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We study a two-dimensional Ising system under Glauber kinetics with an extrinsic energy barrier,
submitted to asymptotically slow continuous cooling. The system will freeze into a nonequilibrium
state if an appropriately de6ned eR'ective time for the cooling schedule does not diverge. Starting
in equilibrium beneath the critical temperature T„ the system freezes into small clusters of flipped
spins, with the energy density related to the cooling rate by a power law (for most cooling programs).
Cluster-dynamical calculations and Monte Carlo simulations show that, for exponential cooling, the
freezing exponent approaches a one-cluster value, which depends upon the energy barrier and the
lattice type, via an intermediate regime with a higher eR'ective exponent. Starting in equilibrium
above T„ the frozen state consists of large domains of either phase. Simple interface-dynamical
arguments suggest that the frozen correlation function should assume a scaling form, with a (uni-
versal) scaling exponent, which is the same as for domain growth after an instantaneous quench.
Monte Carlo simulations And evidence for this scaling form at small values of the scaling variable
only, suggesting the importance of initial correlations for a very wide regime of cooling rates. In
neither case does the temporal evolution of the frozen state follow a Kohlrausch form, suggesting a
qualitative distinction from true glassy states.

I. INTRODUCTION

Systems that require an activation energy to relax to-
wards equilibrium can display behaviors somewhat anal-
ogous to a glass transition, with a far-from-equilibrium
state being frozen in if the system is cooled through tem-
peratures such that the internal rates become slower than
the cooling rate.

Microscopic studies of such freezing and of the charac-
teristics of the frozen-in state have recently been madei 4

on activated one-dimensional kinetic Ising models under
continuous cooling. The Ising chain has a phase tran-
sition at zero temperature, so the slowing down due to
the energy barrier present in the model occurs simultane-
ously with the critical slowing down as the critical point
is approached. The Anal state does not have long-range
order, in contrast to the equilibrium state at zero tem-
perature. However, the processes that lead to relaxation
in both the equilibrium and frozen state are not qualita-
tively difFerent (unless the system is at zero temperature),
and so the frozen state is not strictly metastable, i.e., the
system is not glassy.

By contrast, true glassy states occur in systems with
a phase transition at nonzero temperature. The equilib-
rium state at low temperature is characterized by long-

range order, not present in the glassy state. The di-
vergence of an Arrhenius factor associated with an en-

ergy barrier occurs as low temperatures are approached,
and so occurs separately from critical slowing down (if
present).

It is obviously of importance to study freezing in micro-
scopic models with finite-temperature phase transitions,
particularly nonrandom models subjected to continuous
cooling. We therefore here investigate a two-dimensional
(2D) kinetic Ising model, with uniform nearest-neighbor
coupling constants, under cooling to absolute zero. In
particular, we allow this system to change state via
single-spin-flip kinetics with transition probabilities that
satisfy detail balance, but differ from the conventional
Glauber flip rates by a temperature-dependent activa-
tion factor, which diverges at absolute zero. This pre-
factor does not affect the equilibrium properties of the
model, but can cause this system to freeze when cooled
to zero temperature.

The two-dimensional Ising system has the advantage
of being one of the few statistical models with nontriv-
ial critical behavior whose static properties are exactly
known (in the absence of a magnetic field). Thus, it
has been historically a fruitful testbed for theories of
critical behavior. It may represent any system of cou-
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pled two-state entities, such as binary alloys. Although
the dynamics for this system are not exactly solvable,
it has also been a popular model for investigating criti-
cal dynamics, and also far-from-equilibrium behavior
such as domain growth and spinodal decomposition. We
therefore regard it as a suitable model for gaining a bet-
ter understanding about freezing. It has been argued
that the spin-spin autocorrelation function varies with
time as a Kohlrausch stretched exponential beneath the
critical temperature, s and possibly also in the critical
region. It, is well known that if the system is quenched
from the one-phase to the two-phase region, the system
takes an infinite time to approach equilibrium. Thus the
two-dimensional Glauber model appears to be a good
candidate for displaying glassy behavior under slow cool-
ing.

The two-dimensional Glauber model with an energy
barrier has been studied under asymptotically rapid
cooling using a decoupling approximation for the
higher-order correlation functions that appear in the
equation of motion for the spin-spin correlation func-
tion. They found that the system did indeed freeze in a
nonequilibrium state, but they did not discuss the prop-
erties of this state. In contrast, we are interested in the
slow cooling regime, where the departure from equilib-
rium is gradual, and the frozen state should retain some
of the characteristics of the freezing temperature. We
are also interested in whether this state shows the relax-
ational features of glasses.

Among other questions addressed in this paper are

(i) the situations (i.e. , cooling programs) under which
freezing can occur, (ii) whether the behavior differs very
much for cooling through the critical point, or starting
below it, (iii) whether the freezing is into single spins or
large domains, (iv) whether freezing exponents are uni-

versal and, if not, what they depend upon, (v) whether
the frozen structure has any characteristics of a glassy
state, e.g. , a temporal evolution of Kohlrausch form, (vi)
whether initial correlations get forgotten in freezing, and

(vii) whether the susceptibility (or other response func-

tions) in the frozen state differs much from the equilib-
rium value.

The structure of this paper is as follows. We first de-

scribe the dynamics of the system under consideration,
and the way in which an energy barrier is introduced.
Next, we study the system under slow cooling, beginning
in equilibrium in the symmetry-broken state. We use ar-
guments based on the dynamics of clusters, and compare
them with Monte Carlo simulations. We then study the
system under continuous cooling, beginning above the
critical temperature. Cluster-dynamical arguments are
unsuitable under these conditions, so we use interface-
dynamical arguments of the type used to describe do-
main growth, and compare the predictions of these with
simulations. The main conclusions are gathered in the
final section.

II. SYSTEM HAMILTONIAN AND DYNAMICS

The system is a two-dimensional Ising model on a
square lattice, in the absence of a magnetic field, with

the following Hamiltonian:

0;z ——+1,

where the sum is over nearest-neighbor pairs of spins at
sites labeled by i, j, with nearest-neighbor coupling con-
stant J. The system has a critical point at J/k~T, =
(1/2) ln(1+ +2) 0.44.

