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Electron-phonon coupling strength and implications for superconductivity
in alkali-metal-doped fullerenes
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A comparison between the electron-phonon coupling strength in graphite intercalation compounds
and alkali-metal-doped C60 is considered. It is shown that the curvature of C60 leads to a slight

reduction in the modulation of the single-site matrix element in comparison with the corresponding
value in graphite. Nevertheless, the curvature of C60 makes it possible for electrons to couple with

the low-frequency radial modes. This coupling causes the value of the dimensionless electron-phonon

coupling parameter, A, to be reasonably large. The large value of A together with a large value of
the density of states at the Fermi level readily yields a transition temperature of the order of 25 K
for alkali-metal-doped C60 compounds.

where (n, s) represents the atomic site, n denoting the
unit cell and s the position of the atom within the unit

cell, a„,(a„,) is the creation (annihilation) operator for
one electron in the orbital, P(r —R„,—u„,), R„, being
the equilibrium position of the atom at site (n, s) and u„,
its displacement from equilibrium. The matrix element
J(n, s; n', s') in Eq. (1) is given by

J(n, s; n's') = 4 (i Rn', e' un', e' + Rn, e + un, e)

x V(r)P(r)dr

The discovery of the Cso molecule with its fascinat-
ing structure, followed by the ability to synthesize solid
thin films of Ceo, has led to a rapid increase in research
activity on the fullerenes. Furthermore, the fact that,
upon doping with alkali metals, Ceo becomes supercon-
ducting at temperatures exceeding 30 K is of particu-
lar importance. The understanding of the mechanism
of superconductivity in these materials is thus also of
great importance. In this work we consider the inhu-
ence of the curvature of the Ceo molecule on the strength
of the electron-phonon coupling. Comparison between
alkali-metal-doped Cso and alkali-metal graphite interca-
lation compounds, which also exhibit a superconducting
transition, is shown to be helpful in understanding the
superconductivity in M3C6p, M denoting an alkali-metal
atom.

The electron-phonon coupling in M3C6p is described in
terms of a tight-binding Hamiltonian, which is believed
t;o be appropriate for the vr bonds in carbon systems.
The tight-binding Hamiltonian, based on the assump-
tion that the orbital on the carbon atom follows the dis-
placed atom without any appreciable deformation, ' can
be written as

H = ) J(n, s; n', s')a„,a„, , (l)

H = Hp+ H, ph,

where

(4)

Ho —— ) Jo(n, s;n', s')a„,a„,
n 5.n, ' 5'

and

He-ph = g (un, ,s un', e') ~J(n& sI n
&
s )an, aan', e' ~

n, 5;n', 5'

The quantity V' J(n, s, n', s') is the intrinsic electron-
phonon coupling parameter, which we evaluate in this
work and compare with its value in graphite and graphite
intercalation compounds. Normally J depends only on
the distance between neighboring atoms, and V'J is di-
rected along the bond between adjacent atoms, causing
the electron-phonon coupling to be nonvanishing only if
the phonon mode involves bond-stretching atomic dis-
placements. This is the reasan that in graphite, far ex-
ample, the electrons do not couple ta the A2„phanan
mode, which corresponds to atomic displacements per-
pendicular to the graphite sheet, causing angle bending
but no band stretching. It is not transparent what the
corresponding situation in C6p is, since the orbitals stick-
ing out of the fullerene sphere are not pure p, arbitals,

and represents the interatomic matrix element of the
atomic potential V(r) between orbitals belonging to
nearest-neighboring atoms.

The electron-phonon coupling is obtained by expand-
ing J(n, s, n', s') to first order in u„, —u„,~,

J(n, s; n', s') = Jo(n, s; n', s')

+(u„, —u„, ) VJ(n, s; n', s').

The Hamiltonian is then given by
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in contrast to the orbitals perpendicular to the carbon
sheet in graphite, which are pure p, orbitals.

To calculate the inhuence of curvature on the value
of V'J in Ceo, we start by constructing the relevant sp
hybrids on carbon atoms. We choose a Cartesian coor-
dinate system as shown in Fig. 1. The origin is placed
at the equilibrium position of carbon atom 1, and the
z axis is taken along a bond common to two hexagons.
The y axis is taken to lie in the plane of a hexagon, and
the z axis is taken perpendicular to the z and y axes.
Then one can construct three hybrids directed along the
three bonds. The fourth hybrid Ig), which corresponds
to the p, orbital in graphite, is then uniquely determined
by the requirement of the orthonormality of the hybrid
wave functions. It can be shown that it is given by

IW) = no Is) + nr lp~) + n2lpv) + nslpz),

where

i/2-2P(1+2P )

'i, (1-4&)(r-&)

X/2( (1+2~)
(2(r-4p)(l- p) )I

y 1/2
(~+2u&&~-4e) &~

(y p)

1/2
(1-4P)

)

(7)

(8)

