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The strength of a brittle material is determined by the extreme tail of its crack-size distribution. The
Weibull ansatz of algebraic distributions has been widely used but is not derived from any physical
mechanism, and recent results on randomly depleted networks exhibiting exponential distributions have
called this ansatz into question. In this paper a simple model for the formation and subsequent time-
dependent growth of cracklike defects in brittle materials, presumed to occur during processing, is intro-
duced to study possible crack-size distributions. The key aspect of the model is that the crack growth
rate has a nonlinear dependence on the local stress at the crack tip, and hence on the crack size. The
model predicts evolving crack-size distributions showing a wide range of behaviors: For sufficient non-
linearity the crack distribution rapidly becomes nearly algebraic (Weibull) in form and then evolves with
a time-dependent power law, or Weibull modulus; in the absence of any nonlinearity the model exactly
reproduces the exponential distribution of the one-dimensional random depletion problem. Both alge-
braic and exponential crack distributions can thus be considered as manifestations of an underlying non-
linear crack growth process. Moreover, the ubiquity of Weibull-like strength distributions observed in
brittle materials, with a wide range of Weibull moduli, may be due to the physically expected nonlineari-

ty of damage formation in real materials.

I. INTRODUCTION

Materials such as ceramics at low temperature are brit-
tle in nature; that is, they are linearly elastic up to a stress
at which failure occurs by the propagation of a single
crack across the entire sample. As a consequence of this
absence of any nonlinear or plastic behavior, the strength
of any single sample is determined by the weakest preex-
isting defect in that sample since the weakest defect be-
comes unstable to catastrophic propagation at the lowest
macroscopic applied stress. The strengths measured in a
batch of nominally identical samples are thus distributed,
since the weakest defect will vary from sample to sample,
and so the “strength” of a brittle material is a statistical
quantity. Being dependent on the weakest defect, the
statistics of brittle failure is extreme; i.e., only the ex-
treme tail of the defect distribution determines the mea-
sured strength. This extreme behavior also implies that
the material strength is an extrinsic quantity: The larger
the sample volume, the more likely a weaker defect will
be encountered somewhere in that volume, and hence the
strength decreases with increasing sample volume.

The quantity at the heart of the statistical distribution
of brittle material strength is the defect strength distribu-
tion N(o). N(o)AcAV is the number of defects of
strength (0,0 +Ac) in a volume AV. The strength dis-
tribution N (o) is assumed to arise from an underlying
crack size distribution N(c). If the defects are all as-
sumed to be penny cracks oriented perpendicular to the
applied stress then the relation between defect strength o
and defect size c is simply 0 =K, /mc!/?, where K, is
the material toughness. Given N (c), and hence N(o),
the probability of survival of the volume AV at stress o is

P(AV,0)=1=AV [ do'N(o") . (1)
For a component divisible into N subvolumes AV}, the
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failure of the component corresponds to the failure of any
one subvolume and the survival probability is the product
I1:P,(AV;,0). For uniform stress o, the survival proba-
bility of the entire component can be written as

P (o,V)=exp (2)

—Vfoadcr'ﬁ(a’)

This simple form exhibits the extrinsic dependence of sur-
vival on the volume V and the sensitivity of failure to the
tail region N(o )~ 1/V of the defect distribution for large
V.

The true form of N(o) for any material is unknown a
priori. Decades ago Weibull' introduced an empirical
form for N (o) by assuming it to be algebraic in o,

N(o)=—"L =1 a0 3)

g
o (g /0
with m and o, to be used as fitting parameters for
strength data obtained on samples of volume ¥V,. This as-
sumption leads to the now well-known Weibull failure
probability P,(o,V)=1—P (0, V), or

— Y (or0ym @

V)y=1—
Pi(o,V)=1—exp Ve

This form has been used almost exclusively and quite suc-
cessfully as a characterization of brittle failure for years?
despite a complete lack of any justification of the algebra-
ic form of N (o), or equivalently N (c).

