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A single crystal of Feo 53Cr047, quenched to 300 K after an anneal above the o.-phase boundary, was
studied at three x-ray energies: 5.969, 7.092, and 7.6 keV (where the x-ray contrast was -0). With our
analyzer detector we were able to remove the Compton and resonant Raman scattering experimentally
to leave solely the diffuse scattering from concentration Auctuations and atomic displacements. Using
the 7.6-keV data to determine and remove the combined pure static and thermal diffuse scattering, the
other two data sets were least-squares fitted for short-range order and local-atomic-displacement param-
eters. These data sets both indicate a clustering tendency (Fe-Fe and Cr-Cr local environments). Inverse
Monte Carlo and Krivoglaz-Clapp-Moss determinations of pair-interaction energies agree well and com-
pare favorably with recent theoretical calculations. The average individual Fe-Fe and Cr-Cr distances
were also determined and revealed a contraction of both Fe-Fe and Cr-Cr nearest-neighbor distances (Cr
is the larger atom). This result disagrees with a conventional treatment of atom-size effects in solid solu-
tions and must be understood using species-dependent solute-lattice couplings. Finally, no indication of
premonitory o-phase fiuctuations was found although diffuse scattering attributable to a related co-phase

softness was observed.

I. INTRODUCTION

The binary Fe-Cr system' exhibits a body-centered-
cubic solid solution (a-Fe-Cr) in a wide temperature and
concentration range. At —1100 K, a structural transfor-
mation to the o. phase, a complex Frank-Kaspar phase,
occurs. According to thermodynamical evaluations, '
the o phase decomposes below -700 K into Fe-rich and
Cr-rich bcc phases. Since the bcc-o. transformation is
very sluggish, a metastable miscibility gap for a-Fe-Cr is
observed well above this decomposition temperature.
One might then expect the local order in the bcc phase to
reveal a tendency toward phase separation. However,
there is the alternative possibility that directly above the
o-phase equilibrium boundary the local atomic arrange-
ments reflect the incipient o.-phase formation through
premonitory fluctuations. In alloy systems, such premon-
itory fluctuations can, for example, include short-range
order as well as local atomic displacements. For a quan-
titative investigation of short-range order and atomic dis-
placements diffuse x-ray and neutron scattering are well
suited.

A neutron scattering study on Fe-rich polycrystalline
a-Fe-Cr has shown an inversion in the character of the
short-range order from a preference for unlike (Cr-Fe}
pairs for Cr concentrations below -9% to a preference
for like pairs (Fe-Fe, Cr-Cr} above this concentration.
This tendency appears to be reflected as well in band-
structure calculations of the pair interactions responsible
for the local chemical order. The clustering behavior at
higher Cr concentrations is, of course, compatible with
the observed miscibility gap. No diffuse-scattering mea-
surements on o;-Fe-Cr single crystals have, to our

knowledge, been reported in the literature.
The present single-crystal study was selected for

several reasons.
(a) We wished to explore the relationship between the

local order in the bcc a-phase and atomic arrangements
in the cr phase; i.e., we were interested in the possibility
of premonitory o.-phase fluctuations above the o.-phase
boundary;

(b) we were interested in measuring the local order in a
solid solution in which the atom size disparity is quite
small;

(c) we hoped to employ anomalous scattering methods
with a synchrotron radiation source both to enhance the
scattering contrast in our sample and to reduce this con-
trast essentially to zero. Through a careful selection of
incident energy, the Fe scattering may be made consider-
ably stronger, equal to or somewhat weaker than the Cr
scattering. (At energies well away from an absorption
edge, the scattering factors for Fe and Cr, at zero scatter-
ing angle, differ by only two electrons. ) These techniques
were considered to be quite useful in removing average
lattice effects from the diffuse scattering (pure thermal
and static displacement scattering) and in evaluating the
individual Fe-Fe and Cr-Cr displacement parameters.

II. SCATTERING THEORY

The diffuse scatttering of x rays from solid solutions is
caused by concentration fluctuations (short-range order)
and the attendant displacements of the actual atomic po-
sitions from the sites of an ideally periodic mean lattice.
An extensively used method developed by Boric and
Sparks' to analyze the diffuse scattering intensity in-
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eludes the distortion-induced scattering to second order
in the displacernents. The recent treatment of Dietrich
and Fenzl" uses a cumulant expansion' to derive a
hierarchy of intensity terms. We give here a description
and comparison of the two methods as well as a discus-
sion of the definitions and approximations we have used.
Our notation is similar to that in Schweika and Hau-
bold. '

For a given scattering vector Q (Q=4m sin6)/A, ), the
x-ray scattering amplitude for a binary alloy is expressed
by

p(Q)= g(f„o "e +fj)a e )e

The occupation numbers (r' (i = A, B) are defined to be
1 if the site m is occupied by an atom i with a scattering
factor f;, and zero otherwise. The atoms are displaced

by u from the positions of the mean periodic lattice R
These displacements can be either static or dynamic in
origin. From (1) we obtain the scattering intensity (in
electron units per atom, N is the number of atoms):

I(Q) =—(p(g)p'(Q) &

1

N

mn
iJ

(2)

( ( j iQ.(w~ —w„)
& (

iQ (s~ —s„)
& (3)

where ( .
& denotes the thermal average.

In the original paper of Boric and Sparks, ' the ex-
iQ (u' —u„)

ponential e " in Eq. (2) is expanded up to the
quadratic term to obtain various intensity components.
As noted in Ref. 14 the effects of the thermal vibrations
can better be taken into account if the total displacement
u' is separated into a static part (w' ) and a dynamic
part (s ) which is assumed to be independent of the
atomic species i and uncorrelated with the static displace-
ments. The thermal average in (2) is thus written as

( i j Q m n)&

Inserting (4) and (5) into (2) one obtains for the diffuse
intensity (after separation of the Bragg part)

diff Bragg SRQ SE 2 TDS (7)

IsRQ is the short-range order intensity due to concentra-
tion fluctuations:

2M'( iQR(
ISRO ILaue g ale

I

The ai given by

&oto j& —c,c, P,"~
1 jc(5; —c } cs

ao =—1,

are the Warren-Cowley short-range order parameters.
Pi" =(oocri &/c„ is the conditional probability of
finding a 8 atom on site l given an A atom at the origin.
(In all expressions we use translational in variance
(a b„&=(a b +i&=(a()bi&, 1 =n —m. }

The prefactor

ILaue =CgCS I ~f I ~f =fg fJj (10)

can be evaluated using various approximations for pho-
non dispersion in the alloy. ' From the definitions (11)
and (6) one has $0=0, i.e., the leading term in (8) ("Laue
monotonic"} has no Debye-Wailer factor. (This result is
valid for x-ray scattering, where the instantaneous pair
correlation function is measured, but not for elastic
diffuse neutron scattering. ) Often, the approximation

Pi = 1 is made for l+0. '

The next term in Eq. (7) is the distortion-induced
"size-efFect" scattering, which is linear in u':

describes the diffuse scattering of a completely random
binary alloy of concentration c„(cia= 1 —cz ) with no lat-
tice distortions. The "coupling factors"

((Q s, )(Q s, ) &

I 2M

The static displacements are now expanded to second or-
der:

iQ (w' —wj )
e " —= 1+ig (w' —w„)+—,'[ig (w' —wj )]

