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The multiple-scattering theory developed in various ways has significantly contributed to our under-

standing of the dielectric, mechanical, thermal, and other physical properties of disordered solids mainly
in the linear-response regime. Its application has, however, been limited when both nonlinearity and dis-
order are present. In particular, very little work has been done to treat nonlinear elastic properties of
disordered materials apart from the simple constant stress or strain averaging —an extreme approxima-
tion that is well known to lead to violation of equilibrium condition. Some of our earlier work goes
beyond this simple approximation and provides a formal solution of the strain distribution including
nonlinearity for an arbitrary disordered solid within the framework of the multiple-scattering theory.
Following a similar approach, we propose in this work to develop a general theoretical framework and
deduce explicit analytical expression for the third-order elastic constant, which is a generic quantity. As
a specific application we have calculated the three independent third-order elastic constants for a partic-
ular type of disordered solid, namely, cubic polycrystals following two methods: a perturbative and an

approximate self-consistent method developed in the present investigation. These methods have been

applied to evaluate third-order elastic constants of eight different materials. The results seem to indicate
that for low-anisotropy cases, the two methods give values that closely agree whereas for large anisotro-

py, they differ. In view of the scarcity of data on the third-order elastic constant of polycrystals, we have
also calculated another important nonlinear parameter, namely, the pressure derivative of the second-
order shear modulus, for which accurate measurements are available. In all cases, the calculated values

are found to compare favorably with experiment. Lastly it may be mentioned that the method developed
is quite general and may be adopted to treat nonlinearity in any tensor property of disordered materials.

I. INTRODUCTION

Recently, attention has been focused to study critically
nonlinearities in the physical properties of different types
of both crystalline and disordered materials. Although
significant advancement of our understanding has been
achieved with respect to disorder and nonlinearity sepa-
rately, the situation becomes quite complex and interest-
ing when both are important. However, progress in this
field has been rather slow. This may be partly attributed
to the lack of a suitable theoretical framework for
analysis that is easy to apply and manipulate as well as to
the inadequacy of experimental data in this area. Over
the last few years, some works' on the nonlinear mag-
netic and dielectric susceptibilities of (mainly) composites
have been reported. But so far as the nonlinear-elastic
behavior of such solids is concerned, there is little work
that attempts to go beyond simple averaging-type
schemes. Following a similar but somewhat slightly
different approach, we propose in the present investiga-
tion to develop a suitable theoretical framework to treat
the nonlinear properties of disordered materials, of which
the third-order elastic constant is the most important
nonlinear mechanical susceptibility. In this section we
outline the problem, indicate the method followed, and
introduce the notation.

In what follows we shall consider the problem of the
determination of effective elastic constants of an inhomo-
geneous material that consists of homogeneous phases.
Under small deformation, stress (o';1) and strain (ski) can
be assumed to satisfy the nonlinear relation

~1~+ij Cijkl~kl+ 2 Cijklmn klmn

where C,jkl and C;jkl „are the second-order elastic con-
stant (SOEC) and the third-order elastic constant
(TOEC), respectively. Now, if a similar relation holds for
inhomogeneous materials as a whole in terms of averaged
stress (cr; ) and strain (s«), namely,

(V I ) C;'kl(ski )+ Ci'kl (Ekl )(e )

then the problem is precisely to consider the effective
SOEC C;*kl and TOEC C;,*kl „ofheterogeneous materials
whose constituent's contribution from the nonlinear
terms of Eq. (l) are not quite negligible.

Therefore, the problem essentially consists of the deter-
mination of the strain field in inhomogeneous materials
under certain specified boundary conditions and then the
performance of the averages. The problem of averaging
is similar to the problem for inhomogeneous materials
with contributions from linear terms only. But, in this
case, the field-determining equilibrium equation

BC7IjIJ 0
rj

is a nonlinear one and produces further diSculties.
Works done on the problem of estimating effective

TOEC's of statistically homogeneous and isotropic ran-
dom inhomogeneous materials in terms of the TOEC's
and SOEC's of its constituent phases are mainly confined
to use of a uniform strain or stress field, ' which corre-
sponds to Voigt- or Reuss-type averaging. However,
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these uniform solutions do not satisfy the equilibrium
equation (3). Some authors ' proposed, particularly for
polycrystals, to equate three linear invariants of TOEC's
of single crystals with that of a quasi-isotropic effective
medium. This method also has the underlying assump-
tion of homogeneous fields, and the results are identical
with Voigt- (Reuss-) type averages for stiffness (compli-
ance).

The problems of estimating the effective dielectric con-
stant, electric conductivity, magnetic permeability, etc.,
are mathematically similar to this problem and are con-
siderably simpler because they are all second-rank tensors
for linear properties. Stroud and Hui' considered the
problem of the dielectric constant for materials having a
center of symmetry, in which, therefore, the first contri-
bution beyond the linear term comes from cubic non-
linearity. In their work they simply neglected the contri-
bution from any nonlinearities in the determination of
electric fields and used the solution of linear problems to
determine the effective nonlinear susceptibility. Zeng
et al. extended the method of Bergman for the linear
problem and made a representation of the effective linear
dielectric constant and cubic susceptibility which
effectively used a perturbation solution. Agarwal and
Gupta used a Green's-function approach and finally cal-
culated linear and nonlinear susceptibilities in the single-
grain t-matrix approximation.

