a lifetime v, which may be very
short for systems with unstable moments.

The concepts of the Kondo and spin-fluctuation
theories may be unified in the sense that a characteristic
temperature Tz separates regions in which magnetic be-
havior may be detected or not. Alloys with unstable local
moments are expected to have very high characteristic
temperatures and thus do not display Curie-Weiss behav-
ior of the susceptibility and other manifestations of stable
moments. However, many experimental details are left
unexplained and the exact microscopic description of the
local moment is not given. When experiments show no
sign of magnetism, one is left with the question of wheth-
er a magnetic moment is screened or very rapidly fluc-
tuating, or whether it actually does not exist.

In recent years alternative new ways of approaching
the impurity problem have become available. On the ex-
perimental side, many techniques developed for prepar-
ing alloys, such as sputtering, splat quenching, mi-
crowave sputtering, etc., have increased the number of
possibilities regarding their composition and concentra-
tion. Moreover, experiments have been reported" in
which the ion-implantation method is coupled to a pre-
cise technique probing local magnetic properties in ex-
tremely dilute limits [time-differential perturbed y-ray
angular distribution (TDPAD)]. This method has al-
lowed the investigation of local magnetic properties of di-
lute impurities in hosts where alloying by more conven-
tional methods is very difticult or not possible, mainly be-
cause of the large differences between the sizes of the im-
purity atom and atoms in the host crystals.

On the theoretical side, first-principles methods based
on local-spin-density theory have been developed which
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may be used in the investigation of the electronic struc-
ture and magnetic properties of dilute impurities in met-
als, such as the embedded-cluster method' ' and the
Green's-function Korringa-Kohn-Rostoker' ' (KKR)
method. Such methods do not rely on parametrization of
any kind, giving thus reliable results which may improve
the microscopic understanding of the electronic nature of
the impurity-host system.

We describe first-principles local-spin-density (LSD)
self-consistent electronic-structure calculations for em-
bedded clusters representing Fe impurities in the hosts
Be, Mg, Ca, Sr, and Al. Magnetic properties of the Fe
impurity have been investigated experimentally in all
these cases by y-ray distribution techniques following
heavy-ion reactions and recoil implantation. " For the
hosts Be and Al, the solubility of Fe on the Be- or Al-rich
side of the phase diagram is very small. ' However, very
dilute solutions may also be obtained by standard alloy-
ing methods, and thus experimental results by other tech-
niques have also been reported. For Mg, Ca, and Sr, only
by ion implantation may Fe atoms be inserted in the
host. " There is evidence that supports the hypothesis
that the implanted impurities occupy substitutional
sites.

Among the hosts chosen for this study, Be, Mg, Ca,
and Sr are alkaline-earth metals whose lattice constants
cover a wide range of values and so constitute cases in
which the effect of this parameter may be assessed. On
the other hand, dilute alloys of Fe in the s-p host Al are
usually considered a classical example of a system in
which the spin-fluctuation temperature is very high, and
so the Fe impurity behaves as nonmagnetic in all experi-
mental circumstances. ' From the TDPAD experi-
ments, this temperature is estimated to be ) 10 K.

By performing self-consistent spin-polarized calcula-
tions for the impurity-host systems, the existence of a lo-
cal magnetic moment was determined, as well as its mag-
nitude when present. Results are related to the electronic
properties, especially regarding the local bonding to the
impurity atom. Relaxation around the impurity atom in
AlFe was also taken into account by performing total-
energy calculations to determine the Fe nearest-neighbor
equilibrium distance. Clusters of different sizes were con-
sidered in some cases to verify the convergence of the
properties studied. The contact hyperfine field at the Fe
nucleus was calculated for CaFe. Finally, macroscopic
paramagnetic susceptibilities, defined with the aid of an
extension to the Anderson model, were calculated, using
parameters obtained from the calculations.

In Sec. II we give some details of the theoretical
method employed, in Sec. III we describe and analyze the
results, and in Sec. IV we summarize our conclusions.

II. THEORETICAL METHOD

The substitutional dilute alloys were represented by
clusters containing one Fe atom at the center and two or
three shells of host atom neighbors. Be and Mg have hcp
crystal lattices, whereas Ca, Sr, and Al have fcc struc-
tures. Hence all hosts considered have closely packed
atomic arrangements.

p (r) = g n; ~g, (r)~ (2)

In the spin-polarized calculations, p has the freedom
to be different for each spin o. In Eq. (2), n; is the occu-
pation of the cluster spin orbital P;, chosen according to
Fermi-Dirac statistics.