(4)

—2M''( Q R(
IsE =IL,„,Q g yie 'e

l

The linear displacement parameters yl are given by

(12)

The dynamic part is rewritten where

where

iQ.(s —s„), 2M ((Q s )(Q.s„))
( CT()Of( U() +Ui )

'
&

lli =

llew

((T,'o] &

(14}

iQ.s, —&/2((Q-s ) )
(6)

is the (thermal) Debye-Wailer Factor. Equations (5) and
(6} are exact if the s have a Gaussian probability distri-
bution. 4

The (u'j'& are thus the average relative displacements be-
tween two atoms, given an atom j on site 1 and an atom i
at the origin. [We may substitute the total displacement
ui for wjI in (14), because odd moments of the vibrations
si vanish. ]
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The existence of an average lattice ( o' u' ) =0 implies
the following linear relation:

(15)

which can be used to express one of the three (ut'), say
(u&" ) as a function of the other two:

AB) 1 A B I
( AA)Ill

2 1 —a UI

cB /cA +at+ u~ )
1 —aI

Inserting (16) into (12) yields

(16)

—2M/) fA
IsE =IL„,Q g e ' Re +a/

Cg
( BB) 1 I

J

Note that both IsRo 0-
~
5f ~

and IsE ~ b,f vanish in the
limit of zero contrast, bf=0.

The intensity I2 is quadratic in both the displacements
and scattering vector:

—2M/( ig R(I2=IL,„,QQ +&le
I

with

e, =IL,'„, g f,f,'&oI)of &((wew)", &

(18)

(19)

and

( cr po t( —wp+ wf }S( —wp+ w] ) )
(ww)t

loaf
(20)

(The notation ab stands for a 3 X 3 matrix with the ele-
ments a; b,}.

The thermal diffuse scattering ITDs is usually calculat-
ed using the "phonon expansion, " i.e., the expansion of
exp(&(Q sp)(Q $~)) ) from experimental lattice dynamics
data and it may be subtracted from the measured intensi-
ty. The leading term in this phonon expansion,
ITDs, —Q can be formally included into I2.

Based on the above equations several methods have
been developed to extract the structural parameters (a&,
(u~"), . . . ) from a diffuse scattering experiment. The
method proposed by Boric and Sparks' exploits the
different symmetry properties of IsRo IsE and I2 (which
stem from relations like a

&
=ai, y )

= —y I ) to
separate the intensity terms from the measured data by a
combinatorial procedure. The parameters are then ob-
tained by Fourier inversion. This method assumes con-
stant ratios f; lb f and cannot extract the individual dis-
placements ( ui"" ), . . . but only the linear combinations

yI and cl. The method of Georgopoulos and Cohen'
uses the variation of f, Ib,f in recipro-cal space to extract
intensities due to ai, (ui ), . . . at a particular point Q
from a fit to the measured scattering at a set of points
which are related to Q by symmetry. This procedure is
repeated throughout a volume necessary to recover
aI, (ui""), . . . via Fourier inversion. Finally, one can
obtain the desired parameters by a linear least-squares fit

I

Idjff Sg+Sgg+Sg) ~ (21)

The leading terms in S& contain two-point correlations
between displacements: (uI)euf ). S, can be therefore
regarded as the "pure" displacement intensity. S&& is
dominated by occupation-displacement correlations
(apu&), i.e., it is linear in the displacements, similar to
IsE of the Boric-Sparks theory. S» contains
(crI)o~i ) —c;c~ and, neglecting certain higher order terms
one can identify

1SII ISRO

Neglecting similar terms in S&& yields

(22)

I

to the data as first suggested by %illiams. ' This is the
procedure that we have adopted here.

%hile they are widely used to analyze diffuse scattering
experiments, the expressions presented above are some-
what inconsistent in their treatment of the displacements.
%hereas the static displacements are expanded only to
the second order, the dynamic displacements are manipu-
lated using standard methods of the harmonic lattice
theory which involve partial summations over all orders,
as in Eq. (5). In the Dietrich and Fenzl" treatment a cu-
mulant expansion method is used to derive the diffuse
scattering intensity from a binary alloy employing corre-
lation functions like (oI)o]), (oI)uf), etc. Their ap-
proach can be regarded as a consistent generalization of
expressions similar to the one in Eq. (5) which are now
also applied to the static displacements. It provides a
systematic way to classify different scattering contribu-
tions according both to the order of the correlation func-
tions and to their dependence on the scattering factors.
An important aspect in the theory of Dietrich and Fenzl
involves the displacement fields uI and u& which can be
though of as functions of the set to'„» I of the occupa-
tion numbers. The u'I are thus defined for a11 I regardless
of the values of o'i. This permits the use of quantities
such as (oI)u/). {For a discussion of the cumulant ex-

pansion in x-ray scattering, see Ref. 18.)
The results of Ref. 11 can be summarized as follows.

The diffuse intensity can be written as

2 . 2M/I fA
S)r =I„,„,Q g e ' Re

I L

(~AA ) R
Cg

2c BB) (23)
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with

&aouj)

c;
(24)

Comparing Eqs. (23} and (17) one finds an identical
dependence on the scattering vector g and the scattering
factors f„,fz, with only the coefficients of the Fourier
series being different. The (5'ij) contain a two-point
correlation (a product of an occupation number and a
displacement} similar to the a& (two occupation num-

bers). The (uij) are three-point correlations.
[Note: The theory of Dietrich and Fenzl leads to

species-dependent Debye-Wailer factors (static and dy-—M~ —M~nainic} e ",e . Since it is very difficult to obtain—M~ —M~the individual e " and e in a disordered system,
we have used an overall e™in the data evaluation which
is reflected in the equations. Given the small mass
disparity between Fe and Cr, this should be a good ap-
proximation for the thermal Debye-Wailer factor. The
static DWF is negligible (see Sec. IVD). The particular
approximations and assumptions employed to obtain (22)
and (23) from the results in Ref. 11 were (using our nota-
tion)

(i) the Debye-Wailer factors for A and 8 are set equal,
(ii) the quantities E, „ in Ref. 11 are approximated by

((Q &' )(Q &„))
e " which in turn are assumed to be both in-
dependent of i,j and dominated by dynamic displace-
ments to which Eq. (5) applies,

(iii) all correlations, other than (crj o~ ), (o' u~ ), and
their products with E,„,are neglected, and

(iv) (0' e' " )—= &e' " )&a' ).]
S& contains all the displacement scattering not includ-

ed in S&&, in particular ITDs, I2, and higher orders
neglected in the Boric-Sparks treatment. The leading
term in S, is proportional to Q . As one can easily show
there are two limiting cases [within the approximation
(iv)], in which Si is proportional to the "mean lattice
scattering"

~f ~

= ~c„f„e "+cyme
(a} The quadratic ( ( uo uf ) ) and higher correlations in

the displacements are independent of the atomic species i
and j. This implies M„=M~.

(b) The scattering factors are equal, i.e.,
f„e "=fqe

As discussed previously, condition (a} is nearly satisfied
in our sample. Requirement (b) is also reasonably well
fulfilled, because fF, =fc,. Hence, to a good approxima-
tion, S, scales with ~f ~

. [Of course, as we tune to ab-
sorption edges to alter the contrast, (b) will be less well
satisfied. ]

While the Dietrich-Fenzl development provides a more
formal treatment of the complex displacement effects and
considerable insight into the separation of intensities that
we employ in this paper, we shall nonetheless express our
results in terms of the Boric-Sparks displacernent pararn-
eters. We do so because the physical significance of the
parameters in Eq. (14) is more transparent than for those
given in Eq. (24). A more detailed comparison of these
two treatments is beyond the scope of this paper and will
be presented elsewhere.