We allow the system state to change by single-spin-flip
Glauber dynamics, described by a master equation,

) .(1 —p)~(( ))P(( ) t) (2)

where P((a'), t) is the probability of the system being in

the state (0) = (oq, o2, . . .) at time t, and p, is the op-
erator that flips the spin at site i. The rate factor W,
is, as usual, chosen so as to satisfy detailed balance, so
that the equilibrium probability distribution is a steady-
state solution of (2). This assumes that the system is in
contact with a heat bath in equilibrium at some tempera-
ture T. The use of this master equation in the case where
temperature is a function of time again assumes that the
temperature of the heat bath varies on time scales very
slow in comparison with its equilibration time.

We have introduced an additional Arrhenius factor into
the dynamics

~(T) = exp ~—
k~T)

associated with an ad hoc energy barrier A. When 6 = 0,
the dynamics are the same as those normally used, allow-

ing the state of the system to change at zero tempera-
ture by processes that do not involve increasing energy.
The presence of the energy barrier 4 does not affect the
ergodicity of the dynamics for T g 0, and equilibrium
properties are not affected. The universality class for
critical dynamics is not affected either, as u does not di-

verge near the critical temperature T„ in contrast to the
one-dimensional case, where T, = 0.

The origin of the energy barrier could be from spa-
tially modulated nearest-neighbor bond strengths. Then,
at low temperatures, any antiparallel nearest-neighbor
pairs will be connected by the weaker bonds, and the sys-
tem will map onto a uniform one with an overall energy
barrier to all dynamic processes, just as the alternating-
bond Glauber chain has been found to be equivalent
to the uniform activated model. ~ Close to the critical
point, this low-temperature approximation will not, in

general, be valid, and some strong bonds will be bro-
ken. Nevertheless, the dynamic critical behavior of the
exchange-modulated system is the same as for the uni-

form system.
The energy barrier could arise in many different ways.

If the Ising model is representing a magnetic system, then
an activation energy may be needed to turn the spin
through 180, by virtue of an anisotropy energy that in-

hibits the spin's ability to point in any direction other
than the "easy" one. If the model represents a lattice
gas, there may be a simple activation energy required for
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all hopping processes.
We choose to study the uniform Ising system with this

ad hoc energy barrier in preference to one with spatially
modulated bonds, so that the results may be interpreted
in the context of previous work on uniform Ising systems,
and also to simplify the simulations.

The master equation (2) may be written in the form

dP
(4)

where

III. SLOW COOLING FROM BELOW
THE CRITICAL TEMPERATURE

In this section, we treat the case of slow cooling,
starting from equilibrium at some temperature beneath
the critical point. Although the glass transition occurs
when certain systems are cooled through their melting
points, there are many cases where a system freezes af-
ter cooling without passing through a temperature where
it would usually have a phase transition. Examples are
low-dimensional spin glasses (with critical point at ab-
solute zero), and the stabilization of crystal faults and
defects. It is therefore legitimate to study the behavior
of our two-dimensional system under these conditions,
to compare with the results obtained in one dimension
and also as an interesting problem in its own right. The
low-temperature dynamics obtained is not to be confused
with critical dynamics. We describe the dynamics of the

u = ddt'
0

is an effective time, and L is the same pseudo-Liouvillian
as for a system without an energy barrier. As in the one-
dimensional alternating-bond models, ~ s it is clear that
the introduction of the energy barrier simply changes the
interpretation of time, and so, as in those models, is ex-
pected to freeze if and only if u(t) does not diverge as
t ~ oo. The problem of such a system (i.e. , in dimen-
sions greater than one) under continuous slow cooling has
not been the subject of previous study, even without an

energy barrier.
The equations of motion of the moments of (2), i.e.,

of the order parameter, correlation functions, etc. , are
not analytically solvable, since the equation of motion
of an I-point function depends upon the (I + 2)-point
function, in contrast to the one-dimensional case. This is

because of the extra connectivity of lattices in dimensions

greater than one (which is of course also the reason for

the st, atics being much more difficult to solve than for the
one-dimensional case). Approximation methods will be
introduced where needed but must be used with caution.

Previous studies of the 2D Glauber system have fo-
cused upon critical dynamic behavior, 5 and domain
growth after a rapid quench from the one-phase region to
the two-phase region. Monte Carlo simulation remains
the primary tool for obtaining results, and confirming
the predictions of approximations, and this is the main
approach used here.

system in terms of clusters, and then compare the pre-
dictions of these arguments with simulations.

A. Cluster dynamics

A typical equilibrium state at a temperature less
than T, consists of a background of the majority phase
("up," for example) with finite domains of the oppo-
site ("down") phase. If these latter domains are big
enough, there may be further domains of the majority
phase within them, and so on. Under single-spin-flip ki-
netics, domains of one down spin are thermally nucleated
from the majority phase. The tendency for these domains
to shrink, on energy grounds, is opposed by the thermally
activated processes, which allow domains to grow (or, to
put it another way, by entropy). Domains larger than
the typical thermal equilibrium size have a tendency to
shrink, with their area decreasing at a constant rate with
time, this rate being temperature dependent.

In a finite system, these droplet fluctuations cause the
magnetization to reverse its sign sporadically, though this
is impossible in an infinite system. Such fluctuations lead
to an essential singularity and anomalous decay of corre-
lations at the critical point. 's'~ Also, according to Huse
and Fisher, these droplets behave as an ensemble of two-
level systems, and the very slow relaxation causes the
spin-spin autocorrelation function to have a Kohlrausch
dependence upon time. The claim of Huse and Fisher
that this behavior should be readily obtainable from sim-
ulations is doubtful, however, as the behavior occurs at
very late times only, where the spin autocorrelation func-
tion is very small, and so very high statistics would be
necessary to confirm the law over several orders of mag-
nitude of time. Also, since the behavior is sensitive to
Huctuations of droplets of large size, significant finite-size
effects might be expected.

The approach we take is to describe the system in
terms of clusters of flipped spins. We define the density ni
of clusters of size I as the number of such clusters divided
by the number of spins in the system. In Fig. 17, we illus-
trate some typical dynamical processes, which may occur
for small clusters. By virtue of the dynamics chosen, the
only processes that can occur consist of single spin Hips.
It is clear that the equation of motion of a given cluster
density n~ involves not only linear terms in the densities
of clusters of size l + 1, but also nonlinear terms due to
two smaller clusters fusing, or one domain splitting into
two. The spatial correlation of different clusters is there-
fore involved. It is also necessary to distinguish between
clusters of the same size but different shape.