The cluster spin orbitals are expanded as a linear com-
bination of numerical symmetrized atomic orbitals gj.

and the variationally derived secular equations, to be
solved self-consistently, are

(4)

where [0] is the energy matrix, [S] the overlap matrix,
and [C] the matrix of the eigenvectors. All matrix ele-
ments are calculated numerically on a three-dimensional
grid, which is pseudorandom in the valence region and
regular polynomial in the Fe-atom core region, to assure
greater precision.

In the variational expansion of the cluster spin orbitals
P, , all atomic orbitals are included for the Fe atom, as
well as for Be. For Mg and Al only the 3s and 3p orbitals
are kept in the variational basis, for Ca the 3d, 45, and 4p
orbitals are included, and for Sr the 4d, 5s, and 5p. The
remaining core orbitals of the host atoms are used to
build the cluster potential, but are "frozen" after the first
cycle. The valence orbitals are ortho gonalized with
respect to the core.

The basis functions are adapted to the solid by consid-
ering the atomic configurations obtained for the clusters
when generating the atomic orbitals for the LCAO ex-

We obtained the electronic structure of the clusters us-
ing a linear combination of atomic orbitals (LCAO)
discrete-variational method (DVM), ' within the frame-
work of density-functional theory and the local-spin-
density approximation. In constructing the self-
consistent potential, the charge density of several shells
of atoms surrounding the cluster in the crystal is includ-
ed, creating an embedding potential and thus diminishing
spurious effects of simulating the solid by a cluster of
atoms. The charge density of the exterior atoms is ob-
tained by self-consistent local-density atomic calculations
for approximately the configuration obtained in the clus-
ter for the host atoms. Localization of cluster orbitals
due to the Pauli exclusion principle is simulated by trun-
cation at the core region of the potential of the exterior
atoms. '

Self-consistent one-electron wave functions for the
clusters were derived by solving iteratively the equations

(h —E; )P; =( —V /2+ VC+ V„,—e; )P; =0,
where the one-electron Hamiltonian (in Hartree a.u. ) in-
cludes the electron-nucleus and electron-electron
Coulomb potential V& and the spin-dependent exchange-
correlation potential V„, derived by von Barth and
Hedin. This last is a function of the electron density
for each spin o., p (r), given by
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pansion. To facilitate the computational procedure for
building the cluster potential, the exact cluster charge
density was fitted to a model variational charge density:

n, l, I

where p(r) is the total electron density p&+p&, an
equivalent expansion is made for the spin density p&

—
p&.

p„&(r) are overlapping charge densities centered at each
atom q, calculated with the radial atomic functions of the
basis

where the summation is over a previously defined set of
atoms and I represents a particular set. In the present
calculations, the central Fe atom forms a set by itself, and
the atoms of each coordination shell of neighbor host
atoms form additional sets. The coefficients d„& in Eq. (5)
are determined variationally in each cycle by a least-
squares error-minimization procedure, with the condition
that p (r) integrates to the total number of electrons in
the cluster. Self-consistency is achieved through conver-
gence of these coefficients, since they ultimately deter-
mine the cluster potential.

An expansion of the charge density including higher-
order multipoles is possible within the DVM method.
However, the present superposition of spherical charges
ia adequate for close-packed metals such as those con-
sidered here. No radial truncation of the spherical
charge densities is done here, in contrast to the case when
adopting the "muffin-tin" approximation.

Since we are dealing with finite clusters, we obtain a

D (E)= g D„'( (E).
q, n, l

In one case (FeA142, representing AlFe), total-energy
calculations were performed to take into account the re-
laxation of the first shell of nearest neighbors (NN's)
around the Fe impurity and determine the Fe-NN equi-
librium distance. The total energy Ez associated with a
given volume 0 with nuclei at positions (R„j is defined
as the expectation value (sum over integration mesh) of
the energy density of e (r, [R,]) over the volume. In or-
der to control numerical errors, the actual computation
of Ef, is made via point-by-point subtraction of a refer-
ence system of noninteracting (NI) atoms located at clus-
ter and host (embedding) sites:

En=(e(r, ( R]) e'(—r, [R,]))n+En' . (9)

A convenient form for e(r, [R„]} is

discrete set of levels, which are filled with electrons ac-
cording to the Aufbau principle and Fermi-Dirac statis-
tics. A thermal "smearing" of the occupation of the lev-
els near the Fermi energy is adopted ( -0.13 eV) to assure
smooth convergence. To define a partial density of states
D~, (E) of spin a, the levels are broadened by Lorentzi-
ans with a convenient half-width 6:

5/m.
Dnle (E} g ~nlrb, i (E —s; )+5

where Pql, . is the Mulliken population of atomic orbit-
al y„& of atom q in the cluster spin orbital P; . The total
density of states of spin cr is then

e(r, (R„J)=g p, (r) —
—,
'

p (r)+ g'Z 5(r—R ) V, (r)+p (r)[e„,(r) —p„, (r)] (10)

where the single-particle energy is

p, (r)= gn, s; ~P, (r)~

and is partitioned into atom-localized contributions in a
manner similar to Eq. (5). This step introduces no errors,
since the partitioning is constructed so as to leave the to-
tal (integral) single-particle energy invariant. The second
terin in Eq. (10) represents corrections to the Coulomb
energy due to electron-electron and nuclear-nuclear
repulsion; in the third term, e„and p„, are the
exchange-correlation energy density and chemical poten-
tial, respectively. The sum and 5 function in Eq. (10)
restrict the nuclear contributions to sites within the in-
tegration volume. The prime in the summation leaves
out self-interaction of the nuclei.

In numerical evaluation of Eq. (10}, the least-squares-
deterrnined model densities are used, consistent with the
self-consistent-field (SCF) procedure.

A total of —19 500 points for the SCF procedure were
found to be sufficient for the 43 atoms clusters of the fcc

lattices and 9000—12 500 for the 27 atoms clusters of the
hcp lattices. For the total-energy calculations of FeA14z,
19500 points were also found to be adequate, with a
di6'erent sampling. Uncertainties in c; and E due to
numerical sampling are estimated as -0.05 and -0.5 eV,
respectively. Since the errors remain nearly constant for
small nuclear displacements, meaningful comparisons can
be made for En vs [R„].

III. RESULTS AND DISCUSSION

A. Charge transfer and magnetic moments

In Table I we give some general information on the
systems investigated, such as crystal structures, lattice
parameters, Pauling electronegativities, and atomic radii
of the hosts. The same is given for bcc Fe for compar-
ison. We also list the clusters considered to represent
each dilute alloy, indicating the number of host atoms in
the first-neighbor shell of the Fe atom (NN), second, and,
in some cases, third shell. The 19-atom cluster for fcc
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FIG. 1. Representation of the 19-atom cluster for the fcc lat-
tice.

hosts (FeM&2M6) is depicted in Fig. 1 and the 27-atom
cluster representing the hcp alloys (FeM, 2M, 4) is
represented in Figs. 2(a) and 2(b). Larger clusters
(FeM, 2M6M24) were also considered for Fe in the fcc
hosts Al and Ca.

In Table I are also given the charges on the Fe impuri-
ty atom; these were obtained by a Mulliken population
analysis of the LCAO wave functions of the clusters. A
definition of "charge" or "moment" of an atom in a solid
is necessarily arbitrary, since the atom s properties obvi-
ously cannot be isolated from those of the host. For this
reason one should focus preferably on trends rather than
absolute numbers. Here we have chosen to use the Mul-
liken population definition, according to which atomic
orbital populations are roughly proportional to the

~ Fe

0 Be, Mg

FIG. 2. (a) Upper portion of the 27-atom cluster representing
the hcp alloys. (b) Impurity and NN shell of host atoms of the
hcp alloys.

TABLE I. Crystal structure, lattice parameters, atomic radii, and Pauling electronegativities of hosts, clusters considered, Mullik-

en and volume charges of Fe, magnetic moments on Fe, and total cluster magnetic moments. (a) For the Al lattice interatomic dis-

tances. (b) Equilibrium Fe-NN interatomic distance.

Be hcp

Mg hcp

Ca fcc

Sr
Al

fcc
fcc

Fe bcc

Host Crystal
metal structure

Lattice
parameters

(A)

a =2.29
c=3.58
a =3.21
c =5.21
a=5 ~ 58

a =6.08
a =4.05

a =2.87

Host
atomic
radius

(A)