Recent work® on randomly depleted elastic spring net-
work models has shown that, for an admittedly idealized
but tractable model, the N (c¢) distribution is expected to
be exponential and far better fits to the failure probability
form

P(o,V)=1—exp(—ae %" "), 1<u<2, (5)

which rises from an exponential N(c¢), have been ob-
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tained for this system (a, k are constants). The exponen-
tial cracklike defect distribution N(c) is generated by
randomly removing elastic spring elements from the net-
work until some fraction p of the springs have been re-
moved. Well below the percolation threshold p* at
which the network elastic modulus goes to zero, p <<p*,
the removed spring elements are organized in isolated de-
fect clusters and the distribution of cluster sizes is known
to scale exponentially. With the approximate link be-
tween the square root of the cluster (i.e., crack) size and
the stress o required to propagate a cluster, it follows
that the strength distribution N (o) should also be ex-
ponential in this case. The above work raises, once again,
the question of why the Weibull form works so well in
such a variety of materials,? or nearly equivalently, how
algebraic crack-size distributions can be generated in
physical systems. One may also ask if the exponential
distribution is somehow more fundamental than the alge-
braic form. In the absence of any fundamental
justification, measured Weibull distributions with large
power laws (m = 10) have been called “anomalous” and
“unphysical.” In this paper, we introduce a simple model
for the formation and subsequent time-dependent growth
of cracklike defects which is presumed to take place dur-
ing material processing and which leads to a variety of
crack-size distributions N (c). Of most importance here
is that the growth of a crack to the next increment of size
by the evolution of a new defect at the crack tip is as-
sumed to depend on the local stress at the crack tip and
hence have a nonlinear dependence on the crack size.
For sufficient nonlinearity, the crack-size distribution
evolves into a nearly algebraic (Weibull) form. The
Weibull modulus m varies with “time” but the distribu-
tion remains largely algebraic as opposed to exponential
and the Weibull modulus measured in post-processing
strength tests is then simply that m (¢) prevailing at the
end of processing. When this nonlinear enhancement of
the crack growth rate is suppressed, and linking of inter-
secting defects is accounted for, the model becomes iden-
tical to the random-depletion model and an exponential
crack-size distribution arises.

The main point of this work is rot, however, to prove
that Weibull distributions are “better” than exponential
distributions, or that only algebraic and exponential dis-
tributions are possible. Rather, our intent is to show
that, using a physically plausible model for crack forma-
tion, a wide range of N(c) are possible, varying from ex-
ponential in one limit of parameter space to algebraic at
another limit. A secondary result is that the algebraic, or
Weibull form, does persist over a wide range and that dis-
tributions with large m values are not ‘“anomalous” or
“unphysical.”

II. A SIMPLE MODEL
FOR CRACK-SIZE DISTRIBUTIONS

Our model of defect nucleation and growth is as fol-
lows. The model material is described by a network of
Ny potential defect sites, for instance, grain-facet-sized
boundaries. Defect formation is assumed to be a nu-
cleation event, with the probability per unit time of nu-
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cleating a defect at site i being a monotonically increasing
function r(o;(t)) of the local stress on site i at time ¢. Un-
der a global applied stress o, the local stress enhance-
ment 0, /0,,, can differ from unity by the occurrence of
load transfer from nearby defects.

With the above nucleation rate, the evolution of the
system in time is qualitatively as follows. At the shortest
times, single isolated defects are nucleated at rate r,
[ro Er(aapp)]. The enhanced stress in the vicinity of
these defects increase the nucleation rate at nearby sites.
There are relatively few of these higher-rate sites, howev-
er, and so nucleation at one of these sites to form a size
two defect can take much longer than the time (roNz) ™!
to form another isolated defect. Ultimately, the
enhanced rate does lead to the development of defect
clusters. As the clusters grow larger in size by addition
of further defect sites, load transfer increases and so the
clusters grow faster The relative rates of nucleation of
new isolated clusters and growth of small clusters and
large clusters is governed by both the load transfer and
functional form of (o). In general, there is a competi-
tion between growth at the many lower-rate sites and
growth at the fewer higher-rate sites that operates during
the evolution of the crack distribution.