The formal determination of the strain field in the pres-
ence of TOEC's has been considered by Middya, Basu,
and Sengupta. " In this work we follow a similar but
slightly different approach. We first present a brief out-
line of the Green's -function approach. In a true sense
the problem is to be recast into another form so that it
appears to be a problem of a linear medium with a contri-
bution from nonlinear terms superposed as an effective
force density. This approach has the same spirit of Zeller
and Dederichs, ' who include the inhomogeneity in the
source terms, resulting in a form known variously as
multiple-scattering theory, Green's-function approach, or
effective-medium theory. Using this field solution, a
perturbation-type expansion and close analog of the self-
consistent (SC) effective elastic constant for cubic poly-
crystals have been derived. Section II contains the
strain-field solution for an inhomogeneous medium with
TOEC's using the Green's-function method. The deter-
mination of TOEC s using the perturbative approxima-
tion are presented for cubic polycrystals. Effective elastic
constants up to third-order small terms have been calcu-
lated and are discussed in Sec. III. In Sec. IV an approxi-
mate SC T-matrix method of the solution has been pro-
vided. Useful relations between the pressure derivative
(PD) of SOEC's and TOEC's for cubic materials present-
ed in Sec. V are used to evaluate the effective pressure
derivative of the SOEC in single-grain-scattering approxi-
mation. The results of the application of the above
methods to different cubic polycrystals are discussed in
Sec. VI, and the conclusions are summarized in Sec. VII.

II. FIELD SOLUTION
IN THE GREEN'S-FUNCTION APPROACH

In an inhomogeneous material, SOEC C,~kl (r j and
TOEC C,"ki „(r) vary from point to point and relate

e &(r) =Saki(r)o ki(r)+ —,'Sjki „(r)oki(r)o „(r),
&,j)=&,;„& „)+-,'s,,*„.„& „)& .„&, (6)

where S;~k& and S7Jkl~„are compliance constants of
second and third order, respectively, and corresponding
starred quantities are effective second-order compliance
constants (SOCC's) and third-order compliance constants
(TOCC's). Second- and third-order stiffness and compli-
ance constants are related by

SijklCklmn 2(fiimfijn+~infijm ) ijmn

and

Sj7kt777n S7J'pq SkI7's S~nt7U Cpq7'S77U

and I is a unit operator given by

Iijkl 2 ( fiik ~j I +~il fij k )

A similar relation also holds for the starred quantities.
This definition of effective TOEC's based on the non-
linear stress-strain relation may differ from the definition
of effective TOEC's from a Taylor-series expansion of
strain energy. However, in this paper we shall use the
definition of Eqs. (2) and (6) only. To evaluate the
effective elastic constants from Eqs. (2) and (6), one needs
to know the distribution of strain field ski(r) under a
given surface displacement.

Under a certain surface displacement, the strain Geld
within such an inhomogeneous nonlinear medium was
obtained earlier by Middya, Basu, and Sengupta in a
Green's-function approach. The solution is of the form

c.=c. +G 6C, c+—,'G 5C, c.c . (9)

In the above equation, the tensor indices are
suppressed, operator notation has been used, and sub-
scripts s and t are introduced to distinguish between
second- and third-order quantities, respectively. Deriva-
tion of Eq. (9), highlighting the tricks of using the
Green's-function method for nonlinear materials together
with the meaning of operator notation, is given in Appen-
dix A. c. is the homogeneous strain field under surface
displacement in a homogeneous and isotropic medium of
SOEC C, , and 6C, is the fluctuation on C, and is given

by

C, =CO+6C, .

G is the familiar Green's function' for a homogeneous
and isotropic medium C, and, for an infinite medium, is

given by

G, k, (r) =G,,k, 5(r)+ , Gjk, (rlr) . —1

r

stress cr,"(r) to strain e;.(r) at any point r by the relation

cr„(r)=C;,ki(r)ski(r)+ ,'C—;,ki „(r)ski(r)c, „(r),
and effective elastic constants are defined through Eq. (2).

In a similar way, effective elastic constants can be
defined in terms of compliance tensors through the equa-
tions
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G,.jki(r/r) is a direction-dependent tensor, and the in-

tegral of it over all direction vanishes. G,"ki is a constant
tensor and is given by'

C,'=[I (—C; —C )G](T, &

X(I+(GT, &) '(I+(GT, &)
' (23)

and

Gijkl G125ij5kl+ G44(5ik 5jl +5il 5jk )

(13)

In spite of the variation of the elastic constant within
the inhomogeneous material, the average strain ( s & de-
pending on the surface displacement remains the same.

Therefore,

(Fs & =I and (F, & =0 . (14)

Using the definitions of Eqs. (1) and (2) and the field solu-
tion s in the form of Eq. (13), the effective SOEC and
TOEC are obtained as

c,'= &c,F, &,

C,'=(C,F, +C,F,F, & .

(15)

(16)

Equation (15) was used earlier for the determination of
the effective SOEC in the perturbative approach. ' Equa-
tions (9) and (13) give two implicit equations for the
determination of F, and F, in terms of C, and C, :

1 (3J +p )Giz=
15lu (3K +4@, )

3 (E+2p, )

10' (3K +4iu )

where EC and p are the bulk and shear moduli of the
medium C, . Now we define two operators F, and F„of
which F, is a fourth-rank and F, is a sixth-rank tensor,
through

Again, Eq. (22) is a known equation and is used exten-
sively for the determination of the effective SOEC. '
Equation (23) for the effective TOEC is new and resem-
bles, in its appearance, the expression for the effective
thermal expansion coefficient" in T-matrix form. Simi-
larly, starting from Eqs. (5) and (6), we obtain the equilib-
rium stress solution under a given surface traction as

cr=o +I 5S, o.+—,'I S,o.o, (24)

where o is the equilibrium stress under the same surface
traction for a linear homogeneous medium of compli-
ances S, , and I is given by'

