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Calculations were performed for both a vacancy and an Al solute atom in bcc Li and for a vacancy in

fcc Al. The purpose of this work was (i) to test optimization algorithms that allow a unified determina-
tion of ground-state electronic structure and lattice relaxation, and (ii) to compare calculated properties
with experiment and with previous pair-potential simulations. 16- and 54-site supercells were employed
in the Li-host calculations and a 32-site supercell was employed for the Al vacancy. The self-consistent
Kohn-Sham orbitals, expanded in a plane-wave basis, were obtained using the modified steepest-descents
algorithm of %illiams and Soler and the band-by-band iteration method of Teter, Payne, and Allan.
Electron-ion interactions were represented by generalized norm-conserving psuedopotentials cast in se-

parable form. The relative performance of the two optimization algorithms is discussed. The equilibri-
um lattice relaxation was calculated by the Newton-Raphson method, with the Hessian matrix deter-
mined from numerical derivatives of the Hellman-Feynman forces. Calculated vacancy-formation ener-

gies are in excellent agreement with experiment.

I. INTRODUCTION

The local-density approximation (LDA) of density-
functional theory has proven a robust framework for the
calculation of cohesive properties of condensed matter. '

The success of the LDA has spurred a search for numeri-
cal algorithms suitable for "large cells" that would enable
molecular-dynamics simulations or structural-relaxation
calculations with Hellmann-Feynman forces calculated at
the LDA level. A breakthrough was achieved by Car and
Parrinello, who introduced iterative techniques that em-
ploy the total-energy gradient (with respect to Kohn-
Sham orbitals), in conjunction with a plane-wave basis set
and norm-conserving ionic pseudopotentials. Two in-
sights that emerged from their work are (i) the computa-
tional efficiency of fast Fourier transformation in the
evaluation of the gradient, and (ii) the efficacy of approxi-
mate Hellmann-Feynman forces computed in a plane-
wave basis for molecular-dynamics or structural-
relaxation calculation. Although the application (of
energy-gradient methods) to molecular-dynamics simula-
tion has received the most attention, complementary
techniques are also quite effective for structural-
relaxation calculations, the focus of the present paper.

With these techniques, structural relaxation, e.g., for
crystalline defects, disordered alloys, amorphous systems,
and complex crystals, can be calculated at the LDA level,
without resorting to arbitrary atomic-force models. In
structural studies, local-optimization methods, such as
the modified steepest descents (MSD) and conjugate
gradients (CG), are more efficient than the Lagrangian
scheme of Car and Parrinello for the calculation of
ground-state Kohn-Sham orbitals.

As an initial application of gradient-based plane-wave
optimization methods to structural relaxation in metallic
systems, we consider substitutional point defects. The re-
laxation induced by vacancies and solute atoms is qualita-
tively known from force-model simulations, which pro-
vide a useful benchmark. Specifically, we treat the for-
mation energy and defect-induced lattice relaxation for
vacancies and Al solute atoms in Li (Refs. 8 and 9) and
for a vacancy in Al, using the MSD (Ref. 4) and band-by-
band methods. The present work extends the band-by-
band scheme of Ref. 6 to metallic systems. ' Properties of
monovacancies in Li have previously been studied by
molecular-dynamics simulations with ab initio pair poten-
tials" and with cluster electronic-structure calculations. '

Several pseudopotential ' '" and nonpseudopotential
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linearized augmented-plane-wave' (LAPW) calculations
have been reported for a vacancy in Al; lattice relaxation
was included only in the last of these.

Section II outlines the optimization methods employed
in the electronic-structure calculations. In Sec. III, the
lattice-relaxation procedure is described. Section IV de-
scribes the numerical results for the lattice relaxation and
the vacancy formation energy. Some implications of the
present results are discussed in Sec. V.