In general, the evolution of the entire system is difficult
to discuss analytically because of the spatial variations of
both load transfer and defect-defect interactions. We
simplify this picture by focusing only on the load transfer
to the z neighbors at the tip of an existing crack, where
the stress is highest. We neglect the load transfer and/or
load shielding at sites away from crack tip sites. With
this simplification, each crack becomes essentially in-
dependent of all other cracks (except when crack linking
is included, see below). Furthermore, all sites in the ma-
terial are either (i) part of an existing crack, (ii) at the tip
of an existing crack, or (iii) isolated and under only the
applied load 0,,,. Evolution of the entire system is then
easily described by the evolution of the crack-size distri-
bution N,(z), where N.(¢) is the number of cracks of size
c existing at time ¢. Since cracks of size ¢ grow to size
¢ +1 at a rate r(o,), where o is the enhanced stress at
the tip of the size crack, we can write down “kinetic”
equations for the nucleation and growth of all the cracks
as

dN,
7=zr(ac_,)Nc_1—zr(oc)Nc , 21,

or in dimensionless units

dN,

c

dr

where 7=tr, and a.=zr(o.)/r,. The first term on the
rhs of Eq. (6) accounts for cracks of size ¢ — 1 growing to
size ¢ while the second term describes cracks of size ¢
growing to size ¢ +1 and thus depleting N.. The evolu-
tion of ‘“size” ¢ =0 cracks, i.e, the remaining unfailed,
nontip sites, is given by

=a,_N,_,—a.N., c=1, (6)

Ny
=—(1+z)N;+ 3 (z+c)N, (7
dr c=1
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and the initial conditions for (6) and (7) are N,(0)
N (0)=0.

It is straightforward to numerically integrate Egs. (6)
and (7) after specifying the functional form of r(o,) and
the relation of o, to crack size c. We first, however, will
exhibit some general features of N, by an analytic solu-
tion. We introduce the Laplace transform N,(s) of N,.(7)

into Eq. (6) to obtain
(@, +s)N.(s)=

=NT’

a.— IN c— 1( s), @)
a simple linear recursion relation which can be solved by
iteration to yield

N.(s) Nomn a.‘;‘s ©)

i=1

As time evolves, the nucleation sites Ny(7) are monotoni-
cally decreasing and, for a finite-size system, this leads to
very interesting behavior for the crack-size distribution
N, (7). In the present paper we are restricting ourselves
to a low density of defects, i.e., p=3 .cN./Ny<<1. We
emphasize the crack distributions at low-p values because
real materials are not highly defective and the larger p
need not be consistent with our general neglect of crack-
crack interactions.

In the low-p range we can simplify the solution to Eq.
(7) by neglecting the depletion of N sites so that

No(T)=Nr . (10
Inserting the Laplace transform of Eq. (10), N(s)
=Nr /s, into Eq. (9), we obtain N,(7) as

N (r)= ONT 1= fiele (11)

i=1
with
)= L 12
I} “a)’ (12)

the prime 1nd1catmg that the j =i term is excluded in the
product.

With the above general solution in hand, we first con-
sider some simplified but illustrative cases of the behavior
of N_(7). First, for a single growth rate «, independent of
crack size, it is seen from Eq. (9) that

N —ar < LaT)”
NC(T)-—NTe @ 2 —r;'—— . (13)
m=c¢c
The sum in Eq. (13) can be approximately replaced by the
first term when

aT 1
—_ <, 4
c+1 2 (14)

and one finds
NC(T)zN,e_aT—(—c:r'—) : (15)

which decays faster than exponential with crack size ¢ for
all times 7. Thus, an algebraic dependence of the crack-
size distribution is precluded when the growth rates are
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independent of c.