I = —C, —C, GC, , (25)

where Co=(S0) ' and 5S, and S, are related to the
SOCC S,(r) through

S,(r) =S, +5S,(r), (26)

where (E, &
= 1 and (E, & =0. E, and E, satisfy the

equations similar to Eqs. (17) and (18) as

E, I=(r5s, E, (—r5s, E, &), —

E, —(I S,E,E,—(I S,E,E, &)

(28)

= I 5S, E, —( I 5S, E, & . (29)

The effective SOCC and TOCC come out to be

of which S, is arbitrary within the limitation of positive
definiteness. S, is the TOCC. Similar to Eq. (13), the two
operators E, and E, can be defined as

(27)

F, I =(G 5C, F—, —( G 5C, F, & ),

F, (GC,F,F, —(—GCiF,F, &)

=G 5C,F, —( G 5C, F, & . (18)

Instead of using the strain-field solution in the form of
Eq. (13), we can iterate Eq. (9) and obtain an explicit solu-
tion for F. as

S;=(S,E, &,

s,*=(s,E, +s,E,E, & .
Direct iteration of Eq. (24) gives

o. =o. +I T ~o+ iI- Tfoooo

,T, =5s, +5s, r „T,=5s,(I —r 5s, }-',
and

,T, =(I+I „T,)S,(I+I „T,)(I+I „T,) .

(30)

(31)

(32)

(33)

(34)
G=c +GTG +—,'GTG c

with

(19)
Using this solution, two equations analogous to Eqs.

(22) and (23}are obtained for the effective compliances:

and

T, =5C, +5C, GT, =5C, (I —G 5C, )

T, =(I+GT, )C,(I+GT, )(I+GT, ) .

(20)

(21)

and

s;=s,'+ &„T,&(I+ &r „T,&)-'

S,' = [I—( S,*—S )I ]( „T,&

(35)

and

C, =C, +(T, &(I+(GT, &} (22)

With these equations of T, and T„which are actually an
infinite series of 5C„we get two equations for the
effective SOEC and TOEC:

X(I+(I „T,&) '(I+(I „T,&) (36)

Equations (15), (16), (22), (23), (30), (31), (35), and (36)
for the effective elastic constant, however, cannot be eval-
uated generally for random heterogeneous materials. In
the next section, we evaluate the effective elastic constant
under certain approximations.
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III. EFFECTIVE ELASTIC CONSTANTS
UP TQ THIRD-ORDER SMALL TERMS

Iteration of Eqs. (17) and (18) yields a solution of F,
and I', in the form of an infinite series involving 5C, and
C, . They are given by

F, =I+6 5C, —(G 5C, )+6 5C, G 5C,

=.(I —6 5C, +G 5C, 6 5C, )e

+ —,'(GC, +G 5C, GC, +2GC, G 5C, )c, c,

Using Eqs. (38) and (37) for F, and F, in Eqs. (15) and
(16) and retaining terms up to third-order smallness in
5C, and C„we obtain the following expressions for the
SOEC and TOEC:

and

—(G 5C, G5C, )+ (37} C,*=(C,)+(5C, G 5C, )+(5C, 6 5C, G 5C, )

and

(39)

F, =GC, 6(C—, )+26C,65C, 26(—C,65C, )

+G5C, GC, —(65C, GC, ) —G5C, 6(C, ) .

c;=(c,)+3&5c, Gc, )+6&5c, 65c,Gc, )
—3(5C, 65C, )G(C, ), (40)

(38)

We have considered here only up to the terms of second-
order smallness in 5C, and C, . Using these series (trun-
cated after second-order terms}, the strain-field solution is
approximated by

with 5C, =C, —(C, ).
Equation (39) of the effective SOEC is a well-known

perturbation expansion. ' The terms of the right-hand
side (RHS) of Eq. (40) are considered separately, and
their expanded forms in terms of tensor indices are

( C, );,kl~„=&oigt average of third-order elastic constants,

3& 5C. Gct )iJkl
=

& (5C. )~jp6 pqo. (Ct )qkl ) + & (Ct )ijklopG pq. (5C. }q. ) + & (Ct )il p n Gopq. (5C. )qkl )

6(5C, G 5C, GC, );,kl „=((5C,G);, (5C, G), q, (C, )q kl „)+((C,); kl, (65C, ),pq, (6 5C, ) „„)
+ ((C, ) J„„(65C, )„,„(G5C, ),„„,) + ((C, ) J, ,„(65C, ).,„,(6 5C, ),„„)
+((Ct) (6 5C ) p''(G 5C ) kl )+((5C G) jp(Ct ) pk'lq (G 5C )q )

and

3(5C,6 5C, )G(C, ), „, „=(5C,G5C, );, G, , (C, ),„, „+(C,);„„6,„(5C,G 5C, ) „„
+ & c, )...,.„6.„„&5c,6 5c, ),„„.

and

C,*=C,'+(t, )(I+(Gt, )) (41)

c,*=II —(c,*—c')6]«, )(I+ & Gt, ) )-'

Evaluation of (T, ) and (T, ) requires complete sta-

tistical information about C, (r) and C, (r). Therefore,

with limited information it is not possible to use Eqs. (22)

and (23) to compute the effective elastic constants.
In the single-grain scattering approximation, it is as-

sumed that the contribution from terms involving the
properties of two different grains is zero on the average.
However, we sha11 neglect the contribution of these terms
altogether. Equations (22) and (23) take the form

t, and t, thus defined for each grain are analogous to T,
and T, within a grain, but zero outside it. This approxi-
mation physically corresponds to the neglect of inter-
granular scattering (interaction). Expansion of Eq. (42)
up to third-order small terms in 5C, and C, reproduces
the same Eq. (40). The expression for effective compli-
ances are similar to Eqs. (39}—(44); only 6 is to be re-
placed by I, 5C, by 5S„and C, by S,. In the following
we shall calculate explicitly the effective stiffness con-
stants for cubic polycrystals.