II. ELECTRONIC STRUCTURE METHOD

A. Algorithms

An implementation of the MSD algorithm of Williams
and Soler based on a plane-wave basis set and norm-
conserving pseudopotentials has been described in earlier
work (see also Ref. 16). The MSD algorithm incorpo-
rates the diagonal elements of the Hessian matrix, in con-
trast to classical SD, which employs only gradient infor-
rnation. This modification does accelerate convergence at
least in the early iterations, although SD was found to
yield better asymptotic convergence than MSD in some
test calculations. ' As Stich et al. observe, the
diagonal-dominance assumption in the MSD method be-
comes questionable for large unit cells. The CG method,
on the other hand, is not affected by the sparsity of the
Hessian, which makes it less subject to instability than
MSD in large unit-cell applications. In the CG im-
plementations described in Refs. 5 and 7 (as in the MSD
treatment of Ref. 4), all orbitals for a given k point are
updated simultaneously, and the variation of the electron
potential along the line-minimization path is neglected.
Teter et a/. , noting the tendency of this procedure to
overshoot, suggest an alternative CG algorithm based on
a band-by-band optimization (we refer to this as BB), in

which the line minimization can be performed essentially
exactly, at least in insulating systems. Another virtue of
the BB is its preconditioned form, helpful for treating
large basis sets.

We have applied in the present work both the simplest
(MSD) and the most elaborate (BB) of the above-
mentioned optimization strategies to metallic systems. In
both treatments, zone integrations were performed by
special k-point sampling using the Gaussian-broadening
scheme. In treating metals, some excited-state orbitals as
well as the occupied orbitals must be calculated; in the
54-site Li-cell calculations, 48 orbitals were treated and,
in the 32-site Al cell, 60 orbitals were included. The BB
line minimization for orbitals with small weight (less than
10, say) was performed on the orbital expectation value
rather than the total energy. After each iteration of the
MSD method (or each full pass through the bands for a
given k point in the BB method), a "subspace diagonali-
zation" is performed to obtain an updated Fermi energy
and set of weighting factors.

An analytical relation for d E/d 0 (Ref. 17) (in the no-
tation of Ref. 6), was employed to improve the numerical
precision of the BB line minimization. The BB line
minimization is not exact in the case of metals, since the
contributions to E(8) that correspond to changes in band

occupancy f (df/d8%0) are neglected. The stability
and convergence of the BB method were nevertheless
found satisfactory in applications to metallic systems, as
described below.

Generalized norm-conserving pseudopotentials' were
constructed based on neutral-atom reference configur-
ations with core radii rI =1.0, 1.1, and 1.2 a.u. for Li and

rI = 1.21, 1.55, and 1.55 a.u. for Al s, p, and d waves, re-

spectively, and cast in the computationally efficient
Kleinman-Bylander form. '

Equilibrium lattice constants
a =6.20 a.u. (7.52 a.u. ) were obtained for Li (Al), respec-
tively [experimental values are 6.59 a.u. (7.59 a.u. )] based
on these potentials. The discrepancy between theory and
experiment is considerably larger for Li than for Al, con-
sistent with our earlier experience. This discrepancy in

only partly due to the pseudopotential construction;
APW calculations for Li, for example, yield a =—6.37
a.u. , still well below experiment. '

In the MSD calculations for L/a =2 and 3, charge-
density mixing is required to avoid charge-sloshing insta-
bilities. Thus„ the charge-density distribution following
subspace diagonalization is mixed (using the scheme in-
troduced by Kerker ")with the previous charge density
to determine an electron potential. ' ' In the BB calcula-
tions, no charge-density mixing was found necessary to
ensure stability for L /a = 1 and 2, but mixing was re-
quired for 1./a =3. The BB calculations for the Al su-
percell with L/a =2 did not require mixing for stabiliza-
tion. The initial-state orbitals (to start the iterative pro-
cess) were either randomly generated or obtained by diag-
onalization of a small matrix.

B. Convergence of optimization algorithms
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FIG. 1. Residual norm for calculations on Li cells based on
the MSD and band-by-band algorithms.

The occupation-weighted residual norm, where the re-
sidual is defined as (HKs —c,;)P;, provides a useful mea-
sure of convergence. A comparison of results obtained
with the MSD and the BB algorithms for Li cells of
different sizes is shown in Fig. 1. A marked deterioration
in convergence rate was observed for the larger cells in
the case of the MSD algorithm. Thus, although satisfac-
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tory convergence was obtained for L/a =3 in about 150
iterations, the convergence rate was considerably slower
than for L/a =2, and the next largest cell, L/a=4,
would probably require more than an order of magnitude
larger number of iterations to converge. The results for
the BB algorithm were based on one line minimization
per band for each full pass through the bands. Although
there is greater numerical effort in each iteration of the
BB than in the MSD algorithm (perhaps a factor of 2),
the overall performance of BB was vastly superior to
MSD. Most important is that the convergence of the BB
algorithm did not degrade significantly in going from
L/a =2 to 3.