To see how N (7) depends on a_, e.g., how great a
“spread” in the growth rates «, is required to move away
from the regime of exponential dependence of N.(7) on c,
we consider the second simple case—the short-time limit
where each exponential term in Eq. (11) is expanded in a
power series. The result to leading order is

C
N(1)~N Ha,v] T', (16)
i=1
when
at |
c+1 2" (17

The same solution shown in Eq. (16) can be obtained by
dropping the depletion term —a.N, in Eq. (6) and so the
short-time limit corresponds to a net growth rate at each
crack size ¢ limited only by the supply at the smaller
crack size ¢ —1. From Eq. (16), we see that, to obtain
slower than exponential ¢ dependence of N.(7) in the
short-time limit where Eq. (17) holds, requires that a, /c
be an increasing function of ¢. If a,/c is not increasing
with ¢, then Eq. (16) is valid for all crack sizes for times
a,;7/2<1, i.e., all crack sizes are in the short-time limit,
and N_(7) is at least exponential. If a,/c is increasing
with ¢, then N (7) is subexponential in the short-time
limit and, moreover, there is a range of crack size ¢ >c*,

where c* is defined by
a «T
<t 1. (18)
c*+1 2
where N (7) is not described by the early time solution
Eq. (16).

In the limit where ¢* ~ 1, the time-dependent term in
Eq. (11) is much less than unity and

N (m)~ayNy/a, (19)
for all crack sizes. In this same limit, however, one can
show that the cumulant R_.(7) of all cracks larger than c,

=3 N7, 20

¢'=c

becomes independent of crack size c; this condition indi-
cates the presence of an unbound crack, i.e., a crack
larger than the linear size of the system. This interesting
“breakdown” behavior derived form the present model is
planned to be discussed in a future publication.

Between the extremes of the solutions Egs. (16) and
(19), there is a range of 7 or defect density p over which
N_(7) exhibits “intermediate” ¢ dependence. In this
range of 7 or p, one can rationalize the appearance of
algebraic ¢ dependence for ¢ >c* (which will be
confirmed below by numerical evaluation) as follows. For
¢ >c*, the last exponential term in Eq. (11) for N (1) is

o s -a.T . .
negligible, ¢ ° <<1; hence, the main ¢ dependence in
N_(t) is contained in the coefficients f;(c) given by Eq.
(12). Now the difference between N._(7) and N (7) is
only that for N, (7) each f;(c) is increased by a factor
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a,/(a,—a;) relative to the value for N,_ (7). Thus, the
sum in Eq. (11) increases slowly with increasing ¢, with
the largest changes in f;(c), at i =c, weighted by the
smallest exponential terms. The net change on going
from N,_,(7) to N_(7) is thus expected to be a slowly
varying function of c.

III. RESULTS

We now choose explicit forms of a, to show, in detail,
the behavior we have been discussing. In general, since
the stress at the tip of a crack scales like ¢!/?, we wish to
preserve this scaling in the o,. We will investigate
several choices, but the primary parametrization will be

141
z

o,= cl?2 ) e>1 (21)

with unit applied stress o,,,=1 assumed. The (1+1/z)
prefactor sets the scale by assuming that the load
transferred by a ¢ =1 crack is equally distributed among
its z neighbors.

The forms chosen for (o) are physically motivated.
A power law is selected because of the observed power-
law dependences of damage processes, such as cavitation
and slow crack growth, which occur under high tempera-
ture or environmental mechanical testing of many ceram-
ics. The same damage process occurring under those
conditions may, in fact, be operating during fabrication
and lead to the crack distributions in the as-processed
material. In addition, at an atomic level, the power-law
form for the rate dependence on o, can be derived from
the stress dependence of the activation energy U(o) for
bond rupture based on a Morse potential.* A linear ap-
proximation to U(o) leads to an exponential rate law.
Hence, we use

rioc,)=o0" (22)

and

r(ac)=eM0‘~” s (23)
both relative to the rate r, at the unit applied stress
Oapp=1.

Although Egs. (6) and (7) describe evolution in time,
the variable to hold fixed for meaningful comparisons be-
tween different forms of a, is p. If, e.g., the applied stress
is time dependent, this influences the time evolution
through a changing time scale but does not change the
evolution of N (7) as a function of the fraction p of sites
broken [for the growth law Eq. (22)]. Enhancing the
rates a, moves the comparisons at the same value of p to
earlier times.