The SOEC and TOEC of cubic crystals, whose orienta-
tion with respect to a reference frame is described by ro-
tation matrix a;, can be expressed as

where

XII+(Gt, ) )

and

t, =5C, +5C, Gt, =5C, (I —GSC, )

t, =(I+Gt, )C,(I+Gt, )(I+Gt, ) .

(42)

(43)

ijkl j25ij 5kl+ 44(5ik5j! +5il5jk )

+ iu ju ku ~lu (45)

C123~ +C144~ +C456~ +d1 A +d2 A +d3

(46)

where 6', 5, and 6 are isotropic base tensors and A ',
A, and A are sixth-rank base tensors, having Voigt
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symmetry, involving rotation matrix. Explicit expres-
sions for 5's and A's are given in Appendix B. d is the
anisotropy coefficient for the SOEC. di, 12, and d3 are
the three anisotropy coeScients for the TOEC. For iso-
tropic materials all these anisotropic coeScients are zero;
they are given by

and

6(5C,G 5C, GC, &
—3(5C,G 5C, &G( C, &

=12(G44) d (B,5'+B25 +B353), (62)

Bi =2(15Ci44 —17Ci~)/25+8(7C456 —9cq56)/175,

d =C)I C)q —2C44,

C)]] 3C]~2+2C~g3+ 12C~44 12C]66+16C456

d2 =C112 C123 2C,44

(47)

(48)

(49)

Bq =(5C)~ —3ci44)/25+4(21c~q6 —19C456)/525

8d
&

102d3

525 525

(63)

(64)

(50)

( A'&;Jki „=—,', (5'+5 +53),"ki „,
( A'&,,„,.„=-,'(35'+5'),.„,„,
( A &;Jk(~„=—,'(25 +35 )ijklmn

(51)

(52}

(53)

Using these results for averaging, we evaluate the
terms of the RHS of Eq. (40} in terms of six independent
constants of cubic crystals:

( c, &
=c,"„5'+c,'„5'+c,'„5', (54}

C&z3 C&&3+
v

C i44
=Ci44+V

C4s6 =C456+v

3dp+

d) d2 2d3
35+ 5+ 5

d) 3d3
35+ 5

(55)

(56)

(57)

3(5C,GC, &=66 d(A, 5'+A 5 +A 5 ), (58)

A i
= —4(d i +7dq+ 4d3 ) /175, (59)

A2=(2d, +42d2 —20d3)/525, (60)

A 3 =(d i+ 1 ld3)/175, (61)

d 3
=

)66 C&44
—2C4~6

The orientation averages of A', A, and A for random
orientation over all possible angles are simply

B3 =2(15C)~—17ci44)/25+2di /175+3d3/525 .

(65)
To evaluate Eqs. (62)—(65), grain shapes are assumed to

be spherical, for simplicity. It is to be noted that the
second-order small terms (Ai, Az, A3) in Eqs. (59)-(61)
are functions of the anisotropy coeScients d, d, , d 2, and

d3 only, whereas the third-order small terms contain Ci~
and C4s6 beside d, , d2, and d3.

Exactly similar results are obtained for effective com-
pliances, only we have to replace

d by d'=Sii —S» —2S44,

d) by d', =S))2—3S,23+12S)44+2S)$3

—12S)66+ 16S456,

d2 by d2 —S»2 S&23 2S)44

d3 by d3=S)66 —S,44
—2S456 ~

and C and 6 by S, and I, respectively.
Now it is easy to calculate the effective compliances,

and inverting these values according to Eq. (8), we get the
values for the effective stiffness constants.

Single-crystal SOEC's and TOEC's for some cubic
crystals are collected in Table I. Using Eq. (40), C; is

calculated with these single-crystal elastic constants and

its analog is derived for effective compliances S,* and are

presented in Tables II and III, respectively. In the last
inversion of S,' by Eq. (8), the value of the effective SOEC

C,* is assumed to be the value under the same field solu-

tions, which are, in general, found to be quite close to ex-

perimental results.

TABLE I. Single-crystal SOEC's and TOEC's for some cubic crystals (in 10" dyn cm ). Data in this table are collected from

Barsch (Ref. 5) and Simmons and %ang (Ref. 14).

Material

Ag
Au
CU

MgO
Nb
Si (1)
Si (2)
Columbium'
Al (1)
Al (2)

12.22
19.29
16.61
29.71
2.46

16.58
16.58
2.47
1.07
1.07

Ci2

9.07
16.38
11.99
9.54
1.39
6.39
6.39
1.33
0.61
0.61

4.54
4.15
7.56

15.61
0.29
7.96
7.96
0.28
0.28
0.28

—84.30
—172.90
—127.10
—489.50
—25.30
—82.50
—74.40
—25.64
—10.76
—12.24

C112

—52.90
—92.20
—81.40
—9.50

—11.60
—45.10
—41.80
—11.40
—3.15
—3.73

Cl2

18.90
—23.30
—5.00
—6.90
—4.79
—6.40

0.20
—4.67

0.36
0.25

5.60
—1.30
—0.30
11.30

—3.20
1.20
2.90

—3.43
—0.23
—0.64

—62.60
—64.80
—78.00
—65.90
—1.77

—31.00
—31.50
—1.68
—3.40
—3.68

C4s6

8.30
—1.20
—9.50
14.70

1.27
—7.00
—7.00

1.37
—0.30
—0.27

'Columbium and niobium are the same material. %e use the two different names to indicate the two different sources of data.
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TABLE II. Effective TOEC (in 10" dyn cm ') and the PD of the SOEC for cubic polycrystals (from
stiffness).