This cluster picture has been used to describe both
critical dynamics and domain growth. In the limit
T ~ T„ the important clusters are very large, and a
continuum approximation is valid, which, together with
simplifying assumptions concerning the nonlinear terms,
results in a Fokker-Planck equation, reminiscent of clas-
sical nucleation theory. 6 The equation is not very suc-
cessful at describing critical dynamics or domain growth,
however. This shows that the random-phase approxima-
tion used to treat the nonlinear terms is not accurate,
and the geometric cluster density is found to diverge be-
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fore criticality is reached. However, we are interested in
the opposite regime, where the system departs from equi-
librium at low temperature, and so the dominant clusters
are, in fact, small. The continuum approximation does
then not apply, but we can treat small clusters in a way
akin to a low-temperature series expansion for the Ising
model statics, which is known to be well behaved.

As the temperature approaches zero, the equilibrium
values of the cluster densities vanish. For the square lat-
tice (considered hereafter), the low-temperature expan-
sion is one in terms of the Boltzmann factor exp( —4P j),
since the energies of clusters are in units of 4J. We would
therefore expect that truncating the hierarchy of equa-
tions of motion for cluster densities at some finite max-
imum size 1 would be accurate, if this Boltzmann factor
is small, to within a correction of this order. The nonlin-
ear terms will be increasingly more important for larger
clusters, but, since we are mostly interested in the den-
sities of small clusters, it is less important to treat large
clusters accurately.

If we neglect the nonlinear terms, the equations of mo-
tion for the cluster densities may be written in the form

dl1 = Mn+s,
dQ

where

(6)

S =
(exp( —8&j))

GAg

dt
= exp( —PA)[exp( —8Pj) —nq] .

This equation is just that for a two-level system.
We choose to vary temperature so that the Arrhenius

factor u = exp( —Pb.) decreases exponentially in time

and M is a temperature-dependent matrix containing
both constant terms and Arrhenius terms associated with
the various spin-Aip processes. The inhomogeneous term
s is a source term, which accounts for creation of clusters
of size 1, where no cluster was present before.

Under cooling, M becomes a function of time, and in
general the set of equations (6) may not be solved. If
the cooling is slow, the commutator fd/dt, M] is small
compared to M, and the equations may be solved ap-
proximately in this limit using the standard technique of
diagonalization. However, the analytic solution of (6) is
laborious even under these conditions, and the result is
only reliable in the limit where all n~ ~ 0, since this equa-
tion has not included the nonlinear terms (whose size is
of the order of ns). Therefore, the only reliable solution
when clusters of size two or more are important is that
obtained by numerical solution of the full, nonlinear set
of coupled equations, truncated at some point.

However, if we cool suf6ciently slowly, the system will
remain in equilibrium until the only clusters present are
of size one. It is then possible to truncate the hierarchy
of equations at 1 = 1. The equation of motion of the
one-cluster density in this limit is

is therefore constant in time.
Using the effective time u = f urdt the solution to (8)

under these conditions is

Z 7
ng(u) = ~~(0) exp( —u) + exp( z)—(u(u) + — dz,

0 T

since n~(0) = u&(0), where

8J
(12)

For u && 1, there is no memory of the temperature at
which the cooling began, since the first term on the right-
hand side of (11) becomes negligible, and the rest may
be written in the dynamic scaling form

Ay Q = T Cd tl 7

where

constant as z ~ 0
g7 as $~00.

The system therefore departs from equilibrium at the
point, where cdT 1, and the frozen one-cluster density
varies with cooling time as

Ay OC T'

Note that the factor 8 in (12) is lattice specific, so the
exponent y is nonuniversal with respect to lattice type.

For other cooling schedules (i.e. , ones where u does
not vary exponentially in time), both the scaling form
and scaling variable would be different, since the cooling
rate would then be a function of time. The frozen clus-
ter density would also vary with a different power of the
cooling time parameter r Such gener.alizations of (15),
and the equation itself, can be obtained by the following
crude procedure (analogous to that given in Ref. 3 for
the freezing in the alternating-bond Glauber chain): we
expect the system to freeze at about the time t~ when
the cooling rate r, = 8JP [Eq. (10)] is equal to the equi-
libration rate cu = exp( —Pb, ) in (8). For a given cooling
program (P a known function of -') this determines t~(r),
which inserted into n~& —exp[—8P(t~(r) j)] provides the
dependence of the frozen one-cluster dependence on T.

If the freezing takes place at a higher temperature (by
virtue of more rapid cooling), densities of larger clusters
become more significant. Being unable to solve exactly
the full hierarchy of coupled equations, we turn to nu-
merical integration.

We integrated Eqs. (6) for the square lattice, truncated
to order exp( —16Pj), for several values of r and A. De-
tails of the specific equations used are to be found in

Then the equilibrium value, n~ = exp( —8PJ), of nq also
varies exponentially in time, so that the characteristic
cooling rate r„de6ned as

d= —ln n'



45 FREEZING IN A T%'0-DIMENSIONAL GLAUBER SYSTEM. . . 2729

10 -i
I I I I

I
I I 10 -'

I I I I

(
I I I I

I

I I I I

V

bQ

Q]0 -3

I
il

1Q
I. . . , II. . . , I. . . , I, . . .

0.00 0.40 0.80 1.20 1.60 2.00

Temperature

Q
1Q

bQ

Q

10 .3 s s I s I I s

IIIIIIIII
II

II
I
I
I
I

I
I
I

I
I s s I I I I I s s I I I

0.00 0.40 0.80 1.20 1.60 2.00

Temperature
FIG. 1. Energy density during cooling as a function of

temperature for slow quenches starting at T = 2J, from a
numerical integration of Eqs. (Al)-(AV), for b, = 10J. Solid
curves, top to bottom: r = 3 x 10, 3 x 10, and 3 x 10 .
Dashed curve: equilibrium value.