Figures 1(a) and 1(b) show the crack-size distribution
obtaining from Egs. (6) and (7) using Egs. (21) and (22)
and n =0,2,3,4,5 at p =0.01 and z=2. Figure 1(a)
shows In[ N, (7)/Ny] versus ¢, for which exponential dis-
tributions plot as straight lines, and Fig. 1(b) shows
In[N_.(7)/Ny] versus Inc, for which algebraic distribu-
tions plot as straight lines. There is a clear crossover
from exponential or superexponential behavior for n <2
to essentially algebraic behavior for n >3. The n <2 case
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corresponds to a nonincreasing a,./c with c¢; hence, Eq.
(17) is satisfied for all ¢ and the superexponential behavior
is expected. The behavior for n > 2 is consistent with our
analysis: for ¢ <c*, the N, (7) is subexponential and for
¢ >c*, algebraic scaling can be observed. The algebraic,
or Weibull behavior, persists over several decades in
crack size. Pursuing the evolution of the Weibull-like be-
havior further, Fig. 2 shows In[N,(7)/N] versus Inc for
n =4, z =2, and increasing values of the defect density p.
At low p, p =0.001, the size distribution falls off faster
than algebraic for the small cracks ¢ <10 shown. How-
ever, at p =0.0025, the tail of the distribution exhibits
algebraic behavior, N,~c * with p=~19 for ¢ >29. For
p =0.005, algebraic behavior with p~12 for ¢ =7 is ob-
served. One clearly notes here the crossover to algebraic
dependence for ¢ >c* (where c* is marked explicitly in
the figure). For larger p the algebraic scaling extends to
even smaller crack sizes, with some slight positive curva-
ture suggesting a slower-than-algebraic falloff in N_(7),

0 25 50 75 100

CRACK SIZE ¢
0.0
(b)
-10.0
-~
<
3<:-20.()
E
-30.0
1 1
'40'8.0 1.0 20 30 40
In (CRACK SIZE)

FIG. 1. Crack-size distributions N_.(7) for power-law rate
enhancement r(o.)=07, for n =0,2,3,4,5 with stress enhance-
ment o, =1.5¢!/? and fraction of broken elements p =0.01. (a)
In[N.(7)/Nr] vs c; exponentials plot as straight lines. (b)
In[N_(¢)/Nr] vs In(c); power laws plot as straight lines. Note
crossover from exponential to algebraic scaling with increasing
n.
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FIG. 2. Crack-size distribution In[N_.(¢)/Nr] vs In(c) at vari-
ous break fractions p for r(o.)=0?, 0.=1.5¢!"2. Note the ap-
pearance of near-algebraic scaling N, ~c " for sizes c larger
than the short-time—short-crack to long-time-long-crack cross-
over crack size c* (see text). The large negative power laws p
imply large measured Weibull moduli m =2(p—1).

while the approximate value of p decreases steadily to-
ward the limiting value of p=2 (for n=4). For
sufficiently large n, then, we find N_(7) to be algebraic
above a time- or p-dependent crack size which we associ-
ate with the ¢* given by Eq. (18), and ¢* decreases with
time until the entire distribution exhibits near-algebraic
scaling.

The general behavior observed using Eq. (19) for n =4
and z =2 persists for other load sharing rules. Figure 3
shows crack-size distributions obtained for n =4, and
various p using the load transfer rules

o, = 1+% cl?, z=4, (24a)
o, = o.78+9'c5—8]c1/2, z=4, (24b)

0.0

Eq. (24a) 2=2,4

-10.0[

-20.0

In(N/N;)

-30.0[-

- L Ll 1
40'co.o 10 20 30 4.0

In (CRACK SIZE)

FIG. 3. Crack-size distributions In[N_.(¢)/N+] vs In(c) for a
variety of stress enhancement laws o, (see text) with r(o,.)=0c?.
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-5 (2*t2 -
o, j§1 +1 | z=2, (24¢)
Uc=l+%cl/2, =24, (24d)