Material Order C~4 Ciq3 C &44 C~s6

PD of shear modulus
Present Calc. of Expt. of

calc. Ref. 12 Ref. 15

Ag

Au

Cu

MgO

Nb

Si (1)

Si (2)

Al (1)

Al (2)

1

2
3

1

2
3

1

2
3

1

2
3

1

2
3

1

2
3

1

2
3

1

2
3

3

2
3

3.35
3.06
3.04

3.07
2.82
2.80

5.46
4.89
4.83

13.40
13.12
13.11

0.39
0.37
0.37

6.81
6.67
6.66

6.81
6.67
6.66

0.40
0.37
0.37

0.26
0.26
0.26

0.26
0.26
0.26

—0.17
—4.40

0.38
—40.23
—42.64
—38.72
—25.12
—28.91
—22.91
—2.40
—3.60
—2.81
—4.95
—5.03
—4.91

—21.80
—21.21
—20.62
—18.42
—17.50
—16.86
—4.59
—4.65
—4.49
—0.54
—0.54
—0.53
—0.47
—0.48
—0.47

—14.59
—13.71
—16.95
—16.15
—16.06
—18.55
—13.58
—14.19
—18.18
—16.76
—13.85
—14.02
—3.64
—3.66
—3.71
—5.52
—6.35
—6.72
—4.76
—5.82
—6.24
—3.80
—3.84
—3.92
—0.94
—0.94
—0.95
—1.28
—1.28
—1.28

—12.45
—9.69
—7.78

—15.01
—12.48
—11.27
—19.36
—13.74
—11.49
—29.64
—34.84
—35 ~ 33

0.69
0.82
0.82

—8.78
—7.60
—7.41
—9.18
—7.81
—7 ~ 59

0.78
0.96
0.95

—0.91
—0.89
—0.89
—0.87
—0.85
—0.85

1.97
1.53
1.60

1.02
0.83
0.88

1.78
1.28
1.36

2.19
2.43
2.49

0.48
0.39
0.43

0.53
0.46
0.47

0.50
0.43
0.44

0.53
0.43
0.48

1.70
1.67
1.68

2.07
2.04
2.05

1.42

1.09

1.36

2.45

0.46

1.82

1.40

1.05

2.42

0.45

1.80

IV. APPROXIMATE
SELF-CONSISTENT SOLUTION

A close analog of the SC calculation for SOEC's can be
obtained for nonlinear elasticity by explicitly imposing
the constraint C, =C,' on the choice of C, . It must be
mentioned that in the present form a proper SC approach
cannot be done, as one must restrict the choice of the
scattering medium to be a linear one so that the field
solution in the Careen's-function approach may be possi-
ble.

In this approximation the constraint of equality of the
linear part of the scattering medium,

an implicit equation for the determination of C, , and

(68)

T, =(I + GT, )C,(I + GT, )(I +GT, ), (69)

an explicit equation for C,*.
Calculations of C,* and C,' are presented in Table IV

for cubic polycrystals using the following expressions:

Co
S S (66)

(I +GT, ),,„,=I 5;,5„I+Y(5k5 i+5 I5,k )

+Za, „a „al,„a,„) .

together with Eqs. (22) and (23) produce the following
two equations for C,* and C,*:

(67)

a, is the rotation matrix describing the orientation of the
crystallite with respect to a reference frame. X, Y, and Z
are defined as
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TABLE III. Effective TOEC (in 10" dyn cm ) and the PD of the SOEC for cubic polycrystals
(from compliances).

Material

Ag

Au

Cu

MgO

Nb

Si (1)

Si (2)

Cb

Al (1)

Al (2)

Order

2.59
3.05
2.99
2.38
2.82
2.76

3.96
4.86
4.72

12.80
13.12
13.11

0.36
0.37
0.37

6.50
6.67
6.67

6.50
6.67
6.67

0.35
0.37
0.37

0.26
0.26
0.26

0.26
0.26
0.26

C )*2.

21.71
—24.53

8.70
—18.08
—60.80
—31.84

5.57
—59.52
—9.58
—1.90
—2.98
—2.97
—4.65
—5.05
—4.93

—17.83
—21.58
—20.45
—13.58
—17.91
—16.67
—4.13
—4.69
—4.53
—0.50
—0.55
—0.53
—0.45
—0.49
—0.47

—33.35
—0.05

—22.87
—33.13
—4.70

—23.09
—40.05

6.33
—27.63
—11.23
—14.50
—13.76
—3.91
—3.64
—3.70
—8.94
—6.11
—6.84
—8.83
—5.56
—6.37
—4.18
—3.82
—3.90

0.98
—0.94
—0.95
—1.31
—1.27
—1.28

C4s6

5.13
—17.78
—3.82
—1.71

—17.61
—8.83

5.67
—25.47
—5.25

—42.63
—34.06
—35.74

0.96
0.81
0.82

—5.56
—7.71
—7.35
—5.45
—7.94
—7.51

1.13
0.94
0.96

—0.86
—0.89
—0.89
—0.82
—0.85
—0.85

PD of shear
modulus

1.53
1.24
1.66

0.99
0.57
0.96

1.30
0.92
1.44

2.92
2.42
2.51

0.43
0.39
0.42

0.45
0.45
0.47

0.42
0.42
0.45

0.49
0.43
0.46

1.66
1.67
1.68

2.03
2.04
2.05

TABLE IV. Effective TOEC (in 10"dyn cm ) and the PD of the SOEC for cubic polycrystals in an

approximate self-consistent calculation (C,*=C, ).