III. EXPERIMENTAL

The single crystal sample was grown at the Materials
Preparation Center, Ames Laboratory, Iowa State Uni-
versity by Jones using a Bridgman technique. The purity
of the alloying elements was 99.95% and 99.996% for Fe
and Cr, respectively. The Cr concentration, as deter-
mined by chemical analysis was 47.2 at. % Cr with a

homogeneity better than 0.3% over the irradiated crystal
volume in the experiment. The crystal was cut with a SiC
saw to obtain a surface of —1 cm with a normal close to
the (421) direction, chosen to permit access to the three
high symmetry directions with minimum tilting. The
surface was then mechanically polished and electroetched
in order to reduce surface damage. After a homogeniza-
tion anneal at 1600 K the crystal was held at 1108 K (5 K
above the 0-phase transition temperature') for 4 days in
a sealed quartz tube under a purified argon atmosphere
and water quenched. It is important to note here, at the
outset, that extensive small-angle neutron scattering stud-
ies' of quenched and annealed a-Fe-Cr alloys indicate
that such a quench will essentially preserve the high tern-
perature equilibrium configurational order.

The x-ray scattering experiment was performed on the
ORNL beamline X14 (Ref. 20) of the National Synchrot-
ron Light Source (NSLS). The essential features of the
beam optics are a vertically focusing mirror ' and a
fixed-exit Si(111)monochromator consisting of a flat crys-
tal and a sagitally bent crystal to focus the beam in the
horizontal plane. The sample was mounted on a four-
circle diffractometer (Huber 5010). Air scattering was
minimized by an evacuated hemispherical Be dome and
He filled beam paths. The primary beam intensity was
monitored by an ion chamber. The beam scattered from
the sample was energy analyzed using a mosaic graphite
(002) crystal in parafocusing geometry together with a
linear position-sensitive proportional counter from which
we obtained a multichannel display of the energy spec-
trurn. This spectrometer has been described in detail else-
where. The achievable energy resolution is mainly
determined by the size of the irradiated spot on the sam-
ple surface and can therefore be improved —at the ex-
pense of intensity —by reducing the size of the incident
beam. Typically, the resolution varied between 20 and 50
eV FWHM, depending on the incident energy, the posi-
tion in the reciprocal space, and the choice of incident
beam slits. The energy analysis here is used to isolate the
relatively weak diffuse scattering signal from the inelastic
background, i.e., the Compton and, in particular, the res-
onant Raman scattering (RRS). The RRS is enhanced
when the incident x-ray energy is only slightly below an
absorption edge; unless eliminated experimentally, it
must be estimated using rather inaccurate approxima-
tions.

The measurements were done using three different en-
ergies of the incident x rays.

(a) E=5.969 keV (20 eV below the measured Cr K ab-
sorption edge). This energy was chosen to maximize the
scattering contrast ~b,f~ between Cr and Fe and thus to
enhance the contribution of the short-range order scatter-
ing; we refer to it as the "Cr edge. "
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(b) E=7.092 keV (20 eV below the measured Fe K ab-
sorption edge). At this energy Re(fc, ) & Re(f„,), i.e., Cr
becomes a stronger scatterer than Fe and we shall refer to
it as the "Fe edge. " This contrast inversion affects the
sign of Is~ [see Eq. (17)]. Therefore, a comparison of the
data measured with the "Fe edge" energy with those
measured with the "Cr edge" energy highlights the size-
effect scattering.

(c) E=7 600.keV. This choice minimizes the scattering
contrast, whereby the short-range order and size effect
contributions to the scattering are small, and the mea-
sured intensity is thus predominantly due to S&, i.e., to
TDS and higher-order static displacement scattering
(other than IsE ).

Figure 1 shows the range of contrast variation obtained
in our experiment. Note the greatly enhanced ~bf ~i

at
the "Cr edge, " as compared with ib, Z

~

=4 without
anomalous dispersion corrections, and the small iaaf ~

for E=7.6 keV.
The scattering factors fo were taken from Ref. 25. For

the anomalous scattering corrections Crorner-Liberman
values were used, except when the incident energy was
close to the absorption edge of a particular element, i.e.,
in the case of fc„fc, at 5.969 keV and f '„„f„",at 7.092
keV. These numbers were obtained experimentally by
measuring the energy-dependent absorption of a thin foil
with the same composition as the sample. From the ab-
sorption we calculated f" using the optical theorem and

f via the Kramers-Kronig relation using a method simi-
lar to the one described in Ref. 27. Table I shows the ob-
tained results, together with theoretical values.

The diffuse intensity was measured throughout a
volume in reciprocal space defined by h, h2«h3 «0.
This volume covers —,', of the solid angle. The range for
the magnitude of the scattering vector [in reciprocal lat-
tice units, h =(a/2m. )Q] was 0.25 & h ~2.7 for the "Cr
edge" energy and 0.25 ~ h ~3.0 for the two other x-ray

0 I I I I l I I I I l I I I I ) I I I I l I I I I l I I I I ) ~ I I I ) I I I I l I I I I l I I I I ) I I I I4

"Cr edge"

30—

20-

E

0
0

I Fsg s s rs YIW Pi rs T I I P'I

0.1 0.2

7.6 keV

FIYs 5 rlVIW I I Fs %sr rs vs' ss rsTIW I

0.3 0.4 0.5

sin Hlk(A ')

FIG. l. ~hf ~' as a function of sing/A, for the three energies
used.

TABLE I. Real (f') and imaginary (f") parts of the disper-
sion corrections to the x-ray scattering factors used in this ex-
periment as measured here and calculated by Sasaki (Ref. 26).

Measurement Ref. 26

fc,
f'c,
fF,
fF'

5.969 keV
5.969 keV
7.092 keV
7.092 keV

—5 ~ 572
0.433

—5.572
0.454

—5.564
0.459

—5.688
0.470

energies. The mesh interval used was Eh=0. 1 in general
and Ah=0. 05 for selected linear scans and small scatter-
ing angles (h ~ 0.6).

The raw data were corrected for surface roughness and
partial passing of the beam at the sample using the varia-
tion of the K ' and E"' fluorescence with scattering vec-
tor. However, this correction was rather small and only
significant for scattering angles 20&20'. For the conver-
sion into absolute (electron) units, the integrated intensi-
ties of 5 Bragg peaks from a compacted Ni powder stan-
dard were used at each energy following a procedure out-
lined in Ref. 28.