FIG. 3. Energy density during cooling as a function of
temperature for slow quenches starting at T = 2J, from a
numerical integration of Eqs. (Al) —(A7), for D = 40J. Solid
curves, top to bottom: r = 10, 10, and 10 . Dashed
curve: equilibrium value.

the Appendix. Figure 1 shows the energy density during
cooling for three values of r at b = 10J. For the smaller
values of 7., the system departs from equilibrium early in
the cooling but freezes only gradually, the final value of
the energy density being much smaller than that at the
point where the system departs from equilibrium. For
larger values of r, the freezing is also very gradual (as a
function of temperature), but the system stays close to
equilibrium for the first part of the cooling schedule; the
data for these values of r therefore should not contain a
memory of the initial equilibrium state.

Figure 2 shows the frozen values of the energy den-
sity, magnetization, and one- and two-cluster densities,
as a function of cooling time r, on a log-log scale, for

10 -'

b, = 10J. The curves for the first three quantities all
approach the theoretical limit of a straight line of gra-
dient —0.8 (dashed lines) as r diverges, in accordance
with (15). However, there is a wide regime of intermedi-
ate values where the curves have a gradient higher than
this value, due to the contributions from larger clusters.
The asymptotic gradient of the data for nz is 1.2 =
showing that the two-cluster density behaves as an inde
pendent ensemble of two-level systems of energy 12J.

Figure 3 is a plot of the energy density as a function
of temperature for slow cooling with 6 = 40J. Here,
the system freezes very abruptly, in contrast to the case
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PEG. 2. Solid curves, from top to bottom: frozen values of
the energy density, magnetization, and one- and two-cluster
densities, respectively, as a function of r, obtained from nu-
merical integration of Eqs. (Al) —(A7), with A = 10J. Dashed
curves: asymptotic fits to the exponents described in the text.

FIG. 4. Solid curves, from top to bottom: frozen values of
the energy density, magnetization, and one- and two-cluster
densities, respectively, as a function of r, obtained from nu-
merical integration of Eqs. (Al) —(A7), with D = 40J. Dashed
curves: asymptotic fits to the exponents described in the text.



2730 STEPHEN CORNELL, KIMMO KASKI, AND ROBIN STINCHCOMBE 45

4 = 10J, with the system initially remaining close to
equilibrium even for smaller values of r. The frozen state
therefore shows little memory of the initial state. Figure
4 shows the energy, magnetization, and one- and two-
cluster densities in the frozen state as a function of r on
a log-log scale. Again, there is a wide regime (more pro-
nounced in this case due to the freezing taking place at
higher temperature) where the gradient is steeper than
the theoretical one-cluster value, due to contributions
from larger clusters.

~ O

% ~

~ %

~ In

I Q

~ J
I

~ ~

I ~

B. Simulation

The above type of cooling is amenable to Monte Carlo
simulation. Since the important configurations at low
temperatures consist of small clusters, finite-size effects
are unimportant. For this reason, only one lattice size
was studied (128x128), and periodic boundary condi-
tions were used.

The lattice was separated into two interlocking sub-
lattices so that interacting nearest-neighbor spins reside
on different sublattices. Then one sublattice was chosen
at random, and all of the spins in the sublattice were
tested in parallel using the vector processor on the Star-
dent 3000 machine. One such sweep corresponds to one
half Monte Carlo step per spin.

The probability per attempt for a spin Hip changing
energy by 6 is

a for b(0
p(~) = for b=0

a exp( —Pb) for b ) 0,
(16)

which resembles the Glauber choice for fiip rates as

P ~ oo. Even for P 1, the small differences between
the above choice and Glauber's choice are insignificant.
The parameter a was chosen to be 0.1 initially, and
during the cooling it was reduced (since it is proportional
to the Arrhenius parameter u). This ensures that the
Markov chain produced by the dynamics has the same
properties as that produced by true Glauber dynamics
(i.e. , it ensures that the effects of using discrete time are
insignificant). In particular, it reduces the problem of
correlated domain-wall motion that can affect the results
of such a vectorized algorithm.

Equilibrium configurations were created by allowing
the system to relax for a large number of sweeps ( 10s)
at a temperature of 0.88T„starting with all spins up. A

typical configuration is shown in Fig. 5. Even though this
temperature is quite close to the critical temperature, the
configuration consists of domains of small size. Thermal
equilibrium was ensured by monitoring the temporal evo-
lution of the magnetization and the energy density during
the relaxation. Since preparation of 10 such configura-
tions took some 20 h of CPU time, the same set of initial
configurations was used for each cooling program, rather
than generating a new set of configurations each time.
This would, in principle, lead to correlations between the
data for different cooling conditions, but the averaging
involved is still adequate for our purposes.

FIG. 5. Typical spin configuration at T = 0.88T, (= 2),
showing the predominance of small clusters. A single black

square represents a down spin. Shown is an area of 64x64
spins from the full lattice of 128x 128 spins used.

A quench was simulated by reducing the tempera-
ture in steps so that at each step the Boltzmann factor
exp( —2PJ) changed by a constant factor e ( 0.95—0.98),
the parameter a in (16) changed by e~, and n, sweeps
were carried out. The characteristic cooling time is then

f+sw
8ln~ ' (17)

1. For D (8J
For a small value of the energy barrier, the system

needed to be cooled sufIIciently rapidly for the freezing
to be significant (i.e. , for the error bars on the frozen
energy density to be smaller than the density itself). But
then the system departed from equilibrium early in the
cooling process, so the Anal state contained a high density
of relatively large (i.e. , more than one spin) domains, and
a strong memory of the initial temperature condition.

The reason for the system's readiness to depart from

which took values in the range 20—50000.
The results for each cooling schedule were averaged

over the 10 independent initial conditions, each with a
different seed for the random number generator. Error
bars were estimated from the statistical variation over
the independent runs.

The structure was characterized by the energy density
(taking the ground state as zero energy), which is propor-
tional to the number of broken bonds, or, equivalently,
the total length of domain walls. The energy density is
zero in equilibrium at zero temperature, and so freezing
is characterized by a nonzero-energy density at t;he end of
the cooling program. Other possible "order parameters"
exist: the magnetization per site is well defined for this
system, since the cooling begins in the symmetry-broken
state. The full spatial dependence of the spin-spin corre-
lation function, which is very important in studies of do-
main growth, is not a very interesting quantity to study
in this case, since the long-distance behavior is dominated
by the nonzero magnetization.