1.60

1.97

2.15
1.43

1.25

Pauling
electronegativity

of host

1.5

1.2

1.0

1.0
1.5

1.8

Clusters

FeBe»Bei4

FeMg»Mgi4

FeCai2Ca6
FeCa»Ca6Ca24

FeSrlzSr6
(a) FeA1»A16

(a) FeAl»A16A124
(b) FeA1»A16A124

1.64— 0.62+

0.64— 0.44—

0.73—
0.54—
0.78—
0.98—
0.84—
0.98—

0.73—
0.48—
0.79—
0.51—
0.49—
0.58—

Mulliken Volume
charge charge
on Fe on Fe

2.23 1.69

2.78
2.93
3.01
0.44
0.96

-0

2.18
2.67
2.60
0.09
0.55

-0

Magnetic Cluster
moment magnetic

on Fe(p~ ) moment (pz )
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squares of the coefficients in the LCAO expansion. Mag-
netic moments are thus defined as the difference between
spin-up and -down orbital or total populations. Along
with the Mulliken charges of Fe in Table I, we also list
the volume charges for comparison. These are obtained
by integrating the charge density around Fe inside the
Wigner-Seitz nearest volume of the host. Volume
charges are also arbitrarily defined, since one cannot
unambiguously determine which volume the electrons of
the impurity atom are actually filling. In Table I it may
be seen that for the cases in which the atomic radius of
the host atoms is smaller or comparable to that of Fe,
there is a considerable difference between Mulliken and
volume charges. This is particularly striking in the case
of BeFe, where the Wigner-Seitz volume of Be is obvious-
ly too small to accommodate the Fe electrons. For the
hosts with large lattice constants (the alkaline-earth met-
als), the two charge definitions give very similar values,
especially for Ca and Sr, which have the largest atomic
radii.

For the FeA142 cluster representing Fe in Al, a detailed
study of the infiuence of the relaxation of the NN atoms
around Fe has been performed by determining the Fe-
NN distance for which the total energy of the cluster has
the minimum value. This investigation was motivated by
the fact that recent first-principles calculations for AlFe
at the Al lattice distances obtained large magnetic mo-
ments on Fe [1.78pz (Ref. 15) and 1.73@a (Ref. 28)], al-

though experimental evidence, such as behavior of mag-
netization with temperature, seems to point to a non-
magnetic system. ' ' The results of our calculations, the
details of which will be published elsewhere, give for Fe
a moment p-1p~ for calculations at the Al equilibrium

0
lattice distance (Fe-NN distance=2. 86 A). This mo-
ment, however, collapses to zero at the equilibrium Fe-
NN distance d =—2.7 A. In Table I we give Fe charges for
the FeA142 cluster for calculations at both the Al lattice
and equilibrium Fe-NN distances.

It may be seen that all the Mulliken charges on Fe are
negative. This is consistent with the fact that the elec-
tronegativity of Fe is higher than that of the host atoms

TABLE II. Mulliken populations and charges.
sho~ small deviations from the free-atom values.
librium Fe-NN interatomic distance.

in all cases, resulting in a M~Fe charge transfer. How-
ever, the charge transfer is more pronounced for the
cases in which the Fe-M distance is sinaller (Be and Al),
since a shorter distance favors the impurity-host interac-
tion. For FeA142, calculation (b) of Table I for the shorter
Fe-NN equilibrium distance gives a larger negative
charge on Fe than calculation (a) of Table I for the unre-
laxed Al lattice distance.

In the next to last column of Table I are listed the mag-
netic moments on the Fe impurity defined, as described
earlier, as the difference in the spin-up and -down Mullik-
en populations of Fe. In the last column are given the to-
tal cluster magnetic moments. It may be seen that these
last are systematically smaller than p of the Fe atom; this
is due to the antiferromagnetic alignment of the moments
of the host atoms with respect to the Fe p.

From these calculations it is seen that Fe in Be is non-
magnetic. This is in accord with Mossbauer experiments
in the presence of an external magnetic field, which give
for p(Fe) an upper bound of 0.01pz. Furthermore,
TDPAD experiments for Fe implanted in Be show non-
magnetic characteristics, which were interpreted as deriv-
ing from a very high spin-fluctuation instability ( Tx ) 10

For all other hosts and calculations performed at the
host lattice distances, a magnetic moment is found on the
Fe impurity. This moment is larger than 2p~ for the
alkaline-earth metal hosts and is about 1p~ for the
FeA142 cluster representing AlFe. For the only case in
which the effect of the local lattice relaxation on p was
investigated in detail, which is the FeA142 cluster, it was
found that at the Fe-NN equilibrium distance the mo-
ment has collapsed to zero [case (b) in Table I].

TDPAD experiments performed for Fe implanted in
Mg, Ca, and Sr showed evidence of more stable local mo-
ments than in BeFe; results were scaled to lower Tz
values ( —10 K)." For Fe in Al, the same experiments
were interpreted assuming T& ) 10 K. A large positive
magnetic hyperfine field was found ' for dilute Fe in Ca
with the perturbed angular distribution technique.