Material

Ag
Au
Cu
MgO
Nb
Si (1)
Si (2)
CbR

Al (1)'
Al (2)'

3.02
2.79
4.79

13.11
0.37
6.66
6.66
0.37

0.26
0.26

C)q

1.50
—37.83
—21.19
—2.83
—4.92

—20.56
—16.80
—4.51

( —4.85+1.2)"
—0.53
—0.47

( —3.89+0.168)b

C &*44

—17.77
—19.16
—19.45
—13.95
—3.71
—6.77
—6.28
—3.91

( —3.70+0.02)
—0.95
—1.28

( —1.24+0.93)

C4g6

—7.19
—10.91
—10.58
—35.48

0.82
—7.39
—7.57

0.95
(0.75+0.005 )

—0.89
—0.85

( —0.863+0.011)

PD of shear
modulus

1.60
0.89
1.36
2.50
0.43
0.47
0.45
0.47

1.68
2.05

'Data for columbium are taken from Reddy (Ref. 16)~

Data within parentheses are experimental values.
'Data for aluminum are taken from Graham, Naddler, and Chang (Ref. 17).
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2G44[d +2(C44 —C~ )]
X =(I+GT, ),2=—

1 —2G44[d +2(C44 —C44)]
(71)

Y =(I +GT, )44=—
1 —4G~(C~ —C44 )

Z =(I+GT, )„(I+—GT, ),2
—2(I+GT, )~

=2dG~ j'[ [1—4G~«~ —C4 }—2dG~][1 —4G~«~ —C44 }]] .

T, can be written as

T, = [(2Y+Z) C,23+3X(2Y+Z)(3C,q3+4C, ~+2d2+ 3(9C(~3+ 18C,~+SC~ss+d, +9d~+ 12d3 )

+(X+2Y+Z)]5'+4Y [(2Y+Z)C,44+X(3C,~3+4C,44+2d~)]5

+SY353[SY3d)+12YZ(d)+813)+Z (Z+6Y)]+(d, +12d3+C4~6) A '

+[SY3d2+4Y~X(d )+3d~+Sd3)+(6C,~+ SC~~6+d )+3dp+12d3)XZ(Z+4Y)

+4Y~Z(3d2+4C)~)+(d~+2C, ~)Z (Z+6Y)]A +[SY d3+4Y Z(d3+2C4~s)]A

(73)

(74)

Using the average values of A', A, and A in Eq.
(74), one can easily find the effective third-order elastic
constants.

V. EFFECTIVE PRESSURE DERIVATIVE
OF THE SOEC

In this section we consider the estimation of another
important nonlinear parameter for cubic polycrystals,
namely, the efFective PD of the SOEC, which involves a
certain combination of TOEC's and SOEC's. The indivi-
dual values of the TOEC obtained from the application of
the methods developed in the previous sections are used
to calculate the PD's. As there exist quite accurate mea-
surements for these quantities, they provide an indirect
test of the predictions according to theories. As the bulk
modulus of cubic polycrystals is an invariant, there exists
only one independent pressure derivative, the PD of the
shear modulus, which we now evaluate.

PD's of the SOEC are related to SOEC's and some
combination of TOEC's. Barch gave a relation for cubic
symmetry as

~Cij kl
[(Cijki+C;,—ki )]j'3&+D,ki

5p

where

(75)

Dijkl 5ij 5kl 5ik 5j l 5il5jk (76)

K is the bulk modulus, which is an invariant for cubic
polycrystals. So the PD of the bulk modulus would also
be an invariant, and the particular contraction

Ciikk~~ (3Citi +6Ci&z+2C&z3 (77)

should be invariant, which is simply equal to the Voigt-
averaged C, = ( C, ) and also to the Reuss-averaged

C,"= ( S, ) '. Together with C, and C, , we have also
calculated

6C44 =C44 = —( C44+ 3C)44+ 4C4~6 }/3K —1,
5p

in Table II. The experimental values are provided for
comparison wherever available. Also, the result of C44 is
compared with the computation of Paul, Middya, and
Basu' from direct differentiation of Eq. (22) in the self-
consistent approximation.

In Tables II and III we have presented the calculations
starting from Voigt- and Reuss-type averages, respective-
ly. Order 1 represents Voigt- (Reuss-) type averages and
order 2 and 3 are the calculations including second- and
third-order correction terms.

Before commenting on the numerical results, we note
that the A's of Eqs. (59)—(61) representing the second-
order small terms depend only on the anisotropy
coefficients d, d„d2, and d3, whereas in the third-order
small terms C,~ and C456 appear explicitly along with
the anisotropy coefficients d, , d2, and d 3 ~

VI. APPLICATION AND RESULTS

As an application of perturbative and approximate
self-consistent method, we have calculated the three in-
dependent third-order elastic constants and pressure
derivative of the shear modulus of eight polycrystals,
namely Ag, Au, Cu, MgO, Si02, Nb, Al, and Columbi-
um. The SOEC and TOEC of the corresponding single
crystals are given in Table I.