Simulations were run of cooling with various values of
the cooling time 7, for a range of values of the barrier A.
The results are summarized below.
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( u
exp( —8PJ) oc

~

1—
~(0)r j (18)

equilibrium early in the cooling but to return close to
equilibrium later on is that the effective time required for
a domain to disappear is proportional to its area. ' Since
larger domains predominate at higher temperatures, this
means that the effective time for equilibration actually
decreases as zero temperature is approached. From (5),
using (9) and (12), a typical Boltzmann factor at effective
time u during the cooling is given by

xlo-'
1.25

1.00—
~ ~
M

0.7S—

~ 0SO—
Q

I I I

I

I I I I

I

I I I I

I

I

For p ) 1, which is the case here, the system spends
more effective time at lower temperatures than higher
temperatures. Thus, if the system spends enough time
at higher temperatures for the characteristic domain size

to be close to equilibrium, the system spends a very long

effective time at lower temperatures, and so the structure
is capable of relaxing near to equilibrium.

Since the final structure is so clearly dependent upon
the initial state, no attempt was made to fit the data to
the power law obtained in Eq. (15), which was derived un-
der the assumption that the system departs slowly from
equilibrium, and that only clusters of size one contribute.
Much higher run statistics would be necessary to obtain
accurate values for the frozen energy density when the
system departs slowly from equilibrium.

8. Eor Lh &8J

When the exponent 7 ( 1, it is clear from Eq. (18) that
the system spends more time at higher temperature than
at low temperature. The system would then be expected
to be capable of having more significant (measurable)
freezing than for smaller values of the energy barrier, even
for cooling that is sufficiently slow that the system only
departs slowly from equilibrium. This is indeed what was

x10 '

Q
0.25

"%.00'
I. . . , I. . . , I

0.50 1.00 1.50

temperature
2.00

FIG. 7. Energy density during cooling as a function of
temperature for a number of cooling schedules starting at T =
2 J, with 4 = 20J, from Monte Carlo simulations.

observed: slow cooling gave rise to freezing at very low

temperatures, where the contributions were mostly from
very small clusters, with small error bars.

The energy density is plotted as a function of temper-
ature in Figs. 6 and 7, for 6 = 10 and 6 = 20, respec-
tively, for a variety of values of r. The frozen energy
density and magnetization are plotted as a function of
r on log-log scales in Figs. 8 and 9. These curves sup-
port the conclusion that the scaling of cluster densities
is a power law, but, while there is some evidence in the
energy density of Fig. 8 of an approach to the theoreti-
cally predicted line of gradient (—y) for large values of r,
the results in Fig. 9 appear to have an effective exponent
higher than the predicted value. This is qualitatively in

agreement with the results of the numerical integration
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FIG. 6. Energy density during cooling as a function of
temperature for a number of cooling schedules starting at T =
2J, with 4 = 10J, from Monte Carlo simulations. The error
bars have been omitted for the lower curves for clarity.

FIG. 8. Log-log plot of frozen values of the energy den-
sity (triangles) and magnetization (diamonds) for the cooling
schedules shown in Fig. 6, as a function of r. The dashed
curve has gradient 0.8, equal to the theoretical one-cluster
value.
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10 -2

I I I I I I I I) i i I I ill I I I I I I I i only a longer time for each run, but also more indepen-
dent runs need to be averaged over in order to achieve

a comparable relative error. Since the number of runs
needed is proportional to the square of the error required,
it is clear that the CPU time required for such investi-

gations diverges dramatically. Running 10 independent

quenches at the slowest cooling used above required more
than 50 h of CPU time on the Stardent 3000 machine
(roughly s as powerful as a Cray XMP supercomputer).

IV. SLOW COOLING FROM ABOVE
THE CRITICAL TEMPERATURE

10 3
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ii «I
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i i i i iiil
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FIG. 9. Log-log plot of frozen values of the energy den-

sity (triangles) and magnetization (diamonds) for the cooling
schedules shown in Fig. 7, as a function of r. The dashed
curve has gradient 0.4, equal to the theoretical one-cluster
value.

FIG. 10. Typical frozen state for the slowest cooling

schedule in Fig. 7, showing the predominance of single spin

clusters. A single black square represents a down spin. Shown

is an area of 64 x64 spins from the full lattice of 128x128 spins
used.

of the cluster equations of motion in the last section, i.e. ,

the asymptotic region for larger values of 6 was found to
occur at much larger values of r. For intermediate values
of r, the gradient is steeper, again implying important
contributions from clusters of size greater than 1. The
eAect appears more pronounced than for the numerical
solution of Eqs. (6), presumably because of the trunca-
tion used in the Appendix. For small values of r, the
system departs from equilibrium early on in the cooling
schedule, so the curves tail oA', showing dependence upon
the initial state. Figure 10 shows a typical configuration
for the slowest cooling schedule with 6 = 20J, showing
the predominance of single-spin clusters.

The simulations appear to confirm at least qualita-
tively the predictions of the cluster dynamics arguments,
in the limit of very slow cooling. The limit in which the
power law (15) is valid is only just accessible by simula-
tion. To reach further into the large 7 regime requires not

We now turn our attention to the case of cooling be-
ginning above the critical temperature. This is the case
that is of most interest to us as a model for the glass
transition. We first discuss the problem from the point
of view of interface dynamical arguments and then com-
pare these with simulations.

A. Interface dynamical arguments

The case of an instantaneous quench to the two-phase
region has been extensively studied; the system ap-
proaches the symmetry-broken state by separation of the
two phases. Even though the order parameter is not con-
served, the system still requires an infinite time to relax
to equilibrium because, while the system is capable of
breaking symmetry locally, in order to reach the final
state one particular phase has to be established over an
infinite length scale.

During the phase separation, the correlation function
displays dynamic scaling, even though the system is
far from equilibrium. In the asymptotically long-time
regime, the structure function g(k, t) is found to be of
the form

g(k, t) = Ld f(kL),
where the functional form of f is independent of time,
and the characteristic domain size I scales with time as

I, oct 1
2 (20)

dL A(T)
dh

(21)

where A(T) is a temperatu e-dependent prefactor, which

The value of the exponent n has been confirmed by Monte
Carlo simulation, ' and is explained by Allen and Cahnz
in terms of the motion of the phase boundary in a con-
tinuum fluid model. The force upon the phase boundary
is determined by its curvature. In the language of the
lattice Ising system, this is because a highly "curved"
domain wall is less smooth, implying that there are more
possible sites where a spin may fiip without requiring ex-
tra energy. The number of possible processes per unit
time per unit length is therefore greater for a wall of
higher curvature. According to Allen and Cahn, the force
upon the interface is inversely proportional to the radius
of curvature. The equation of motion for the average
domain size is then
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L (oo) = ~Adt .
0

(22)

The long-time behavior of the integrand on the right-
hand side of (22) is dominated by the Arrhenius factor
~, so the final structure is indeed again found to be frozen
if u(oo) is finite.