The effect of cluster size was investigated for CaFe and
Fe (3s) and (3p) populations, not included in table,

(a) For the Al lattice interatomic distances. (b} Equi-

Host

Cluster
Orbital 3d
populations . 4s
on Fe 4p

Be

FeBe&6

7.95
0.88
0.86

Mg

FeMg&6
7.58
0.84
0.23

FeCa42
7.13
1.16
0.26

Sr

FeSr, 8

6.99
1.40
0.39

(a) Al

FeA14~
8.03
0.59
0.24

(b) Al

FeA14~
8.14
0.57
0.32

Orbital

populations
on NN atom

2s 0.83

2p 1.04
3s 1.35

3p 0.61

3d 0.47

4s 0.85

4p 0.67

4d 0.55

Ss 1.09
5p 0.32

3s 1.45

3p 1.49
3s 1.42

3p 1.50

Charge on
NN atom
Charge on
second-shell atom
Charge on
third-shell atom

0.130+

0.005+

0.036+

0.015+

0.007+

0.168—

0.061+

0.034+

0.063+

0.057+

0.001+

0.006+

0.081+

0.004+
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TABLE III. Orbital and total magnetic moments (in pz). (a) For the Al lattice interatomic dis-
tances.

Host

Cluster
Orbital
moments on Fe

- 3d
4s

FeMgq6
2.10
0.09

Ca

FeCa4p
2.74
0.14

Sr

FeSrl8
2.85
0.10

(a) Al

FeA142
0.92
0.03

Orbital
moments on
NN atom

4p 0.03
3s 0.001

3p —0.031

0.06
3d —0.007
4s —0.003
4p —0.007

0.07
4d —0.022
5s —0.001
Sp —0.004

0.02
3s —0.001
3p —0.010

Total moment
on NN atom
Moment on
second-shell atom
Moment on
third-shell atom

—0.030

—0.012

—0.017

—0.003

—0.002

—0.027

—0.017

—0.011

+0.002

—0.012

AIFe, this last at the unrelaxed Al lattice distances. In
both cases it is seen that increasing the cluster from 19 to
43 atoms produces an increase in p(Fe) and p(cluster).
This effect is more pronounced for AIFe.

In Table II are listed the Fe 3d, 4s, and 4p orbital pop-
ulations, as well as orbital populations of the NN atoms
and atomic charges of each host atom in the NN, second,
and third shells. There is considerable Fe(4s, 4p) hybridi-
zation in all cases, and the 3d population is considerably
higher than that of the free atom (3d 4s ). For the hosts
Ca and Sr, for which the lattice constants are very large
and, consequently, the impurity atom is considerably iso-
lated, the 3d population tends to be smaller, as the
(4s, 4p) hybridization, and the Fe configuration resembles
more that of the free atom. The self-consistently ob-
tained Fe 3d populations may be somewhat artificially
augmented because of the fact that the local-density ap-
proximation tends to favor d occupancy relative to s, in
first-row transition elements. On the other hand, s~d
promotion is consistently found in band-structure calcu-
lations which reproduce well bulk properties.

For Fe in Ca, the charge on the host atoms has a pro-
nounced oscillatory behavior, being positive in the NN
shell, negative in the second, and positive again in the
third shell of neighbors. One may also note that the d
populations on Ca and Sr are far from negligible, indicat-
ing that these orbitals must be taken into account to de-
scribe properly the electronic structure of these metals, at
least in the presence of the Fe impurity. The contraction
of the NN shell in FeA142 [calculation (b) in Table II] pro-
duces a small (-0.1) increase in the population of the 3d
orbital of Fe.

In Table III are displayed the individual orbital mag-
netic moments of Fe and the NN host atoms. Also listed
are the total p on each of the NN, second-shell, and
third-shell host atoms. From this table it is seen that the
4s and 4p electrons of Fe align ferromagnetically with the
3d moment, contrary to what happens in Fe metal. ' ' p
of all shells of host neighbors align antiferromagnetically
with the Fe moment for MgFe, CaFe, and SrFe. The an-
tiferromagnetic response decreases with the distance of
the atom from Fe. In the calculation for FeA142, per-

FeMg&6

a

0 -0 -8
ED

I

cn
Cl
Ch

I

-4 )

~n ~R 0=
\I+4" ~ -e -8

0 +4

( )

II

FIG. 3. Spin-up minus spin-down density of states of FeMg, ~.

(a) Total cluster. (b) Fe atom (3d +4s +4p).

formed at the unrelaxed Al lattice distances, an oscillato-
ry behavior is observed in the magnetic moments of the
host atoms. In all cases the antiferrornagnetism of the
host atoms comes predominantly from the p and d elec-
trons, the magnetic polarization of the s electrons being
very small.