First, we discuss the results of the perturbation
method. The three independent effective TOEC's name-
ly, C&23 C]44 and C456 have been calculated. The other
three may be derived in terms of these constants. In
Tables II and III two sets of values starting with Voigt
and Reuss initializations are presented. The contribu-
tions up to a different order of terms are indicated in
different rows. As a check of the calculations, the invari-
ant combination, namely, C;;jjkk =(3C»

&
+6C+ 2C, Q3 }

that appears in the pressure derivative of the bulk
modulus for cubic polycrystal is computed and is found
to remain constant with each order of perturbation. In
Tables II and III order 1 represents Voigt- and Reuss-
type averages of the TOEC. Orders 2 and 3 are values of
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the effective SOEC and TOEC including second- and
third-order corrections on them. The two sets of results
clearly indicate that for materials with low anisotropy
[defined according to Barsch as a=(~ V —R~)/H, V, R,
and H denoting Uoigt, Reuss, and Hill averages for a par-
ticular third-order elastic constant], namely, MgO to
Al(2), both the calculations agree. But for the third-order
elastic constants with high anisotropy (n) I), in particu-
lar for Cu, Ag, and Au, the two results are widely
different. However, it must be recalled that for the
effective TOEC, unlike the SOEC, the Voigt and Reuss
averages do not represent any bounds on the actual
values. Still, the results of the present perturbation calcu-
lation seem to indicate an empirical correlation between
the magnitude of anisotropy and closeness of end results
up to third order of perturbation, which will be a helpful
indicator for the analysis of the data.

The reason for the wide difference between the two ap-
proximations, in particular for C&23, is not difficult to un-

derstand. The difference between the initial values, i.e.,
Voigt and Reuss averages, for these materials is large and
the perturbation up to third order is not sufficient to
bring about convergence. For better results for these
constants, one has to extend the perturbation calculation
to still higher orders. Alternatively, one may try a some-
what better initialization by choosing some suitable com-
bination of Voigt and Reuss values, say, a Hill-type aver-
age, which may hopefully yield a better result. However,
we do not proceed in this direction in this preliminary at-
tempt. It may be noted here that the effective pressure
derivatives of the shear modulus for the above three poly-
crystals calculated with two different initializations are
much closer. It is because of the fact that in the PD of
C~ TOEC's occur through a combination of the form
3C,44+4C456, which varies little even if the individual
variation is strong.

Next, we discuss the results of the approximate self-
consistent method, which is given in Table IV. As a
check, we have calculated (not presented here) two sets of
values starting from the stiffness constants as well as the
compliance constants. The results are identical up to two
decimal places. A comparison of the results in Tables
II—IV clearly shows that for low anisotropy constants for
all the polycrystals considered in the present investiga-
tion the perturbative calculation and approximate self-
consistent calculation give results that compare closely.
In the absence of any other guiding factors, this finding is
important about the reliability of the predictions made, at
least for the low-anisotropy cases. Finally, we discuss the
different calculations in relation to experiment.

As was already mentioned, since we are unable to lo-
cate the range for any effective third-order elastic con-
stant in the absence of any bound, it is difficult to make
any comments on the different theoretical predictions
made except insofar as how they directly compare with
actual observation. From Tables II—IV it is quite clear
that for the effective pressure derivative of the shear
modulus for which data are available, in five cases the
perturbative and self-consistent methods give results that
agree quite closely with each other and also with observa-
tion. It may be noted in this connection that the present

results are almost identical with those obtained by Paul,
Middya, and Basu, ' who have employed a totally
different method for the calculation of the effective PD.
Their approach consists in a direct differentiation of the
effective SOEC [Eq. (39)] using experimental values of the
PD of the individual second-order crystal elastic con-
stants. This agreement provides an independent
justification of the present methods developed and also
indicates the reliability of the results obtained. Again, so
far as the individual effective TOEC is concerned, the ex-
perimental data are available only for two cases, Colum-
bium and Nb. In both cases the results obtained by the
two methods agree quite favorably with each other and
also with observation, and the predictions are well within
experimental error. However, the range of error in obser-
vation in these two cases and the closeness of the predict-
ed results, as the anisotropy is small, by the two methods
do not indicate preference for either.

In the light of the results of the present investigation,
the cases of Ag and Cu polycrystals are interesting. The
Voigt and Reuss average calculations for the effective

C$23 and C45s of Ag and Cu suggest opposite signs (see
Tables II and III). Again, both the perturbative and self-
consistent approaches in the present work suggest +ve

sign for the effective C&23 of Ag and —ve sign for the
effective C4~6 of both Ag and Cu. But the values predict-
ed by the two methods for the C&23 of Ag and Cu are
widely different. In view of the lack of sufficient conver-
gence in the case of C&23 of Ag and Cu, it seems that the
approximate self-consistent result is probably more accu-
rate. However, it poses an interesting problem, and it
will be highly instructive to perform measurements on
the effective TOEC of Ag and Cu polycrystals which will
ultimately decide between theories for such high-
anisotropy cases.

VII. CONCLUSION

Finally, we summarize the main conclusions. In this
work we have found the strain distribution including
nonlinearity for a disordered material and, utilizing the
same, have provided analytical expressions for the
effective TOEC for cubic polycrystals that expressly go
beyond simple constant stress- or strain-type averaging
procedures. For eight cubic polycrystals, explicit numer-
ical calculations have been done following two different
methods of solution, namely, a perturbative and an ap-
proximate self-consistent approach, and the results ob-
tained are satisfactory for low-anisotropy cases, but there
remains problems with high-anisotropy cases. Further
investigations, both experimental and theoretical, are
necessary for resolving them. Last, it may be mentioned
that the present method, although it has been developed
with respect to the elastic property only for the TOEC, is
quite straightforward for extending the method to treat
nonlinearity in any other tensor property and in other
disordered systems such as noncubic polycrystals and in
multiphase composites, etc., as well as to compute still
higher-order nonlinearities, some of which are planned to
be considered in a future publication.
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APPENDIX A: DERIVATION
OF EQUILIBRIUM STRAIN-FIELD SOLUTION

~p
~ij ~ij kl kl (A 1)

Equilibrium strain distribution is governed by the equa-

tion

B/r,"(r)
+f;(r)=0 .