If we choose a particular class of cooling program,
where ~ depends upon time as

t
~ = hi /

—
/

(23)

and such that u(oo) is finite, then the temperature, and
hence A, is also a function of the ratio (t/r) only. Then
Eq. (22) may be written in the form

departs from the prediction of Allen and Cahn close to
the critical temperature in the two-dimensional Glauber
system. iz Integrating (21) at constant temperature re-
produces (20).

Although the system takes an infinite time to relax to
equilibrium, the state that ensues has nontrivial temporal
dependence and so would not be describable as being
frozen. However, our model possesses an energy barrier,
so we expect it to freeze if it is cooled towards absolute
zero in a way [e.g. , (9)] that does not cause the effective
time u to diverge.

If the two-dimensional Glauber system with an energy
barrier is cooled from equilibrium at some temperature
still above the critical point, it will fall out of equilibrium
when it is at some temperature above the critical point,
by virtue of critical slowing down. When the temperature
of the heat bath is lower than the critical temperature,
the system will attempt to break symmetry locally, and
the domains in the system will begin to coarsen. How-

ever, the temperature-dependent prefactor A in Eq. (21)
is now a function of time. Also, there is now an additional
Arrhenius factor u due to the energy barrier, which de-
creases rapidly as temperature is reduced. Although the
average domain size does not therefore scale simply with
the square root of time, in the long-time and long-length
limits Eq. (21) is still instantaneously valid. The final
domain size is obtainable from (21) (generalized with the
Arrhenius factor ~ accompanying A), dL B(T) + (corrections) .

Ch L~ (27)

It is consistent to postulate that, in all cases where do-
main growth scaling governed by exponent n is observed,
an approximate equation of motion for the domain size
of the form

dI
dt

(28)

is valid. We then predict that, if such a system pos-
sesses an energy barrier that inhibits dynamics at low

temperatures, and a slow cooling schedule of the form

(23) is chosen, with a nondiverging effective time, the
frozen domain size varies with v. as

(29)

It is plausible also that the full correlation function as-
sumes a scaling form such as (19), since any domain of
length L grows deterministically according to the gener-
alization of Eq. (21).

The final state is clearly metastable, in the strict sense
of Binder and Muller-Krumbhaar, since its evolution
in time is slower than characteristic equilibration time
scales. For the frozen state to evolve, the cooling needs
to be stopped at some very low temperature, just as in
the one-dimensional case studied elsewhere. zr When this
happens, the evolution simply follows domain coarsening,
with exponent 2, just as in an instantaneous quench to
low temperatures, and no Kohlrausch form is observed.

The result may also be extended to other systems.
There are many other cases in which the correlation
function assumes a form such as (19) after an instan-
taneous quench from a one-phase to a two-phase re-
gion. For example, the conserved-order-parameter ki-
netic Ising ("Kawasaki" ) system displays scaling with
exponent z 1/3, some dynamic polymer systems are seen
to scale with exponent2s 1/2, though this is complicated
by the importance of more than one length scale, and
amorphous membranes have been observed to grow with
exponents~ 3/4. The behavior observed in the Kawasaki
system has been explained by Huse, after Lifshitz and
Slyozov, 2s by deriving an approximate equation of mo-
tion for the characteristic domain size of the form

00 (t
Lz(oo) = hz

i

—
i

dt
o i ri

= r h2(z)dz,
0

(24)

(25) B. Simulatien

where h2(z) is some function of z, whose behavior is
unimportant except for the fact that the integral in (25)
is convergent. We therefore predict that for any cooling
program of the form (23) giving rise to freezing [u(oo)
finite], the frozen domain size scales with cooling time as

Loca&, (26)
in the limit of large r. This exponent is independent both
of the class of cooling, and also of the energy barrier, in
contrast to the results obtained for freezing in the absence
of a phase transition.

Continuous quenches starting from equilibrium at T =
3J were simulated in a lattice 512x512 spins, using pe-
riodic boundary conditions. An equilibrium state was

prepared at T = 3 by letting the system evolve for 100
Monte Carlo steps (MCS) per spin, which was found to
be suKciently long for the correlation function to reach
its equilibrium value at this temperature. Then, as the
system evolved, the temperature (and hence the spin-flip

probabilities) was altered according to a cooling program
of form (9), in such a way that each Monte Carlo lattice
sweep corresponded to one unit of effective time, until

the temperature changes per sweep became larger than
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a threshold value bT (taken to be bT = 0.03). From this
point onwards, the spin-fiip probabilities were normalized
in such a way that the increment in effective time corre-
sponded to a change in temperature of bT. One hundred
independent runs (with independent initial conditions)
were carried out for each value of 4 and r considered.
Since the important structures in which we are interested
are large domains, the use of the sublattice simulation
routine does not introduce significant undesirable corre-
lations in the motion of domain walls, in contrast to the
case of small clusters considered in Sec. III B.

The energy density as a function of the temperature
during the cooling is shown in Figs. 11 and 12 for four
values of r at b, = 10 and 6 = 20, respectively. As
before, the freezing occurs more abruptly for larger values
of the energy barrier.

The circularly averaged correlation function Cc~(z) in
the frozen state was obtained from the two-spin correla-
tion function C(r) = N ' Q„(o(x)0(x+ r)) by splitting
CCA into bins at position z;, the value of CCA in the ith
bin being the average of C over all r values satisfying
i —0.5 & )r( & i + 0.5 and the value of z; being the
average of all (r( values in the ith bin. This frozen cor-

relation function is plotted as a function of r~ in Figs.
13 and 14 for the various quenches simulated at the two
values of 6, respectively. While there is some evidence of
scaling for lower values of z/r~ (the deviations at lower
values of r being assignable to discrete lattice effects in
the definition of the circular average), at higher values of
(z/r ~) the correlation function may not be described by
any single scaling variable.