Rule (24a) is identical to Eq. (20) except z =4 is used, al-
lowing for two sites at each crack tip to be potential
growth sites and thus allowing for noncollinear cracks, as
might occur in two-dimensional (2D) systems. Rule (24b)
has been empirically derived for the tip stresses in a 2D
triangular spring network, for which z=4.5 Rule (24c)
has been derived by Hedgepeth to describe load transfer
around linear breaks in fiber bundles.® Rule (24d) is sim-
ply a slight modification of Eq. (20). As evident in Fig. 3,
Eqgs. (24a)-(24c¢) all yield primarily algebraic behavior for
crack sizes 10 =<c <60 at these p. Although there is some
curvature to these data, the behavior is certainly more
algebraic than exponential. Equation (24d), on the other
hand, has systematic curvature and is not algebraic for
n =4, p =0.05. However, a crossover to behavior similar
to that obtained from Egs. (24a)-(24c) occurs for n =5,
p =0.05. The precise power n at which algebraiclike be-
havior sets in thus does depend on the nature of the load
transfer 0., with larger n required for smaller load
transfer functions o at any particular value of p or 7.

The appearance of algebraic N, is independent of the
form of the growth law (i.e., power law versus exponen-
tial), as confirmed by the results obtained using Eq. (23),
as shown in Fig. 4. Figure 4 shows N, for p =0.05, using
Eq. (23) and z =2, for a range of A values. At low A, N,
is roughly exponential but for larger A, N, becomes near-
ly algebraic, ¢ ~#, with p in the range 6—12. The tenden-
cy toward subexponential distributions, and the appear-
ance of algebraiclike distributions, is thus independent of
the detailed growth rate law and instead depends only on
having a sufficient spread in the a,.

-10.0
<
3
(3]
2
£
-20.0
-30.0 ! ny
0.0 1.0 2.0 3.0 4.0
In (CRACK SIZE)

FIG. 4. Crack-size distributions In[N,(2)/N] vs In(c) for ex-
ponential rate law r(o.)=exp[Alo.—1)] with o.=1.5¢!/? and
various A at p =0.05. Algebraic scaling again appears over a
range of A values.
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IV. DISCUSSION AND SUMMARY

The crack nucleation and growth equations, with crack
growth rates a, depending nonlinearly on the local stress
and hence the crack size, have been shown capable of
generating a wide spectrum of crack-size distributions.
For small nonlinearity (a, /c decreasing with ¢), the dis-
tributions are more exponential in nature. For stronger
nonlinearity (a,/c increasing with c), algebraic behavior
appears, with a wide spectrum of Weibull moduli depend-
ing on the rate law r(o), time, and the detailed stress
enhancements o.. In addition, the Weibull moduli m as
determined from strength tests using Eq. (4) are related to
the algebraic powers p in N,~c ? by m =2(p—1) and
thus m values anywhere from m =2 to 35 can be plausi-
bly obtained from this physical model.

A tremendous advantage of the nucleation and growth
equations for N_(7) over explicit simulations on finite lat-
tice networks is that the calculations are trivial to per-
form over decades in crack size (we typically calculate
out to ¢ =100) with all the probabilities retained to
within computer limits (In[N.(7)/N;]= —87). In the
finite lattice networks, the lattice size is limited to
perhaps N;=10000 sites. Thus, the real extreme tail of
the crack distribution where algebraic behavior may be
lurking for various growth laws cannot be probed, in
practice, by simulations, yet is absolutely necessary to
make contact with the failure distributions measured in
real macroscopic systems, for which N is many orders of
magnitude larger.

A disadvantage of the nucleation and growth equations
as formulated is that crack-crack interactions are not tak-
en into account. Although we are considering dilute
crack concentrations so that interactions are small on
average, we are concerned with the extremes of the distri-
butions and interactions can modify the distributions,
especially in the tail. We can account exactly, however,
for the crudest, but perhaps most important, crack in-
teraction effect of collinear crack linking when there is
one site at each crack tip (see the Appendix). Crack link-
ing occurs when two cracks of sizes ¢ and ¢’ are separated
by a single uncracked site. Stress concentration at the in-
tervening site, denoted o, ., is considerably enhanced,
scaling more like (c +c¢’)/2 than with any square root.
Even in the absence of stress-enhanced nucleation, the
formation of a ¢ +¢’+1 crack and concomitant annihila-
tion of a ¢ and a ¢’ crack is an important process govern-
ing the evolution of the full crack-size distribution.