Brj
(A2)

In terms of displacement u, this equation appears to be

Let us consider a linear, homogeneous, and isotropic
medium of the SOEC C,jk&. An external force per unit
volume f;(r) is applied at every point r, and it is de-

formed under a specified surface displacement at its
boundary.

Stress and strain within the medium are related by

where K =(C//+2C/2)/3; j/, =C44 are bulk and shear
moduli of the medium C .

If f/(r) is now given in the form

&F/„(r')
f, (r') =

Br„'
(A7)

then the solution of the field is obtained by differentiating
(A4) and then integrating by parts in the form

ek,.(r)=e/„+ f Gk;/„(r, r')F/„(r')dr',

8 gk/(r, r') i} g;/(r, r')
Gk;/ (r, r')= —— +

Br.Br Brk Br

(A8)

(A9)

In a nonlinear medium the superposition theorem is not
valid, so that the Green's-function method cannot be ap-
plied directly. We consider an inhomogeneous nonlinear
elastic material to be a linear homogeneous medium of
the elastic constant C; k&, on which the inhomogeneity
5C; k& and nonlinearity C,jk& „are superposed such that

C jk/(r}=C jk/+5C jk/(r) . (A10)

8 uk
c, „, +f,(r)=0 .

Br/Brj

The solution for uk(r) can be written simply as

uk(r)=uk(r)+ fgk/(r, r')f/(r')dr',

(A3)

+ j(r} C jk/ek/(r)'+5C/jk/(r)ek/(r)

+ —,'C;.k/ „(r}ek/(r)e „(r) . (A I 1}

Now the stress-strain relation in this type of material is
given by

where u„(r} is the solution of (A3) with f, (r)=0, under
the given surface displacement. gk/(r, r') is the displace-
ment Green's function and satisfies the equation

2

C jk/ +5;~5(r—r') =0,p
~ Skp

Br,.Brj

(A5)

gk/, (r, r') =gk/, (r —r') =gk/, (R) .

For infinite material and the boundary condition that
gk~(R) vanishes at surface, gk~(R) is given by'

( R)
1 3E +7p 5 + 3E +tu R

kp
8 og 3~o+ o kp 3~p+4 p k p

The equilibrium equation (A2) with f, (r)=0 now looks
like

/) uk (1
C; k/ 5 ~

+
~

[5C; k/(r)ek/(r)
dr, dr, dr,

+ ,'Cjk/ „(r)e—k/(r)e „(r)]=0 . (A12)

Equation (A12) shows that we are now considering a
medium of the elastic constant C; k& together with a force
per unit volume appearing as a result of the inhomogenei-

ty 5C,/k/ and nonlinearity C,/k/ „of the material. Com-

paring (A3), (A7), and (A12), we can identify F/ (r)as.
F; (r)=5C;.k/(r)ek/(r)+ —,'C; k/ „(r)ek/(r)e „(r) . (A13)

(A6) Therefore, the solution for the strain field is obtained as

I

ek/(r) sk/+ f Gk/ (r r )[5C „,~(r')e,~(r')+ —,'C~jk/ „(r')ck/(r')c, „(r')]dr (A14)

This equation can be in the operator form

p=c +6 5C,c+—,'GC, c,c. . (A15)

(XY};j „(r,r')= f Xjk/(r, r")Yk/~„(r", r')dr" . (A16)

A similar meaning is associated with the product of

The subscripts s and t are introduced to distinguish be-
tween second- and third-order quantities. The product of
the two operators X and F should be understood as

I

operators of diff'erent rank. In Eq. (A15) the operators
5C, and C, are obtained from the material properties
5Ctj k( and Cjk&m „ in the fol 1owing PrescriPtion:

5C; «(r, r') =5C,„/(r)5(r —r'), (A I 7)

C, .„/ „(r,r')=C; «„(r)5(r r.') . — (A18)

Physically, this implies that the nonlocality of C in the
scale of inhomogeneity is negligibly small. The reverse
prescription for returning from operator to material
property is provided by relations of the type
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5C,,„((r)=f 5C;,„l(r,r')dr',

Cjk( „(r)=f C„k(..(r, r')« .

APPENDIX 8

(A19)

(A20)

(1)
5ijklmn 5ij 5k(5mn

5ij'k( .=2(5;,Iki .+5k(1;, .+5-1jk(»

In Eq. (46) a short notation has been used for base ten-
sors. In the following we write this explicitly: where

Ikl (5k 5( +5k 5(

ijklmn 2(5ikrjlmn +5i! jkmn +5imljnkl+5inljmk() &

~Ijklmn =Q;+ Qj+Qku Qlu Q~+Q

g (2)
ijklmn ij ku lu mu nu+ 5k( lu ju muanu+5mna;uajuakua(u

ijklmn ikajualuamuanu+5ilajuakuamua„„+5;m ajua kua(uanu+5;najuak„a(„amu

+5 Q Q Qjk lu lu -mua nu 5jla ak a'umua n+u5j ma! auk au( aunu+ 5j n a(u ak„a( u a

+5km aiu aju alu a nu +5kn iu aj u alu a mu +5(m aiu aj u ku nu +5ln iu aju aku lu

The orientation average of A ' "can be obtained from Wagniere' and is given by

(&) —I (&) (2) (3)
ijklmn ) 35(5ijklmn+5ijklmn+5ijklmn ) '

( A' ') and ( A' ') [Eqs. (52) and (53)] can be obtained similarly by noting that

(a;„a „a„„a,„)= ,'(5; 5„,+5—;k5,, +5;,5 „)
55(j5kl+ 5Iijkl
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