Since the correlation function does not assume a scal-
ing form for the values r used in the simulations, there is
no unique way of defining the frozen domain size. In Figs.
15 and 16 we plot lgA = Q,. CCA(z;) and e (where
e = [1—S(l)] is the energy density) as a function of ln r,
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which would both be proportional to the domain size I
if S were a function of z/I only. For 6 = 10J, the
gradients in Fig. 15 lead to values ncA ——0.482 + 0.001
and e, = 0.531 + 0.04 for the effective growth expo-
nents defined by lcA r~ " and e r '. From
Fig. 16, t, he values of these exponents for 6 = 201 are
ecA ——0.444+ 0.001 and o,, = 0.418+0.05. Also plotted
in the same figures is the square of the magnetization,
& m~ ), which should be proportional to the domain
length squared if (19) holds; the large fluctuations of this
quantity derive from important contributions from corre-

Temperature
FIG. 12. Energy density during cooling as a function of

temperature during simulations of slow cooling programs be-
ginning at T = 3J, with 4 = 20. Top to bottom: r = 10,
3 x 10, 10, and 3 x 10 .
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FIG. 11. Energy density during cooling as a function of
temperature during simulations of slow cooling programs be-
ginning at T = 3J, with A = 10. Top to bottom: r = 10,
3 x 10, 10, and 3 x 10 .

FIG. 13. Frozen correlation function after the quenches

illustrated in Fig. 11, plotted as a function of z/t&. Dotted
curve: r = 10 . Solid curves (top to bottom): r = 3 x 10
10, and 3 x 10 . Statistical errors for each point are of the
order of the width of the lines in the figure, but the error bars
have been omitted for clarity.
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FIGr 14. Frozen correlation function after the quenches

illustrated in Fig. 12, plotted as a function of s/t ~, for (top
to bottom) r = 10, 3 x 10, 10, and 3 x 10, respectively.
Statistical errors for each point are of the order of the width
of the lines in the figure, but error bars have been omitted for
clarity.

lations at long range, which have been suppressed in the
definition of CcA. Least-squares fits yield ( m & r, ,

where a, takes the values 0.76 + 0.02 and 0.98 + 0.12 for
4 = lOJ and 6 = 20J, respectively.

C. Discussion

Apart from the possibility of finite-size effects, which

might affect some of the data at the largest value of r,
the lack of a scaling collapse at large distances might be
due to two reasons.

(i) The value of r in the simulations is not large enough
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FIG. 15. Log-log plot of the three measurements of do-
main size as a function of r, for the cooling programs illus-
trated in Fig. 11. The curve for ( m ) has been shifted
vertically.

FIG. 16. Log-log plot of the three measurements of do-
main size as a function of r, for the cooling programs illus-
trated in Fig. 12. The curve for ( m p has been shifted
vertically.

for the domain coarsening to be described by the Allen
and Cahn theory.

(ii) The state when the system leaves equilibrium may
contain strong spatial correlations.

As the system is cooled from above the critical point,
it departs from equilibrium when the relaxation time is
comparable to the cooling time. Just as in the one-
dimensional case, the correlations on long-length
scales will fall out of equilibrium before correlations on
short-length scales. If r is increased, the system will

have more time below T, for these correlations to de-

cay, but the system will also depart from equilibrium
at a later stage, and therefore its correlations will be
of longer range. These correlations will take longer to
become unimportant, and it is not at all obvious that
merely increasing r will eventually make it possible for
the system to be described by the Allen and Cahn theory
(21).

It has been shownzs that long-range (algebraically
decaying) correlations can affect the universality class
for the spin-spin autocorrelation function and can also
change the form of the scaling function for the one-time
spin-spin correlation function. For a system that departs
from equilibrium near the critical point, the correlation
length will be very long, and so there will be a very wide
spatial range within which the dominant decay of corre-
lations will be algebraic. We therefore expect that there
will be a regime of intermediate values of 7 where the
frozen structure shows evidence of' effectively algebraic
initial correlations. For still smaller values of 7, the value
of the correlation length at the point where the system
departs from equilibrium may be important.

The correlations at range r will fall out of equilibrium
near a point satisfying r r ~, where z is the dynamic
critical exponent. Thus, the correlation function takes
substantially its equilibrium value until a temperature
is reached where ( -, ~ (where ( is the correlation
length). These correlations will subsequently take a time
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t f ocr ~ (30)

to become unimportant. We might expect the value of o.

to be of the order of 2, since the decay of correlations is
controlled by domain wall diffusion. Since z 2.08 the
significance of the initial correlations is very sensitive to
the precise value of e.

The result (26) made no assumption about the func-
tional form of hi in Eq. (23). We might therefore expect
that it would be possible to choose a given form for hq

such that, for some large value of r = ri, the system
spends long enough below T, for the initial correlations
to be unimportant. The law (26) would then be expected
to hold in the vicinity of r~, but it is still not clear whether
the law would be valid for r ~ oo. In particular, we could
choose a very small value for 6. In the limit K ~ 0, the
system spends almost all of its effective time near T = 0,
and so for a very wide range of values of r the cooling
program would be equivalent to an instantaneous quench
from T = 3 to zero. However, the regime that int, crests
us in this paper is that where the system remains close
to equilibrium at the beginning of the cooling program,
which would only be achievable for very large values of
r; under these conditions, the system will spend such a
long time beneath the critical temperature that any sim-
ulation data for these values of 6, r would suffer greatly
from finite-size efI'ects.

V. CONCLUSION

We have studied a two-dimensional Glauber system
with an energy barrier under continuous cooling ap-
proaching absolute zero. The condition for freezing to
occur is that the eHective time associated with the Arrhe-
nius factor does not diverge as time t -+ oo. The behavior
depends critically upon whether the initial temperature
is above or below the critical point, .

For cooling that, begins in the symmetry-broken state
below the critical point, the system freezes into small
clusters of spins antiparallel to the direction of magne-
tization. In the case of asymptotically slow cooling, in
the region where the system departs from equilibrium it
behaves as an ensemble of two-level systems consisting
of single spins. The freezing exponent governing the de-

pendence of the frozen energy density upon cooling rate
is found to be nonuniversal with respect to lattice type
(hexagonal, square, etc.) and depends upon the ratio of
the nearest-neighbor coupling strength to the ad hoc en-

ergy barrier. It would be useful to solve the equations of
motion for the cluster densities numerically, to see if the
relationship between frozen structure and cooling time
observed in the simulations may be reproduced for the
regions where larger clusters are important.