C. Basis-set size and k.-point sampling

The Li calculations were performed for simple-cubic

supercells with L/a =1, 2 and 3, where a is the lattice
constant and L is the supercell dimension, which corre-

spond to 2, 16, and 54 sites. A basis-set cutoff of 10 Ry
(3400 plane waves for the L/a =3 cell) was employed,
similar to values chosen by Pawellek et al. We used a

single special k point in the 54-site calculations, following

the example of Hafner and Payne in their liquid-metal

calculation for cells of comparable size. Pawellek

et al. found a 12% reduction in the (relaxed) Li-vacancy
formation energy (cf. Sec. IV B) in going from one to four

k points. Their calculations were based on a Gaussian

broadening about three times smaller than our choice of
cr =0.05 Ry, however, which might increase sensitivity to
k-point sampling. (6, 100) k points were used in the (16,
2)-site calculations.

The Al-vacancy calculations were made for a simple-

cubic supercell with L /a =2 (32 sites), and a cutoff ener-

gy of 22.5 Ry. Four special k points were used with a
broadening 0.=0.05 Ry. In LAP& calculations, Mehl

and Klein' found unrelaxed vacancy-formation energies
increased about 10% in going from 10 to 110 k points;
their (Fermi-function) broadening, however, was much

smaller than ours.
The present choice of k-point sets and broadening pa-

rameters are thought to provide reasonable precision at a
moderate cost in the applications considered in this pa-

per. Based on the experience in Refs. 9 and 15, one

might estimate the k-point sampling error in the present
formation-energy calculations to be of order 10—15 %.

III. LATTICE RELAXATION METHOD

Although structural relaxation can, in principle, be cal-
culated with the electronic and ionic degrees of freedom
treated on the same footing (in the spirit of Car-
Parrinello dynamics, it is more expedient to treat them
separately, in order to minimize problems of overshoot
and electronic-charge sloshing. In the present work, we
regard the ionic coordinates as explicit variables and the
electronic coordinates (Kohn-Sham orbital coefficients) as
implicit variables that are constrained to lie on the Born-
Oppenheirner surface. Minimization of the adiabatic en-
ergy function E[R(l)], with respect to the ionic
configuration R(l), where / is the ion index, involves a

requires the first two derivatives,

F(~)= —aE/aR(~),

4(l, 1')=8 E/BR(l) BR(l'),

(2)

(3)

of the adiabatic energy function. In the case of the 54-
site bcc cell, Eq. (1) can be expressed in terms of reduced
variables (vectors F and matrix 4) of dimension 6, the
numbers of independent ionic degrees of freedom for a
point-defect relaxation field with cubic symmetry for a
cell with L/a =3. Since each of the six symmetry shells
of atoms surrounding a central point defect has a single
degree of freedom, the index l can therefore be reinter-
preted as a shell index in the reduced equations. Numeri-
cal values of the reduced force F are obtained directly
from the Hellmann-Feynman forces. The elements of
the reduced-force-constant matrix 4 were obtained by
taking finite differences between Hellmann-Feynman
forces for configurations that differ by a small displace-
ment of a given shell of atoms from unrelaxed positions;
values of 4(l, l') obtained from displacing shells I and 1'

separately were averaged. Using the displacements ob-
tained from Eq. (1), the relaxed atomic coordinates are
given by R(l)=RO(l)+u(l), where Ro(l) represent the
unrelaxed lattice sites. The self-consistent electronic
structure and Hellmann-Feynman forces corresponding
to the atomic coordinates were then calculated. The
Hellmann-Feynman forces for the relaxed configuration
show nonzero (but small) values as a result of (i) anhar-
monicity, and (ii) residual numerical inaccuracy in F and

If desired, the whole process involving Eqs. (1)—(3)
could be iterated, or (as done in this work) further small
adjustments in the configuration can be made "by hand, "
using the Hellrnann-Feynman forces for guidance. The
first Newton-Raphson relaxation step, however, already
gives a quite accurate estimate of the equilibrium dis-
placements and the relaxation energy.

Since the relaxation surrounding a point defect in a su-
percell is constrained by the periodic boundary condi-
tions, it is important to use a sum. ciently large cell to
model an isolated defect. The 53-atom cell provides an
accurate estimate of the relaxation energy for a vacancy
in a bcc crystal, whereas the 31-atom fcc cell is large
enough to account for most of the vacancy relaxation en-

ergy in that structure.