IV. RESULTS AND DISCUSSION

A. Energy spectra

Figure 2 shows typical energy-resolved spectra for the
"Fe edge" and the 7.6-keV measurements. (The results
for the "Cr edge" energy are similar to those at the "Fe
edge. ") the spectrum at the "Fe edge" consists of three
different contributions: the resolution broadened elastic
intensity, the Fe I( —M» &» RRS with an onset 53.2 eV
below the elastic line (this corresponds to the M», » bind-

ing energy in iron ), and the Compton scattering which
is superimposed on the RRS. At 7.6 keV there is no RRS
and the Compton scattering can therefore be seen more
clearly. The dashed lines in Fig. 2 represent fits to the
RRS and elastic scattering together with a calculation
of the double-differential Compton cross section
(d o/dQ dao) . The elastic intensity was fitted with a
Gaussian, the width of which defined the energy resolu-
tion used in the convolution with the calculated RRS and
Compton scattering. The energy dependent efficiency of
the analyzer, determined by the mosaic of the graphite
crystal (0.8' FWHM), was also taken into account. To fit

the RRS, a truncated Lorentzian was used, following an
approximation to the relevant part of the Krarners-
Heisenberg formula. The Compton double-differential
cross section was calculated in the impulse approxima-
tion using Hartree-Fock Cornpton profiles for the Fe
and Cr atoms from Ref. 31. In employing the impulse
approximation, only contributions of electrons with bind-

ing energies smaller than the energy transfer were con-
sidered.

Within this separation scheme the desired elastic inten-

sity is obtained from the area under the Gaussian curve.
However, the applicability of the method was somewhat
restricted by the accuracy of the calculated Compton
cross section. For small scattering vectors (h ~1.3) the
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calculated scattering significantly overestimated the mea-
sured inelastic intensity. (This was inferred from the 7.6-
keV data with no RRS present. ) For an intermediate
range of scattering vectors the agreement was quite satis-
factory [see Fig. 2(a)], but for h ~ 2.6 the calculation sys-
tematically underestimated the measured Compton inten-
sities. There are two probable reasons for these
discrepancies: (a) the momentum distributions in Ref. 31
are calculated for free atoms and of course do not reflect
the actual band structure of the alloy; (b) the impulse ap-
proximation describes a one-particle process; for low en-
ergy and momentum transfer, however, many-body
effects (plasmon excitations) may dominate the inelastic
cross section.

The underestimation of the measured Compton
scattering by our calculation for large scattering vectors
was not critical for the evaluation of the elastic intensity
since in this range of momentum transfer the Compton
and elastic scattering are well separated in energy and

pl, I, 1, I / I [ 1, I, \, I, I, T

(a)

Q){:0.5-
tg

~ 0.4-
Q)
CL

0.2-

50e
I0 $ e

I=2 g I„+I„
n &no

(25)

where no is the channel number which corresponds to the
center of the elastic peak.

In the final data evaluation we applied this "reflection"
procedure for h &1.6, whereas for h &1.6 the aforemen-
tioned fit was used. As a consistency check we employed
the "reflection" algorithm for all data points. The SRO
and displacement parameters thus obtained were within
the statistical 30 error bars of the parameters obtained
using "reflection" only for h ~ 1.6. Although the results
did not depend significantly on the method applied for
h & 1.6, we preferred to use the more elaborate fit algo-
rithm because the "reflection" introduces an additional
statistical error as it uses only half of the total elastic data
(at best).

therefore overlap only slightly, even with our experimen-
tal energy resolution. On the other hand, because of the
small Compton energy shifts at low scattering angles, the
overestimation of the (do /d Ada) in the region h ~ 1.5
was more troublesome even though the energy-integrated
Compton intensity (do. /dQ) is low. As a consequence
we decided to use a somewhat heuristic algorithm to ex-
tract the elastic intensity for small scattering angles.
Since both Compton and RRS are energy-loss processes,
the "high-energy half" of the resolution-broadened elastic
line will clearly be less affected by those inelastic contri-
butions. The entire elastic part of the spectrum was
therefore recovered from its "high-energy half '

by
reflection at the position of zero energy transfer, i.e., we
calculated the following sum over the MCA channels:

0 40 80

channel no.

'1 60 200

0.3

Q)

05~ p. 2
O

Q)
CL

I
0. 1

40 80 &20 180 200

channel no.

FIG. 2. Energy-resolved spectra as obtained from the posi-
tion sensitive detector. (a) h=(1.7,0,0) at E=7.6 keV, (b)
h=(2.8,0,0) at the "Fe edge" (E=7.092 keV). e.u. is electron
units.

B. Experimental diffuse intensities

Figure 3 shows the experimental intensities in electron
units per atom in the (h &, h2, 0) plane for the three ener-
gies used. As the Bragg peaks have already been re-
moved from the data, the rise of intensity near the Bragg
positions may be attributed to the diffuse scattering. The
plots exhibit intensity ridges in ( 110) directions connect-
ing the 110 and 200 reflections as well as the 220 and 310
reflections (the latter ridge could not be measured at the
"Cr edge" because of the limited Q range at this energy).
Since these structures appear also at the low-contrast en-

ergy 7.6 keV, they cannot be explained by the short-range
order or size effect intensity. Such ridges are indeed quite
common in bcc alloys (e.g., in P brass, NiA1 ); they
have been attributed to the softening of the [110]:(110)
phonon mode, i.e., of the (c» —c,2)/2 shear constant. '
The intensity of the ridge connecting 220 ad 310 is larger
than the one of the ridge connecting 110and 200, because
of the ~ Q dependence of S&.

There is an increase of intensity near the origin of the
reciprocal space. The increase is more pronounced at the
"Cr edge" than at the "Fe edge" and almost nonexistent
at 7.6 keV. This contrast dependence as well as its loca-
tion near (000) where the displacement effects are small,
both clearly indicate that the increase is due to IsRQ.
Since there is no other structure in the data with a similar
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contrast dependence we conclude that IsRo peaks at (or
close to) (000), which in turn implies a clustering tenden-
cy. The variation of the intensity increase near the origin
with the incident x-ray energy is even more apparent in
the linear (h00) scan [Fig. 4(a)]. Also in Fig. 4(a) one
sees a pronounced difference between the "Cr edge" and
the "Fe edge" intensity close to the (100) position.
Whereas the slope of the "Cr edge" intensity is positive
around (100), the slope of the "Fe edge" intensity is nega-
tive. This is clearly related to the change of sign of IsE
caused by the contrast inversion at the "Fe edge. "

Figure 4(b) shows the measured intensity along the
(hhh ) line. The 7.6-keV measurement exhibits maxima
in the vicinity of —,'(111)and —", (111),the intensity at —", (111)
being higher than at —', (ill), in accordance with the Q
behavior which dominates S&. This scattering pattern is
quite common in bcc metals and may be related to co-

phase formation which we discuss below. The ——', (111)
peak in the "Fe edge" scan is more pronounced than in
the 7.6-keV scan, but the peak at ——', (ill) in the "Fe

edge" data is very weak. By changing the x-ray energy
from the "Fe edge" to the "Cr edge, " the —', (111) max-
imum regains intensity whereas the —', (111)peak weakens
and shifts toward smaller h. The —', (111)maximum at the
"Cr edge" is obviously affected by the strong IsRO inten-
sity near the origin, but all other intensity variations are
evidently caused by the size effect scattering, since Iszo is
symmetric around (111) and the prefactor ~f ~

for the
pure displacement scattering does not change drastically
with the incident x-ray energy. The redistribution of in-
tensity between the —', (111)and the —', (111)maxima by con-
trast inversion is thus an interesting example of the size
effect in a region of reciprocal space where the short-
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range order intensity, as we shall see, does not vary too
rapidly.