In Figs. 3—8 are drawn the difference in spin-up and
-down total cluster and Fe densities of states (spin DOS)
for the clusters representing MgFe, CaFe, SrFe, and
AIFe, this last at the unrelaxed Al lattice Fe-NN dis-
tance. This manner of presentation highlights the mag-
netic aspect of the energy-level distributions. It may be
seen in the figures that the Fe spin-up energy levels are
predominant at energies just below the Fermi level; cF is
positioned among the spin-down set of levels. The most
striking aspect of these diagrams is the distinction be-
tween AIFe and the other systems. In fact, for the clus-
ters representing MgFe, CaFe, and SrFe, the difference
between the total cluster and Fe DOS diagrams is very
small for occupied states. In contrast, the DOS diagrams
of both FeA1&8 and FeA142 show a noticeable difference
between the cluster and Fe spin DOS. In fact, in the dia-
grarn for the cluster spin DOS are seen oscillations at
lower energies, as a result of predominance at certain en-
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FIG. 4. Spin-up minus spin-down density of states of FeCa&8.
(a) Total cluster. (b) Fe atom (3d +4s+4p). FIG. 6. Spin-up minus spin-down density of states of FeSr&8.

(a) Total cluster. (b) Fe atom (3d +4s+4p).

ergy intervals of the spin-down levels of the Al host. This
feature is important in explaining the relative moment
stability of these systems, as will be discussed in the next
section.

B. Mechanisms of moment stability

The results described so far offer the possibility of
analyzing mechanisms leading to the stabilization or
quenching of the magnetic morDent on Fe.

First, we note in Table I that for calculations at the
host lattice distances, there is an obvious correlation be-
tween impurity moment and interatomic distances. In
fact, for the Be host the interatomic distances are the
shortest, and the calculation gives zero moment. For
AlFe the situation is intermediate, and for the alkaline-
earth metals the Fe moments are large and increase with
increasing interatomic distances in the sequence
Mg~Ca~Sr. Short Fe-NN distances allow a greater
impurity-host interaction. In addition, since the elec-
tronegativity of Fe is higher than that of any of the hosts,

the greater interaction allows more charge transfer into
the spin-down levels of the impurity, contributing to
quench the moment.

For AlFe, DOS diagrams of both clusters FeA1, 8 and

FeA142 show the existence of occupied spin-down Al lev-

els at low energies (below the Fe resonance), a feature not
present in the alkaline-earth metal hosts. This must be
due to the existence of the more stable atomic valence 3p
level of Al, as compared to atomic valence p levels of the
alkaline-earth atoms. As seen in Table III, p levels of the
hosts are always antiferromagnetic; however, in AlFe the
Al 3p band lies lower, strongly overlapping with the Fe
3d states. This leads to bonding structure extending well
below the simple d-band "doublet" seen for the alkaline-
earth hosts: compare Figs. 3—6 with Fig. 8. The larger
number of occupied host p states coupled antiferromag-
netically to the Fe d moment and the larger overlap and
resulting hybridization with Fe d states both act self-

consistently to reduce the net moment. The relatively
stronger antiferromagnetic response of the host in AlFe
may be verified by examining the ratio p(cluster)/IM(Fe).
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FIG. 7. Spin-up minus spin-down density of states of FeAll8,
for the Al lattice interatomic distances. (a) Total cluster. (b) Fe
atom (3d +4s +4p).
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kOe. This was interpreted as indication of the presence
of a large unquenched orbital moment. Calculations of
orbital hyperfine fields are beyond the scope of this work.
Instead, we were interested in verifying the contribution
of the direct [or contact (Fermi)j hyperfine field to the to-
tal field measured. The contact hyperfine field H, is
defined as

(0)

-2

(b)

FIG. 8. Spin-up minus spin-down density of states of FeA142,
for the Al lattice interatomic distances. (a) Total cluster. (b) Fe
atom (3d +4$ +4p).

C. Hyperfine field of dilute Fe in Ca

In fact, this ratio is only 0.57 for the unrelaxed cluster
FeA142, as compared to 0.91 for FeCa42, 0.76 for FeMg26,
and 0.86 for FeSr».

As mentioned earlier, the determination of the equilib-
rium Fe-NN distance (2.7 A) in FeA142 by total-energy
calculations indicate that it is shorter than the Al lattice
NN distance (2.86 A). At the distance of the minimum

energy, the system is nonmagnetic. This shows the im-
portance of relaxation for localized magnetic moments,
especially in cases such as AlFe that have signs of mag-
netic instability even at the host lattice distances, as dis-
cussed in the preceding paragraph. Previous first-
principles calculations for AlFe (Refs. 15 and 28) did not
take local relaxation into account. In principle, the same
detailed investigation of the influence of local interatomic
distances should be carried out in all cases; this, however,
is beyond the scope of this work. We did, however, per-
form a SCF calculation for FeMgz6 for a shorter Fe-NN

0
distance, namely, -2.9 A (10%%uo contraction), and saw no
sign of total collapse of p on Fe, although p decreases:
we obtained p, (Fe)—= 1.8ps. The distance chosen (2.9 A)
corresponds approximately to the sum of the atomic radii
of Fe and Mg, which, in a simple intuitive model, would
be the Fe-Mg interatomic distance in the alloy. For AIFe
the interatomic distance at equilibrium, obtained after ex-
tensive total-energy calculations, is found to be very near-
ly the sum of the atomic radii of Fe and Al; as men-
tioned previously, for this distance p=0.

where the term in brackets is the electronic spin density
at the Fe nucleus, with p given by Eq. (2).