The relaxation time for such frozen structures is of the
same order of magnitude as the equilibration time for
the system, although the fact that there may be more
large clusters present means that it will be larger (relax-
ation time for a given cluster is proportional to its area).
The response to a magnetic field will be dominated by
the presence of single-spin clusters, and so the response
function will be simply exponential. The frozen structure

does not, therefore, have many of the characteristics of a
glassy state. As in the frozen Glauber chain, this can
be seen as due to the fact that the processes that occur in
the frozen state are not qualitatively different from those
that occur near equilibrium.

If the system is initially in equilibrium at a temper-
ature above the critical point, then under cooling the
system falls out of equilibrium in the vicinity of the crit-
ical temperature, and thereafter the structure evolves by
standard domain coarsening. We have argued that, in
the limit of slow cooling, the correlation function follows
a scaling law, with the relation between frozen domain
size and cooling time governed by the same exponent
that controls domain coarsening at constant tempera-
ture. However, in our simulations the scaling form ap-
peared to be valid for small values of the scaling vari-
able only. The regime of validity for the scaling form
was wider for smaller values of the energy barrier, which
is consistent with the fact that an instantaneous quench
corresponds to the limiting case 6 ~ 0. For larger values
of b, , the initial correlations remain significant at large
distances, so the Allen-Cahn regime is not approached.
We have argued that there should be regimes in which
the scaling law is valid, though not necessarily as 7 ~ oo,
but simulations of such situations do not appear to be
currently feasible, requiring very large systems to avoid
finite-size effects. If the exponent is correct, it is uni-

versal, being independent of the discrete structure of the
lattice, energy barrier, etc.

Although the temporal evolution of such a frozen state
is not of a Kohlrausch form, the relaxation time is in-
finite, and the processes that occur could be described
as qualitatively different from the equilibrium state (al-
though there is locally broken symmetry). The depen-
dence of the structure upon the cooling rate enters en-
tirely through the allowed evolution after the system is
out of equilibrium, in contrast to the case of real glasses.
The response of such a structure to a magnetic field will
be broadly dependent upon the domain wall density (just
as in the frozen Glauber chain~7), and so the susceptibil-
ity will be much larger in this frozen state than near
equilibrium.

To investigate the analogy with glasses more carefully,
cooling programs that do not allow significant relaxation
below the critical temperature (and therefore are always
well away from the Allen-Cahn regime) should be inves-

tigated; the relaxational properties of such states will be
more complex than the domain scaling postulated in this
paper.

The Kohlrausch form of Huse and Fisher is only valid
in the long-time regime, near equilibrium, and so we do
not see any sign of it here. However, the freezing observed
does have some of the properties of glassy states, with a
lifetime much longer than equilibration times, and the
frozen state is qualitatively distinct from equilibrium.

We have suggested that the exponent governing freez-

ing after cooling through the critical temperature is, in

general, of the same universality class as domain coarsen-
ing, and this needs to be investigated for the case of other
systems, such as the three-dimensional Glauber system,
an Ising model under Kawasaki dynamics, dynamical
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polymer systems, etc. The last case is particularly inter-
esting, since polymeric liquids such as polyvinylacetate
are classic glass-forming substances.
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APPENDIX: EQUATIONS OF MOTION
OF CLUSTER DENSITIES

FOR THE SQUARE LATTICE

dn' = ~

dt
= [a (1 —2lng) —4zng —nij

+2n101 + 2n11 + 2n2

dn2 =
dt

= 4zn1 —6zng + 2ng1 + 2n3 —2n2,

dn1 1 2

dt
= np1 —2n11+ 4z n1 —2n11,

dn101 2

dt
n3 3n101 + 4z n1

dna =
dt

2ngs + n] 0] 3n3

(Al)

(A2)

(A3)

(A4)

(A5)

Since we are interested in the case where a system is
cooled continuously, starting in equilibrium at a tempera-
ture beneath the critical temperature, the contribution to
macroscopic quantities (e.g. , energy, magnetization) from
a cluster of energy E is always less than exp( E/kT~—),
where Ty is the temperature where this cluster falls out
of equilibrium. The lowest-order term comes from single
spins (henceforth "1-clusters" ), with energy E = 8J. We
can derive the equations of motion up to order exp( —16J)
without needing to include correlations between the clus-
ters, since the only configuration of this order that in-

volves the interaction between two clusters is the case
where two 1-clusters are nearest- or next-nearest neigh-
bors. We treat such configurations exactly to this order
by defining them as as separate cluster types.

Figure 17 illustrates the possible clusters and processes
that occur to order 16J. From the figure, the equations
of motion of the cluster densities are

2

1

x x 1 x x 1
163 ix x x[ x x

X 4 X X
1

&11 &21 &4 &3 ~101
FIG. 17. Possible processes and definitions of the cluster

densities up to order exp( —16PJ) for the Glauber Ising model
on a square lattice. The crosses (x) represent down spins
against a background of up spins. The numbers adjacent to
the arrows are the combinatoric factors appropriate to the
illustrated processes.

dn4

dt
n2] 4n4 )

dng1

dk
= —4np1 + 4zng + 4n4 + 2n11,

(A6)

where z = exp( —4PJ) and the cluster densities are de-
fined in Fig. 17. Trivially, these equations satisfy

d 2—(nt+nz+n11+n1pt+nzt+ns+n4) = z (1—13n&) —n&
dt

(A8)

since the only processes that do not conserve the total
number of clusters are the birth and death of l-clusters.
The term n1 on the—right-hand side represents the fact
that only the death of 1-clusters leads to a reduction
in the total number of clusters. The factor (—13) in
the term in (nqz2) arises from the fact that, for each 1-
cluster, there are 13 sites (i.e., the site, plus its nearest-
and next-nearest neighbors) where no new 1-cluster may
be nucleated (such processes being taken into account by
the inclusion of terms in nz, nypy, nay).

The terms that have not been included are all of order
exp( —20PJ) or lower, and include interractions between
1-clusters and 2-clusters, etc.
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