C. co phase, central peaks, and the size effect

The maxima near —,'(111)and equivalent points [such as

—,(111)]may be associated with an intrinsic softness of the
bcc lattice to 1ongitudinal displacements with the wave
vector —,'(111). The —,'(111) longitudinal phonon moves
two out of three consecutive 111 lattice planes toward
each other, leaving the position of the third plane un-
changed. This displacement mode is formally related
to the co-phase transformation, since one can obtain the
hexagonal co phase from the bcc lattice by collapsing 2
out of 3 (111)b„planes into one (0001) plane. Figure
5(a) shows the [111]z phonon dispersion in our sample. 3

The softening of the phonon frequencies in the vicinity of
—', (111), typical for many bcc systems, is clearly visible.
The lattice vibrations with wave vectors in the vicinity of
—,'(111) thereby have larger amplitudes and the TDS inten-

sity will be enhanced. {In the harmonic approximation
ITD» is proportional to the inverse square of the phonon
frequency. ) Since the response function of the lattice is
"soft" for wave vectors near —', (111) we can also expect
that the (longitudinal) microscopic stresses associated
with the difference in the atomic sizes will preferably in-
duce static displacements with these spatial frequencies.
Figure 5(b) shows that the neutron e1astic diffuse scatter-
ing (const-co scan for an energy transfer ni=0) peaks
near —,(111). All inelastic contributions outside the ener-

gy resolution window ( = 1.5 meV FWHM) are removed
in this scan.

It is interesting to note that some bcc phases of pure
elements, such as p-Ti and p-Zr, also exhibit —,'(111)maxi-
ma in const-co=0 scans. These maxima have been attri-
buted not to truly elastic scattering, but to overdamped
—,'(111) longitudinal phonons, with a nonzero center fre-

quency, which give a large quasielastic scattering when
sampled within the resolution volume in Q-co space. An
overdamped phonon response has also been observed in
some bcc alloys (e.g., in Nb-Zr ' ) but contrary to the
situation in pure elements, a resolution limited "central
peak" with a maximum around —', (111) has been seen on

top of the broadened inelastic intensity. However, all
[111]I phonons that we measured were reasonably well
defined in energy, and we therefore expect the —', (111)
peak in Fig. 5(b) to be dominated by genuine elastic inten-
sity caused by static displacements. This is further
confirmed by the existence of the size effect scattering in
Fig. 4 since purely dynamical displacements can not give
rise to a size effect intensity. Hence, the peaks in the x-
ray intensity [Fig. 4(b)] contain not only TDS but also a
static component. Conversely, the existence of static
"pure displacement" intensity requires there to be size
effect scattering.

The relation between the static part of S& and the size
effect term can be shown using Krivoglaz' approximate
expression for the diffuse scattering intensity (in the no-
tation of Sec. II):

Ichs' cAcB«9)I~f —f0 «0)I' ~ (26)

The term —~Af ~2 in Eq. (26) gives the short-range order
scattering, while the cross term leads to the size effect
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FIG. 5. (a) Measured [ill jI phonon dispersion. The solid
line indicates a fit to a 5 neighbor Born-von Karman model; (b)
diffuse elastic neutron scattering intensity in the (hhh ) direc-
tion.

a(Q) and A(Q) are the Fourier transforms of the SRO
parameters and the quantities A „, respectively. The
A „ linearly couple the static displacement field (which
is assumed here to be independent of the atomic species)
to the concentration fluctuations:

w = g A „ho„", Acr„"=o„"—c„=—ho„. (27)
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scattering. The term ~
~

A~ corresponds to the quadra-
tic displacement intensity. If

~ A~, and thus the pure dis-
placement scattering, is large, the size effect intensity,
~ A, must also be enhanced regardless of the value of the
short-range order intensity. Figure 5(b) therefore con-
tains both contributions. In Fig. 4 one also expects
strong size effect scattering ( ~ A) near —', (111)and —', (111)
unless the contrast bf is small, as in the 7.6-keV mea-
surement.

D. Data evaluation

The normalized scattering intensities at the three ener-
gies were used to obtain short-range order parameters
and the individual (Cr-Cr, Fe-Fe) linear displacement pa-
rameters. In a first step, an estimated value for the S, in-

tensity was subtracted from the "Cr edge" and the "Fe
edge" data. This estimate was given by the measured in-
tensities at 7.6 keV scaled with the "mean lattice scatter-
ing" /f /:

(28)t
~
-~~ 7.6 keV

If l7. 6 keV

After subtraction of S„given by Eq. (28), the "Cr edg "
and the "Fe edge" data contain to a good approximation
only the short-range order and the size effect intensities.
A least-squares fit to this data at both energies was then
employed to obtain the a& and the (u&' '), (ul' ') ac-
cording to Eqs. (8) and (17).

For this fit, the thermal mean-square displace-
ment ( si ) in the thermal Debye-Wailer factor
2M'" =

—,
'
Q ( si ) was calculated from the elastic constants

as obtained from our phonon dispersion curves
(c&& =2.56X10" Nm, c&2=1.10X10" Nm
c44=1. 11 X 10"Nm ) using the method of Quimby and
Sutton. ' The static mean-square displacement was es-
timated from the elastic constants and the concen-
tration (Cr) dependence of the lattice parameter
I/a(da/dc)=4. 57X10 (Ref. 42). The RMS values
thus obtained were ( s& ) ' =0.099 A and ( w& ) '~

=0.0028 A. Hence the RMS static displacement
amounts only to -3% of the RMS thermal displacernent.
The factors Pl [Eq. (11)j were calculated assuming linear
dispersion as outlined in Ref. 4.

In a refinement step the SRO and size effect parame-
ters, obtained as described above, were used to calculate
the SRO and size effect intensities at 7.6 keV; these inten-
sities were then subtracted from the measured 7.6-keV
data to lead to a better estimate for S, . The "Cr edge"
and the "Fe edge" data were again corrected for S& and
from a subsequent least-squares At we obtained a final set
of 21 SRO parameters and 9 pairs of Fe-Fe and Cr-Cr
displacement parameters. Including more parameters in
the fit did not significantly improve the y2 value (-4.2)
and did not change the values of the previous parameters.

In the present eva1uation, all data points with a dis-
tance Ah ~ 0.2 from the Bragg rejections were con-
sidered. However, the results were also stable with
respect to variations in the volume around the fundamen-
tals excluded from the At, up to Ah =0.5. It has to be

TABLE II. Short-range order parameters, al „.
Imn

000
111
200
220
311
222
400
331
420
422
333
511
440
531
442
600
620
533
622
444
551

a Irrt rt

1.1806(23)
0.1596(14)
0.0691(14)
0.0455(11)
0.0271(10)
0.0253(11)
0.0036(1 1)
0.0074(8)
0.0074(7)
0.0043(7)
0.0051(8)
0.0025(6)

—0.0006(7)
0.0016(4)
0.0022(5)

—0.0020(8)
0.0009(4)
0.0009(4)
0.0010(4)
0.0007(7)

—o.ooo2(4)

emphasized that the least-squares method, as opposed to
Fourier analysis of data obtained by "separation
methods, " does not require any extrapolations under the
Bragg positions which might be troublesome for cluster-
ing systems.