In our calculations bp(0) of the conduction electrons
was obtained directly from the FeCa42 cluster calculation.
The core contributions were obtained from atomic LSD
calculations for the same configuration that Fe has in the
cluster and the same exchange-correlation potential (von
Barth —Hedin). This expedient is necessary since, al-
though no Fe orbitals are frozen in the cluster calcula-
tion, the LCAO basis is not flexible enough in the core re-
gion to represent the spin-density oscillations adequately.

In Table IV are shown the results for H, . It is seen
that a delicate balance between positive and negative
terms results in a small positive total H, at the Fe nu-
cleus. The positive H, is consistent with the ferromag-
netic alignment of the Fe(4s) moment with respect to 3d
(see Table III), which results in an excess majority spin 4s
electrons at the Fe nucleus. This is in marked contrast to
the case of Fe (bcc) metal, for which similar calcula-
tions' ' give a negative value ( —53 kOe) for the contri-
bution of the conduction electrons, mainly because of the
antiferromagnetic alignment of the Fe(4s)electrons rela-
tive to 3d. This negative conduction-electron contribu-
tion, added to the negative core value, results in a large
negative H, for Fe metal.

The large positive conduction-electron contribution to
H, in CaFe is also consistent with the isolation of the Fe
atom in the Ca lattice (with large lattice constants) and
consequent large 4s population (see Table II), tending to
the free-atom value. In fact, the contact hyperfine field of
the 4s electrons of the free Fe atom (configuration
3d 4s ) was calculated to be positive. The polarization
caused by the 3d electrons tends to attract the external 4s
majority-spin electrons toward the inner region of the
atom. This results in a positive 4s contact field, even for
an equal number of spin-up and -down electrons.

Although we find a positive value for H„ it is too small
as compared to the total positive field measured. The
remaining eff'ect may then be the (positive) orbital
hyperfine field, resulting from unquenched orbital
momentum. ' In this case it wi11 be necessary to invoke a

Experiments were reported for isolated Fe impurities
in Ca with the perturbed angular distributions tech-
nique, ' in which measurements of the magnetic
hyperfine field Hz as a function of temperature were per-
formed and a large positive value was encountered. In
order to extract a value for the hyperfine field from exper-
iment, it is necessary to assume values for the effective
electronic spin J' and effective moment p'. Using plausi-
ble values J' =2 and p' =—2p~, one obtains H~ —= + 150

1$

2$

3$

—17.20
—508.05
+248.78

Conduction electrons
Total

Total
core: —276.47

+278.93
+2.5

TABLE IV. Contributions to the contact hyperfine field at
the Fe nucleus in FeCa42 representing CaFe (in kOe).
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TABLE V. Virtual-bound-state parameters and Fe magnetic susceptibilities. Energies in eV. n is

the population of orbital 3d of Fe. (c —cF ) is the position of the maximum of the DOS peak of spin 0.

relative to the Fermi energy. (a) For the calculation at the equilibrium Fe-NN distance. (b) From Ref.
35 at 1090'C. (c) From Ref. 35, extrapolating to 30'C, using the temperature dependence of Al Mn.

Host

Cluster
nt
7l ~

Cy KF

FJ EF

6 (average)
U/5

y (calculated)
(10 emu/mol)

y (experimental)
(10 6 emu/mol)

Be

FeBe26
3.98
3.98

—1.91
—1.91

1.43
1.43
143

-0.7 (estimated)
-40

Mg

FeMg26
4.84
2.74

—1.50
—0.057

0.151
0.375
0.263
0.685

252

Ca

FeCa42
4.93
2.20

—1.97
+0.059

0.087
0.304
0.195
0.741

279

Sr

FeSrls
4.92
2.07

—1.80
+0.105

0.090
0.379
0.234
0.614

218

(a) Al

FeA142
4.07
4.07

—0.85
—0.85

0.562
0.562
0.562

-0.7 (estimated)
140

(b) 375
(c) -230

noncubic local symmetry, which is perhaps an indication
of a slight displacement of Fe from the ideal substitution-
al site. One should also keep in mind that the small net
value resulting from the sum of positive and negative
contributions makes the total balance obtained from cal-
culations of H, rather sensitive to the theoretical method

employed.

our calculated value (0.9 eV, as compared to calculated
0.85 eV). The half-width of the VBS resonance level (b, )

obtained from the XPS spectrum is somewhat wider than
our value (0.75 eV, as compared to calculated 0.56 eV).