Figure 5 shows the effects of collinear crack linking on
the crack-size distribution using o, . =1+(c +c’)/2 for
the rate law of Eq. (22) with n =0,2,3,4 and o, =1.5¢!/?
[Eq. (20), z =2] at p =0.025. Linking has virtually no
effect on the distribution at n =4, making larger cracks
slightly more likely but without modifying the algebraic
exponent. This insensitivity to linking arises because the
large growth rate at existing crack tips leads to the for-
mation of a dilute collection of longer cracks as com-
pared to n =0 at the same total fraction of breaks p. The
dilute cracks are less likely to interact (link) and hence
linking becomes negligible. For sufficient enhancements
o7, the simple nucleation and growth terms in Eq. (6)

2625
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0.0 1.0 2.0 3.0 4.0
In (CRACK SIZE)

FIG. 5. Crack-size distributions In[N.(2)/Ny] vs In(c)
without crack linking ( ) and with crack linking (— — —),
for r(o.)=o0, 0.=1.5¢!2, p =0.025. With linking, the n =0
distribution becomes exactly exponential, the n =2 distribution
is slightly subexponential, the n =3 distribution becomes alge-
braic in its tail, and the n =4 distribution is nearly unchanged.

dominate the evolution of the N.. Linking is also able to
drive the n =3 distribution from subalgebraic to algebra-
ic in the tail. This general tendency of linking to
“stretch-out” subalgebraic distributions is observed for a
wide range of o, n, and p. In contrast to the n =4 re-
sults, for n =0 there is a considerable enhancement of the
tail of the crack distribution. In fact, the inclusion of
linking at n =0 changes the distribution from superex-
ponential to exactly exponential. Since n =0 implies no
enhancement of the nucleation rate at the crack tip, this
limit corresponds precisely to the random-depletion mod-
el, which has an exponential crack-size distribution.
Thus, by including the crack linking of collinear cracks,
we have reproduced the one-dimensional random-
depletion model, for which the crack-size distribution is
trivially N,(p)=(1—p)%e°"), Although n =0 is ex-
ponential with linking, n =2 is only very slightly subex-
ponential with linking and so our conclusions on algebra-
ic behavior appearing for only increasing a, /c are essen-
tially preserved. Investigation of additional linking
effects for a wide range of n, load rules, and p indicates
that the appearance of algebraiclike behavior is relatively
insensitive to the linking effects. This insensitivity im-
plies that the simple nucleation and growth Egs. (6) and
(7) contain the key elements of the time-dependent crack
growth.

The strengths of real ceramic materials are controlled
by the distribution of defects in them. The defect distri-
butions N_(7) are, in turn, significantly influenced by pro-
cessing details, usually involving exposure to high tem-
peratures and nonzero stresses. If the generation of
growth of defects is random, i.e., the growth rates are in-
dependent of local stresses, crack size, etc., then N (1)
shows exponential ¢ dependence, as established both by
simulation® and the present model (with linking). How-
ever, if the growth rates are dependent on the stress envi-
ronment and if this dependence is sufficiently coupled to
the defect size, as is typical of crack growth in brittle ma-
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terials, than the present model for the N, (7) admits a
wide range of ¢ dependence. In particular, the oc-
currence of an algebraic tail is quite generally predicted
for defect growth rates a, which increase faster than
linear in crack size c. The precise value of the measured
Weibull modulus m corresponding to these algebraic
N_(7) is, of course, dependent on the nonlinearity of «,,
the defect density p, and the range of sample volume V
tested [see Egs. (2) and (4)]. However, the resulting range
of Weibull moduli in strength distributions in the low-
defect density regime spans from at least 3 to 30, dispel-
ling the notion that observed Weibull scaling with large
moduli is somehow ‘“anomalous.” Although Weibull
himself states that' “it is utterly hopeless to expect a
theoretical basis for distribution functions of random
variables such as strength properties of materials. . .,”
the present model is one physically plausible theory for
such distribution functions which, in fact, can describe
the very behavior Weibull sought to capture with his
empirical distributions.