The final parameters are listed in Tables II and III.
The errors given are based solely on counting statistics.
All quantities are labeled with the three-dimensional shell
index (l, m, n). The displacement parameters (ul' „) are
given in terms of their x components (along the I direc-
tion), (x/~ „).Other components follow from cubic sym-
metry. All displacements are in units of the lattice pa-
rameter a=2.876 A (Ref. 42). We should also note here,
for the experts, that the value of aooo is 1.18 rather than
1.00 as it ought formally to be if the normalization is
correct and all sources of significant (and parasitic) inten-
sity have been accounted for (or removed). We believe
our normalization method to be accurate to within 5%
and we thus attribute the reported small deviation in 0.000
to errors in Compton and RRS removal and to residual
S, that was not completely eliminated in our zero con-
trast subtraction (despite the successive cyclings noted
earlier). This S, contaminant consists mainly of TDS
which certainly does not contribute a Aat background.
However, the precautions taken in varying the volume
sampled near Bragg peaks convinced us that the most
sensible procedure was to leave this dc term (aooo) alone
and report the other parameters as is.

Figure 6 compares the measured intensities in the
(h „hz, 0) plane (after subtraction of S, ) with those
reconstructed from the obtained parameters. The in-
crease of the intensity near the Bragg positions and the
details of the intensity modulations in the zwischenrePex
region are well reproduced. These modulations are large-
ly due to the size effect scattering as can be inferred from
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TABLE III. Displacement parameters (x/J „),the x components of (u'I' „).The (xiF'c') were ob-
tained from Eq. (16).

Imn

111
200
220
311
131
222
400
331
133

(X FeFe)

—0.000 70(4)
—0.000 29(9)
—0.000 22(4)

0.000 18(5)
—0.000 22(3)
—0.000 53(5)

0.000 09(9)
—0.000 13(4)
—0.00005(4)

(xCMr)

—0.001 90(5)
0.002 68(12)

—0.000 50(6)
0.00007(6)
0.000 11(4)
0.000 39(6)
0.000 63(13)
0.000 16(4)

—0.000 05(6)

( FeCr )

0.001 72(4)
—0.001 20(8)

0.000 38(4)
—0.000 13(4)

0.00008(2)
0.000 13(4)

—0.000 34(8)
0.000 00(5)
0.000 05(4)

the systematic differences between the "Cr edge" and the
"Fe edge" data (e.g., the "dip" near 210 at the "Cr edge"
which becomes a local maximum at the "Fe edge, "both
of which may be related to a measurable zone boundary
softness in the [100]L phonon branch ).

A set of measured intensities is compared with the
fitted intensities along the (hhh ) direction in Fig. 7. The
intensity minimum around h=0.8 at the "Cr edge" and
the maximum around h =0.7 at the "Fe edge" are caused
by the size effect modulation and may nominally be relat-
ed to a peak at —', (111) in the elastic neutron scattering.
The difference in their positions can be explained with the
SRO intensity which peaks at the origin, h =0, and there-
fore will shift a size effect-induced minimum toward a
higher h value, whereas a maximum will be shifted to- 12

10-

I ~ ~ ~ ' ~ ~ e ' r e ' ~ ' r I ~

(a)

ward a lower h. The same arguments apply to the max-
imum around 1.35 at the "Cr edge" and the 1.2 minimum
at the "Fe edge, " which are directly related to the max-
imum of S& close to T4(111). (Nearly all of the "Cr edge"
data seem to lie below the fitted curve but otherwise fol-
low it closely. This linear scan, however, was taken at
the end of our run and therefore was not normalized in
the same way as the full data set from which the fitted
curve was obtained. In fact, using only the full data set,
the experimental points, while more sparsely distributed,
did not deviate from the fitted curves in any systematic
way. )
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K. Short-range order

The first eleven aI»„ in Table II (up to the 511 shell)
are positive. This indicates a preference for like neigh-
bors (Fe-Fe, Cr-Cr), i.e., a clustering tendency. For ex-
ample, a», —=0.16 means that the probability of finding
an Fe atom in the nearest-neighbor shell of another Fe
atom is 60.5% as compared to 52.8% ( =c„,) in the case
of total randomness. Given the high concentration of the
sample, the aI „are rather small (the limiting value for
complete phase separation is ar „=1.00}and the cluster-
ing is not very pronounced. Our quench temperature is
in fact well above the proposed metastable unmixing tem-
perature T, =850 K. However, for T(T =1103K the
g phase is the equilibrium state (the sample concentra-
tion is in the homogeneity range of the g phase'). Ac-
cording to anomalous x-ray diffraction studies by Yakel
cr-Fe-Cr is partially long-range ordered, i.e., there are
sublattices (specified by the five nonequivalent positions
in the cr unit cell) which are preferentially filled with Fe
or Cr. For every interatomic vector connecting points in
two different sublattices, the short-range order parameter
will by necessity be negative. Evidently, the positive
a& „'s of the bcc solid solution above T do not re6ect
the chemical local order in the 0. phase. The clustering
along the (100) direction seems to be weaker than in
other directions (azoo, a4oo, a6oo are all smaller than the
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FIG. 8. A(110) plane of both our clustered alloy and a ran-
dom alloy with identical concentration modeled as described in
the text (solid circles are Cr atoms).

average of their neighbors and a6OO is the only
significantly negative SRO parameter). However, this an-
isotropy is not very pronounced and the SRO intensity,
reconstructed from the aI „exhibits a nearly isotropic
maximum at the (000) position. The intensity at (000) is
4.9 Laue units, as compared to a constant intensity of 1

Laue unit for total randomness. To visualize the short-
range ordered state a computer bcc crystal containing 64
atoms was fitted to the experimental short-range order
parameters. A11 aI „of the model crystal were within
the statistical error bars (Table II) of the experimental
ones. In Fig. 8, a (110) plane of such a modeled crystal is
shown along with one of a totally random alloy of identi-
cal composition. The clustered alloy clearly exhibits dis-
tinct Fe and Cr rich regions of substantially larger size
than the Cr and Fe patches in the random configuration.

(gogJI~Rt wo+—w]~ )
R RI + '

UI
(gog Jt ) Ri

(29)

For example the average nearest-neighbor distance be-
tween two atoms i and j is given by

Rl'it= a(1+2(x't'll )) .
v'3

(30)

(Note that in high symmetry cubic directions the average
displacements are radial. ) From Table III we see that
most of the (x& '„"') are negative. Therefore most of the
average Fe-Fe separations (in particular those for the first
three shells) are smaller than the corresponding mean lat-
tice distances. This is compatible with the observed de-
crease of the lattice parameter with increasing Fe concen-
tration. However, the comparatively large negatiue value
of the nearest-neighbor Cr-Cr displacement (x l t',

' )
shows that the concentration dependence of the lattice
parameter is not necessarily reAected in a simple way in
the local atomic distortions (from the above analogy one
would expect a positive (x, t, ')). Nevertheless, the

(x& '„') are on average more positive than the (x&"'„"');
i.e., the data suggests, taken over a sufficiently large local
volume, that the Cr atom is "larger" than the Fe atom.
The dominant displacements in Table III are those for
the Cr-Cr pairs in the first and second neighbor shells,
the Fe-Fe displacements being considerably smaller. The
average Cr-Cr nearest-neighbor distance is 0.4%%uo smaller
and the average Cr-Cr next nearest-neighbor distance is
0.3% larger than the corresponding mean lattice separa-
tions. By comparison, the lattice parameter of pure Cr is
0.6% larger than the lattice parameter ofpure Fe.