We have calculated half-widths from the relation
(where n is the population of the 3d orbital of Fe)

5 =tan(urn /5)(e —EF), (13)

D. Macroscopic magnetic susceptibilities

In Table V are given some parameters derived from the
calculations and which are useful for application of the
virtual-bound-state model. It is seen in the table that the
n& values [spin-up Fe(3d) populations] are very near the
maximum value (5) for the alkaline-earth hosts Mg, Ca,
and Sr.

The energy of the maximum spin-up DOS relative to
the Fermi energy (s& —sF) is similar in all cases except
AlFe. The spin-down maximum c& is very near the Fer-
rni level for Fe in Mg, Ca, and Sr.

An x-ray photoemission spectroscopy (XPS) investiga-
tion of AlFe has been reported. The experimental
value found for

~
s —eF ~

is in very good agreement with

and the effective correlation integral U/5 (for each 3d t~ ~~

level) from

E) E)
U/5 =

n&
—

n&
(14)

The magnetic susceptibility y has been derived to be

10p~x=
bn. /[sin (n/5)ir] —U

(15)

We have derived, in a completely analogous manner,
an expression for y for the spin-polarized case, when

ntAn)
I

2
sin [(n&/5)ir]+sin [(n&/5)ir]+(2U/bn. )[sin [(n&/5)n. ]sin [(n&/5)ir]J

g —5pg
b m

—( U /Air ) [ sin [(n t /5 )m ]sin [(n i /5 )m ] ]
(16)

where 5 is the average of 5& and 6&. This expression
reduces to Eq. (15) when n

&
=yg

&
=n.

In Table V are given the values calculated for 5&, 6&,
U/5, and y, obtained by fitting the VBS parameters to the
LSD energy spectrum. For the nonmagnetic case (BeFe
and AIFe), Eq. (15) was employed, and for the magnetic
cases we used Eq. (16). It is seen that b

&
is always con-

siderably narrower than 6& in the magnetic cases. This is
consistent with the much wider energy extension of the
spin-down levels (see Figs. 3—8), representing the greater

interaction of the more extended spin-down orbitals of Fe
with the host. Calculated values of U do not differ much
from each other and fall in a reasonable range.

Calculated values of y are larger for Fe in Mg, Ca, and
Sr metals (inagnetic systems), very small for BeFe, and in-
termediate for AlFe. Only for this last case has an exper-
imental value been reported, and this was obtained in
the liquid state (1090'C).

The calculated values for y reported here should be
viewed only regarding trends and orders of magnitude.
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The approximation of a Lorentzian shape for the Fe(3d)
spin-up and -down peaks inherent to the VBS model is
very far from being accurate, as seen in Figs. 3—8. Furth-
ermore, values of 6& are only crude estimates for MgFe,
CaFe, and SrFe because of the use of Eq. (13) in the cases
in which z& is very near c.F. It is possible to extend the
VBS model using multiple Lorentzian lines; however, in
our opinion this will add little to our understanding.

IV. SUMMARY OF CONCLUSIONS

We have performed local-spin-density calculations
with the discrete-variational method for embedded clus-
ters representing a dilute Fe impurity in the metals Be,
Mg, Ca, Sr, and Al. The results obtained provide consid-
erable insight into the mechanisms related to the ex-
istence and stability of local magnetic moments in these
alloys. BeFe is seen to be nonmagnetic, in accord with
reported Mossbauer spectroscopy measurements. Fe in
Mg, Ca, and Sr has a stable local magnetic moment. The
same is true for A/Fe for calculations at the Al unrelaxed
lattice interatomic distances; if relaxation of the NN Al
atoms is taken into account, the moment collapses. Host
lattice constants, antiferromagnetism of host atoms, and

charge transfer are seen to relate to the existence and
magnitude of the moments.

The contact hyperfine field of Fe in Ca was calculated
and seen to be small and positive because of a large (posi-
tive) contribution from the Fe(4s) conduction electrons,
which outweighs the core negative contribution. While
of the correct sign to explain the highly unusual experi-
mental situation, it is likely that other effects such as un-
quenched orbital magnetism connected to a lattice distor-
tion need to be invoked to explain the experimental re-
sults. However, we note that since H, ~0, the required
orbital contribution is —150 kOe and not the very large
values 600—700 kOe previously suggested. '

The virtual-bound-state model was used to estimate
values for the magnetic susceptibilities. These results
provide predicted trends for a comparison with future ex-
periments and improved theories.
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