Noted added in proof. The use of Egs. (6) and (7) to ex-
plore ‘“breakdown” behavior, as mentioned in the text
below Eq. (20), appeared in Ref. 7.

APPENDIX

For linear cracks, i.e., one element at each tip of any
crack (z =2), the linking of two cracks of sizes ¢’ and ¢"’
sharing a single crack tip element to form a crack of size
¢'+c”+1 at some enhanced rate can be accounted for
exactly. We denote the stress enhancement at the ele-
ment between a ¢’ and ¢”’ crack as o . and the enhanced
growth rate as a, .~=zr(o. ). There are then three
processes involving an arbitrary size ¢ crack which must
be followed as additional failed elements are introduced
into the system.

(1) First, there is the simple growth from size ¢ —1 to
¢, which occurs only if the element adjacent to the ele-
ment at crack tip is also unfailed. The change in N, with
break fraction p due to this process is simply

dN. (1 .
— | T1— Ne—ac

. = (A1)

1_—_
1—p ., 2 Ne

The second term on the right-hand side accounts for the
probability that the adjacent element is part of another
crack, with the factor 1/(1—p) to avoid double counting
of the crack tip site. The overall factor of 1/(1—p) arises
simply from the fact that there are only (1—p) unfailed
elements available to break at any p.

(2) The second process is the growth of a size ¢ crack to
any larger size, whether linking is involved or not. The
change in N_.(p) due to this process is

an. (2)_ . v
dp  1-p

a(1 p)+lT za”N

c—l

(A2

The first term on the rhs is simply the growth from
¢—c + 1, while the second term is the growth by linking
to all other sizes.
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(3) The third process is the formation of a size ¢ crack
by the linking of two smaller cracks, and is only operable
for cracks of size ¢ 2 3. The change in N, with p for this

linking process is
3)
1 c—2

l_‘p c'=1

dN

c

dp

1

1— ac—c’—l,c’Nc—c’—lNc

1
2
(A3)

The factor of 1 accounts for double counting in the sum
over crack size.

The above three processes are the only possible contri-
butions to the size ¢ crack population. Linking of more
than two cracks is a higher-order function of dp and can
be neglected. Thus, the nucleation and growth equations
are the sum

dN,
dp dp

(1) (2) (3)

(A4)

The evolution of the unfailed, nontip elements Ny(p) is
simply given by

No(p)= 2(2 +c)N, +1z IECN ] (A5)

where the last term accounts for the fact that some
cracks share the same tip elements.

Notice that the original equations (6) and (7) without
linking are obtained by dropping all terms proportional
to products of N_.N_., including terms coming from
P =3 .=1cN_, and hence linking is explicitly second order
in the crack densities. The evolution in time N_(¢) is ob-
tained from the evolution N.(p) in p, given by Egs.
(A1)-(A5), by considering the total rate of crack growth.
The time increment At required to add one more failed
element (p—p +1/N7) is the inverse of the rate of crack
growth

A
—AE—NOa0+(1—p [za N, ]+' S a NN,

(A6)

where the first term on the rhs of (A6) is the rate of for-
mation of single isolated cracks, the second term is the
rate of growth of existing cracks without linking, and the
final term is the rate of growth due to crack linking. The
time evolution is then obtained by integrating dt /dp up
to the defect density p of interest to obtain the time ¢ (p)
at that point.

For the random-depletion problem, i.e., no enhance-
ment of the crack growth or linking rates, the solutions

of (A1)-(A5) for N.(p) are simply
No(p)=(1—p)*,
N.(p)=(1—p)p°, c>1,

and with dp /dt=1—p, the time to break p elements is
just

=—In(1—p),

which is # ~p for small p, as expected.
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