To our knowledge there exist no successful first-
principles calculations of local atomic displacements in
concentrated solid solutions. The theory of Froyen and
Herring considers an effective elastic medium, in which
the initial force acting on an unrelaxed atom (sitting on a
position of the periodic mean lattice R ) is related

F. Atomic displacements

The displacements parameters (uII) are usually inter-
preted in terms of "bond lengths" between atomic species
iand j:



45 ANOMALOUS-X-RAY-SCATTERING STUDY OF LOCAL ORDER. . . 2673

linearly to the concentration fluctuations as in Krivoglaz
and Cook-de Fontaine:

F =+K „bo„". (31)

(xFeFe) — c~
(x crcr)+lmn +Imn

CFe
(32)

which is predicted by the Froyen-Herring theory. In or-
der to describe the experimental findings in a linear
theory one eventually has to introduce species-dependent
forces K"„,K „or, equivalently, as an extension of Eq.
(27):

(33}

with an analogous expression for w . Otherwise the
Cook-de Fontaine treatment suffers from a reduction in
local information because it uses an average solute-lattice
coupling together with an average lattice response func-
tion.

It is also important to note that, apart from any physi-
cal argument, the (hhh }size effect intensity discussed in
Sec. IV D will depend on the symmetry of the bcc lattice
much as with short-range order scattering. To illustrate
this we consider the following sums which appear in the
expression for the size effect intensity in Eq. (12}. We
shall discuss only nearest (NN) and next-nearest (NNN}
neighbor terms:

Q & rre
NN

or NNN

(34)

where the NN terms include all 8 I111I distances and
NNN terms are the 6 {200] distances. Taking positive
values for the components of y», and y200, in the ( hhh )
direction the NN contribution has a maximum at

The displacements in the relaxed configuration are then
obtained from the force field using the dynamical matrix
for the alloy crystal. For a numerical evaluation, Froyen
and Herring assume a radial nearest-neighbor force K
and a totally random alloy. [Since the correlations and
the distortions in our sample are both rather weak, the
assumption of total randomness and the use of the linear-
ized expression (31) might well be thought to be justified. ]
The force K as well as the averages involving the dynami-
cal matrix are then calculated approximately from da idc
and the elastic constants. Using the data for our sample,
one obtains for the nearest-neighbor displacement param-
eters (x ii'&' }= —0.00047 and (x ii'ci" }=+0.00053.
Thus the Cr-Cr displacement parameter is positive. In
fact, the theory presented in Ref. 44 cannot reproduce
the experimentally observed negative signs of both
(x, i', "}and (x»", ' }, even if one were to use realistic
values for the dynamical matrix (from the phonon disper-
sion curves) and a more sophisticated microscopic model
for the K „. This is because the basic assumption of
species-independent forces in (31) leads to a displacement
field given by Eq. (27) which is also independent of A and
8. Assuming w" =w =w, one obtains from the
definition (14) in the limit of vanishing correlations:

h =0.82 and a minimum at h =1.21 whereas the NNN
sum has a minimum at h =0.78 and a maximum at
h =1.27. The actual minima and maxima in the size
effect scattering will depend on the signs and relative
magnitudes of y», and @200. In the present case the first
two pairs of values in Table III give maxima at 0.82 and
0.78, respectively, for the "Fe edge" scan and minima at
these places for the "Cr edge" scan. Were we to use the
Froyen-Herring displacement parameters given above the
profiles would be reversed, i.e., maxima would be minima
at both edges in defiance of the data. It is also quite in-
teresting that, by themselves, the signs of the dominant
Cr-Cr displacements in the first two neighbor shells are
essentially required by the observed sequence of maxima
and minima along ( hhh ) in the two data sets.

This observation —that the negative Cr-Cr displace-
ment in the nearest-neighbor shell is required by the
(hhh ) profile —does not, however, tell us why such an
anomalous displacement prevails. For this we must defer
both to the forces and to the response function of the
crystal. The elastic softening near —', (111)and equivalent

points is a property of the mean lattice in which Cr and
Fe atoms reside. The displacements of these atoms de-
pend not only on their sizes (the forces they exert) but
also on this response. The size effect peaking then results
from both the geometry of the bcc lattice and a set of ac-
commodating displacements. %'ere the displacements to
differ significantly from their measured values this ac-
comrnodation would be accordingly less. Put another
way the measured local displacements re6ect in detail the
values of A"„and A „ in Eq. (33) which in turn depend
on both the response function of the crystal and the indi-
vidual solute-lattice coupling parameters K"„and K „
as well as, implicitly, on the fact that the lattice is bcc.

H =Ho+ ,' g V „b,o b o—'„, (35}

where ho =o —(o ) are the fiuctuations of the spin
variable cr =2o. —1=+1 and Ho is the energy of the
random alloy of the same concentration. The V „are
the effective pair interactions:

To solve the "inverse problem, " i.e., to determine the
effective pair interactions from the measured short-range
order two methods were employed.

(i) The high-temperature (V „/ kTs((1) mean field
Krivoglaz-Clapp-Moss approximation4 ' (KCM) yields

u(q) = D
2cg cg1+ V(q)k, T

(37)

G. Pair interactions

In thermal equilibrium, the correlations in an alloy are
determined by the interactions between the different
atoms. Since the measured SRO intensity rejects pair
correlations, the information obtainable from a diffuse
scattering experiment will be most probably confined to
two-body interactions. Considering only pairwise in-
teractions, one obtains an Ising-like Harniltonian
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TABLE IV. Pair interactions, VI „ in meV.

Imn

111
200
220
311
222
400
331
420
422
333
511

inverse MC

—27.2(3)
3.6(3)
0.6(1)

—0.4(1)
0.3(l)
1.9(1)
0.6(1)

—0.2(2)
0.0(1)

—0.1(1)
—0.3(1)

Krivoglaz-
Clapp-Moss

—28.2(3)
3.9(2)
0.6(2)

—0.4(1)
0.5(1)
1.8(1)
0.6(l)

—0.2(l)
0.0(1)

—0.1(1)
—0.3(1)

KKR-CPA-GPM
(Ref. 50)

—29.5
4.2
4.8
3.2

—6.0
2.0
0.4

0.1

1.7
—0.2

where a(q) and V(q) re the Fourier transforms of the
SRO parameters and the pair interactions. In calculating
a(q) we used the ai from Table II with nooo replaced by
its theoretical value of 1, and set D= 1 because it appears
to yield the best agreement with the inverse Monte Carlo
method.

(ii) The inverse Monte Carlo method (IMCM) is ex-
act within the Ising model. (The "normal" Monte Carlo
algorithm which is used to calculate the correlations
from the interactions is also approximation-free. ) The
IMCM exploits the fact that in equilibrium the thermal
fluctuations do not change the thermodynamic averages
of observables (condition of detailed balance). The fluc-
tuations are realized by virtual interchanges of A and B
atoms in a computer-model crystal compatible with the
measured SRO. The observables considered were the
numbers of B—B bonds at a given distance R. The prin-
ciple of detailed balance yields nonlinear coupled equa-
tions for the V „because the probability of the Auctua-
tion itself is a function of the energy change due to the
fluctuation. In our calculations we used crystals with 64
atoms and considered 4X96000 A-B exchanges to build
the thermal averages.