IV. RESULTS

A. Lattice relaxation

We discuss first the 54-site Li cell. The displacements
of the six coordination shells surrounding either a vacan-
cy or an Al solute atom are plotted in Fig. 2, in half-
lattice constant units. The results for the vacancy are in
close agreement with those given in Ref. 9. A charac-
teristic feature for vacancies is that the first two neigh-

relatively small number of ionic degrees of freedom, and
the rapidly convergent Newton-Raphson method is
therefore feasible. The Newton-Raphson relaxation step

u=@ 'F
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FIG. 2. Calculated displacements of six neighbor shells sur-
rounding vacancy (triangles) and Al solute atom (squares) in
54-site Li supercell. Units of ordinate and abscissa scales: a/2
(half-lattice constants). Indices of the shells are indicated at the
top.

FIG. 4. Displacements calculated for 54-site Li cell with va-
cancy (solid circle) and range of calculated displacements from
pair-potential simulations for Na (Ref. 30) (bars). Units of ordi-
nate and abscissa scales: a/2 (half-lattice constants).
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FIG. 3. Equilibrium displacements (triangles) and (unre-

laxed) Hellmann-Feynman forces (circles) for shells surrounding

vacancy in 54-site Li cell. Units of displacements and distance
from vacancy: a/2 (half-lattice constants).

bors have displacements of opposite sign. The displace-
ments of the first two neighbors are roughly proportional
to the Hellmann-Feynman forces (in the unrelaxed lat-
tice), as illustrated in Fig. 3, and the sign change in the
displacements and in the Hellmann-Feynman forces have
the same physical origin. This sign change occurs in
pairwise-force model simulations for a vacancy in the bcc
structure as a consequence of the minimum in the in-
terionic potential between the first- and second-neighbor
separations; see, e.g. , the potentials of Dagens et al.
The calculated lattice relaxation for a vacancy in Li (for
those shells within the supercell boundary) is compared
with pair-potential simulations for Na (the range of re-
sults for which are indicated by the error bars) in Fig. 4.
We observe that the relaxation in Li follows a very simi-
lar pattern to previous results for Na. In the case of an
Al solute in Li, we see in Fig. 2 that the displacements of
both the first two neighbors are inward, with no sign
change. This result indicates that the effective Al-Li po-
tential in this system is more attractive than the Li-Li
host potential at the second-nearest-neighbor separation.

After the vacancy lattice relaxation was determined,

the cell lattice parameter was varied to determine the
equilibrium atomic volume. From this result, a vacancy-
formation volume of 0.63 atomic volumes was obtained,
slightly larger than the values 0.58 and 0.52 given in Ref.
9.

In the case of a vacancy in Al, the Hellmann-Feynman
force on the nearest-neighbor shell was found to vary
essentially linearly with displacement, and the zero cross-
ing (equilibrium) occurs for an inward relaxation of 0.09
a.u. (0.012a). A slightly smaller value for the nearest-
neighbor displacement, 0.065 a.u. , was obtained by Mehl
and Klein. ' Our results are also in reasonable agreement
with those obtained in pair-potential calculations. ' The
determination of more distant-neighbor relaxation s
would require a larger supercell than employed here.
Judging from the work of Gillan, however, the effect of
the relaxation of the second and more distant shells on
the formation energy (discussed below) is a most a few
hundredths of an eV.

The effect of lattice relaxation on the charge distribu-
tion is illustrated in Fig. 5, which shows charge-density
contours in a [110]plane containing the vacancy (located
at the center), in the 53-atom Li cell. The first panel
refers to the unrelaxed cell and illustrates that the distur-
bance in the charge density is largely confined to the re-
gion of the first two neighbor shells [the six atoms nearest
the vacancy in the figure include two members of the
(200) shell and four members of the (111) shell]. The
second panel corresponds to the relaxed lattice, in which
the disturbance extends slightly beyond the second-
neighbor shell. The redistribution of electronic charge
density as a result of relaxation can be summarized as fol-
lows. The charge density at the center of the vacancy in-
creases from 3.0X10 to 3.6X10 a.u. ; for compar-
ison, the mean conduction electron density is 8.4X10
a.u. The charge density between the (111) and (222)
shells decreases as a result of the increased interatomic
separation [note the lighter contrast in Fig. 5(b) as com-
pared to Fig. 5(a)], whereas the charge density between
the (200) and (400) shells increases (as indicated by darker
contrast) due to the decrease in the corresponding intera-
tomic separation.
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{a) (b)
FIG. 5. Charge-density contours in 110 plane of 54-site Li

cell containing vacancy. (a) and (b) correspond to the unrelaxed
and relaxed lattices, respectively. The short axis corresponds to
the [001] direction and the long axis to the [110]direction. The
scales are unequal, which make the atoms appear elliptical.