It is interesting to compare our effective pair interac-
tions which are primarily phenomenological parameters
of a model Hamiltonian with the results of recent elec-
tronic first-principles band-structure calculations. In a
recent study the generalized perturbation method
(GPM) ' in conjunction with the KKR-CPA (Korringa-
Kohn-Rostoker coherent-potential approximation ) was
applied to equiatomic FeCr. In the GPM, the energy
difference between the totally random alloy (as described
by the CPA) and a given configuration is expanded in n

site interactions with pair interactions as lowest order
terms [as in Eq. (35)]. The calculations in Ref. 50 were
done for a nonmagnetic alloy, which should be appropri-
ate for our sample, since the estimated magnetic T, -540
K is well below the quench temperature.

The results of the IMCM and the KCM evaluations as
well as of the calculations from Ref. 50 are listed in Table
IV. All data sets show a dominant, negative nearest-
neighbor interaction V& & &

= —30 meV. The negative sign
of V», indicates a clustering tendency, according to Eq.
(36). Comparing the IMCM and the KCM results, one

finds an excellent agreement; in fact, only the values for
V», differ noticeably. This is probably due to the fact
that V», is an appreciable fraction of the thermal energy:

~ V», ~/ks T=0.39 and therefore the mean-field assump-
tions of the KCM approximation are no longer fulfilled.
The KKR-CPA-GPM results show a remarkable agree-
ment with our data for the nearest neighbor and next-
nearest neighbor distances. The values of V22p V3, ] and
especially V2zz show considerable deviation from the ex-
perimental values. This notwithstanding, the overall
agreement is rather good. (See Ref. 53 for other compar-
isons of IMCM and KKR-CPA-GPM results. ) Using the
IMCM pair interactions in a Monte Carlo simulation,
we calculated the equilibrium short-range order at the
quench temperature of our sample. Most of the obtained
SRO parameters were within the lo. error interval of the
parameters in Table II, and all of them were within the
30. error bar. Thus the Ising model gives an appropriate
description of the atomic SRO in this alloy. (Note how-
ever, that the pair interactions in the a-Fe-Cr are strong-
ly concentration dependent. )

H. Remarks on premonitory cr-phase fluctuations

What finally can be deduced about the cr-phase trans-
formation from these results? The average structure of
the 0. phase in Fe-Cr has been determined by Bergman
and Shoemaker and the ordering has been investigated
by Yakel and Algie and Hall. The o phase (space
group P4~/mnm) has 30 atoms in the tetragonal unit
cell, 22 of which are positioned on two Kagome nets per-
pendicular to the tetragonal c axis at z=0 and z= —,'.
These nets are rotated by 90' with respect to each other.
The remaining 8 atoms per unit cell form two diamond
nets at z= —,

' and z= —,'. Since the projection of the o.-

phase structure in the (001) direction exhibits pseu-
dohexagonal symmetry, this direction will most likely be
related to the ( 111)b„ in a displacive phase transforma-
tion. In the transformation scheme proposed by Kitch-
ingman three consecutive (111)planes of the bcc struc-
ture are moved along the (111) direction to form two
layers (one Kagome and one diamond net) of the o struc-
ture. The atoms in every second Kagome layer have to
undergo additional movements to generate the required
rotations of the tilings. The orientational relations be-
tween the bcc and the 0. structure for this model
are (001) ii(111)b„and (140) ii(110)b„with a
&26/3 ab„and c =&3 ab„.

Using the above relationships we have calculated the
bcc positions of several strong o. reflections from Ref. 55.
There are only eleven of these o. reflections with bcc posi-
tions (or symmetrically equivalent bcc positions) that (a)
were within our measured volume and (b) were located
far enough from the bcc Bragg peaks to be observed.
Only three of these reflections could be qualitatively asso-
ciated with maxima in the diffuse scattering: the (002)
and (004) —corresponding to —', (111)b„and —', (111)b„—
and the (413), which is close to the (210)b„. However,
as discussed previously, the ——', (1 ll) and ——', (111)maxi-

ma result from an intrinsic property of the bcc lattice and
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are not uniquely related to the 0-phase formation al-
though they are certainly required by it. Similarly, the
maximum near (210) (visible in the "Fe edge" and the
7.6-keV data in Fig. 3) is related to a zone boundary
softening of the [100]z phonon branch in our sample.
Such softening has been also observed in the pure bcc
metals Cr, Mo, and W and therefore cannot be regarded
solely as a precursor of the bcc-o. transition.

Based on TEM and diffuse x-ray scattering studies on
Mo-Re alloys Aparov et al. proposed a different mech-
anism of the bcc-o' transformation. Their scheme implies
(100&.~~(100&„„(010&.~~(010&„„and a =3a~, .
Two displacement waves with wave vectors from the
—,'I420}b„star, each of them acting on only one sublat-

tice, distort the bcc lattice to yield atomic arrangements
which locally resemble those of the cr phase. However,
we observed no diffuse maxima at —,'(420) or equivalent

positions and therefore no indication of precursors of this
transformation mechanism in the Fe-Cr crystal.

V. CONCLUSIONS

We may conclude that our anomalous-scattering study
has been largely successful in portraying the short-range
order (clustering) in an Feo 53CIQ 47 crystal including a sa-
tisfactory determination of pair interaction energies. The
experimental techniques of Compton and RRS removal
and zero-contrast subtraction (7.6-keV data) yielded con-
sistent data sets that permitted an analysis of weak diffuse
scattering that would otherwise be contaminated by
parasitic scattering and swamped by the thermal diffuse
contribution. Using both contrast enhancement and con-
trast variation to highlight the short-range order and size
effect scattering we were also able to extract reliable
values of the individual Cr-Cr and Fe-Fe local displace-
ment parameters. These parameters are quite small be-
cause the size difference between pure Cr and Fe is only
0.6%%uo which is one of the smaller differences in binary
metallic solutions. However, as noted above, even
though these displacements are small they reveal in detail
a picture of the local atomic arrangements that demands
more attention. In particular both nearest-neighbor Cr-
Cr and Fe-Fe displacements are negative in clear
disagreement, for example, with the Froyen-Herring
treatment.

At first glance, a simultaneous decrease in both (111&

distances might be attributable to an co-phase collapse as
discussed in Sec. IV C. However, this co instability is soft
precisely because it leaves the (111& nearest-neighbor
bond length unchanged (it is really a zone boundary
transverse —,'(112& displacement). We have therefore had
to resort to symmetry as well as elasticity in order to un-
derstand the (hhh & plots of short-range order and size
effect scattering in Fig. 7. An co-like softness may well
underlie the distinctive features of these plots; but the
size effect is an occupationldisplacement correlation and
not a pure displacement/displacement effect. Further-
more, while the —,(111) susceptibility is appreciable it is

certainly not the sole contribution to the local displace-
ment field.

We dwell on this —,'(111) mode because it is involved

directly in the o.-phase transformation as discussed ear-
lier. However, we cannot otherwise detect any other
premonitory signatures of the cr phase and we are left
with the conclusion that, for this strongly first-order
transformation, the precursor fluctuations are largely
suppressed in the disordered bcc crystal. The pair in-
teractions also appear to signal the onset only of (meta-
stable) phase separation and not the incipient o-phase or-
dering. In other words our experiment has proven to be
rich in results pertaining to the bcc phase but not partic-
ularly instructive, thus far, on the O.-phase formation.
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