B. Vacancy-formation energy

The vacancy-formation energy is obtained from super-
cell calculations as the difference

Et„=E(N—l, V') —[(N —1)/N]E(N, V) (4)

between the energy of the defect supercell with N —1

atoms and that of the perfect crystal scaled to the same
number of atoms. If V/X is the zero-pressure atomic
volume of the perfect crystal, then the difference between
the vacancy-formation energy at constant pressure (mea-
sured experimentally) and constant volume is small be-
cause of the stationarity of the energy. Results for the
calculated vacancy-formation energies are listed in Table
I. The unrelaxed values correspond to the perfect lattice,
and the relaxed values are based on the lattice relaxation
calculated as described in Sec. III. In the case of Li, two
supercell sizes are shown. The relaxation energy for the
53-atom Li cell (0.09 eV) is expected to be converged
since neighbors beyond the second cell contribute little;
in molecular-dynamics simulations for Li with L /a =4, a
relaxation energy of 0.07 eV was obtained.

The experimental value ofE„for Li determined by di-

latometry, 0.34 eV, is considerably smaller than that ob-
tained from the difference between self-diffusion activa-
tion energy and migration energy, 0.48 eV. We favor
the latter value since the former would imply a much
larger migration energy for Li than for other alkalis,
which seems unlikely. The value of 0.48 eV is in reason-
able agreement with our theoretical estimate for the 54-
site cell, 0.57 eV. The present results for formation ener-

gy of Li are in excellent overall agreement with those of
Ref. 9 in spite of differences in the pseudopotentials em-
ployed.

The calculated formation energy for Al, including re-
laxation of the first-neighbor shell, is 0.71 eV. As men-
tioned above, the relaxation energy associated with more
distant shells would be small. The present result is in
close agreement with the experimental values of 0.66 eV
(Ref. 35) (positron annihilation spectroscopy) and 0.70 eV
(Ref. 36) (quenching). A calculated value of 0.52 eV (in
contrast to the present result of 0.78 eV) was obtained for
the (unrelaxed) vacancy-formation energy of Al by Jansen
and Klein, based on a Hamann-Schliiter-Chiang pseu-
dopotential and a basis-set

cutoff

energ of 11 Ry. This
is a larger discrepancy than we would have expected, and
its origin is not presently clear.

V. CONCLUSIONS

The MSD (Ref. 4) and BB (Ref. 6) algorithms have
been tested in calculations for point defects in Li and Al.
Both methods are feasible for the cell sizes treated here,
but the BB shows superior convergence and scaling be-
havior and is therefore clearly preferable. We have
demonstrated in the Li calculations a lattice-relaxation
procedure based on the Newton-Raphson method, remin-
iscent of the method of lattice statics that provides ex-
cellent convergence in only a single relaxation step. This
method should become even more attractive with the im-
plementation of linear response methods to obtain the
Hessian matrix. The calculated lattice relaxation for
the vacancies in Li and Al are in reasonable agreement
with previous results based on pair potentials.

Although some questions remain, the calculated
vacancy-formation energies for Li and Al appear to be in
close agreement with experiment. This indicates that the
present methodology, which involves a plane-wave ex-
pansion in a pseudopotential representation, is sufficiently
precise and realistic to predict defect properties at least in
simple metals. These results are in contrast to previous
formation energy calculations based on pair potentials,
which have often given unphysical values, particularly in
the case of Al. The present results, in conjunction with
the recent studies of vacancies in transition metals by

TABLE I. Monovacancy formation energy (eV).

Theory
Element L/a a (a.u. ) Unrelaxed Relaxed Experiment

Li
Li
Al

6.20
6.20
7.52

0.70
0.66
0.78

0.68
0.57
0.71

0.48 (Ref. 34), 0.34 (Ref. 33)
0.66 (Ref. 35), 0.70 (Ref. 36)
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Drittler et a/. , indicate that vacancy formation energies
for most elemental metals can now be accurately calculat-
ed within the LDA framework.
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