Z

FIG. 1. A sketch of the coordinate systems used in de-
termining the hybridization scheme for carbon atoms in C60.
The x, y, z coordinate system is centered at atom 1, where the
2: axis is directed towards atom 2, and the y axis lies in one of
the two adjacent hexagons. The x', y', z' system is centered
at atom 2, where the x' axis points towards 1 and the y' axis
lies in the hexagon adjacent to the one in which the y axis
lies.

and P = cos(108').
The corresponding hybrid on atom 2, Ig'), is given by

I&') = no ls') + nr lp'. ) + n2 Ip'„) +» lp', ) (9)

if the coordinate system centered at, atom 2 (the primed
system) is chosen as shown in Fig. 1, in which the y axis
lies in the second (primed) hexagon and normal to the z'

VJ(0, 1; 0, 2) = i—[ nor
V' + 2npnrV'

+nrv + (n2+ ns)v'j (»)
Despite the impression that the admixture of s, p, and

pz components would lead to an enhancement of the ma-
trix element, and consequently an enhancement of the
electron-phonon coupling, it turns out that

V'J(0, 1;0,2) = i—[0.93V (r)]„„ (13)

r 0 being the equilibrium distance between atoms 1 and 2.
Equation (13) is obtained by using Harrison's d 2 uni-
versal scaling for interatomic matrix elements. '2 The in-
trinsic electron-phonon coupling strength in C60 is there-
fore 93Fp that in graphite. The curvature in Cso thus
leads, contrary to what was previously assumed, " to only
a slight weakening of the single-site matrix element for
electron-phonon coupling between the mostly p, hybrids.
Similar results are obtained if VJ(0, 1; 0, 3) is calculated,
where atom 3 is such that the bond joining it to atom 1

is common to a hexagon and a pentagon.
It may seem strange that the inclusion of o character

into the mostly m bonding would lead to a lowering of the
absolute value of the interatomic matrix element J, but
the hybridization scheme is such that the p component
of the mostly x hybrid is oriented such that its nega-
tive lobe points towards the neighboring atom. There-
fore, although the absolute value of J(0, 1;0,2) increases
as a result of the overlap of the two p~ components on
neighboring atoms, it also decreases even more due to
the overlap of these negative-lobe p components with
the s components on the two atoms. The decrease, as
the calculation shows, is larger than the increase by 7%.

The results obtained above indicate that in C6o, just
as in graphite, the electrons would couple only to phonon
modes involving bond stretching. Contrary to the case
of graphite, however, the radial modes in C6O do involve
bond stretching, ' unlike the corresponding A2„mode
in graphite, which only involves angle bending. In fact,
the completely radial A& breathing mode in C6o, whose
frequency is 492 cm, involves only bond stretching and
no angle bending. So does also the high-frequency

axis. The matrix element J(0, 1;0, 2) is then given by

J(0 1 o 2) = (&'IVI&)

The calculation of V'J(0, 1; 0, 2) proceeds by calculat-
ing the change in the interatomic matrix element as atom
2 is given an infinitesimal displacement in an arbitrary
direction. Four diferent kinds of matrix elements will

appear in the calculation, and they are defined by

v =-(p. , lip. , 2),
U' = (s, lls, 2),
U*~=-I., Ilp. , 2),
U =(p„1lp„2),

where the bond is taken along the z axis, and the four
matrix elements V, V', V'P, and V are defined such
that they are negative.

After lengthy calculations, we find the following
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tangential A& mode at 1469 cm in Ceo. These two
modes are then expected to be strongly coupled to elec-
trons in M3C6O. Furthermore, the low frequency H& ra-
dial modes as well as the high frequency Hz tangential
modes are also expected to couple strongly to electrons
in view of the bond stretching involved in these modes.

The dimensionless elect, ron-phonon coupling parame-
ter, A, which appears in the McMillan formula is ob-
tained from the electron-phonon coupling matrix element

g& defined by the relation

(14)

where V is the volume of the crystal, c&(ct.) is the cre-
ation (annihilation) operator for an electron with wave

vector k and spin 0, and b&„~ (bz„&) is the creation (an-
nihilation) operator for a phonon with wave vector q,
branch v, polarization p, and frequency ~& v. Ignoring
the coupling between Coo molecules, we obtain

I)), ———) e~„.VJ(0, s;0, s')(e' ' —e' ")U,'U, ,

(16)

which is independent of k. Here e~ „ is the phonon po-
larization vector, normalized to unity, k = k+ q, p is
the density of the M3C6g solid, d, is the vector position
of the atom at sit;e s within the unit cell. The sum in
Eq. (16) over s extends from 1 to 60, while the sum over
8' extends from 1 to 3, and the factor of

&
is needed to

prevent double counting. U is the normalized eigenvec-
tor of the electronic Hamiltonian that corresponds to the
molecular state of Ceo, which would widen into the en-

ergy band under consideration. These eigenvectors are
real and are obtained in the limit of vanishing interball
coupling by diagonalizing a 60 x 60 matrix, which is zero
except for three entries of 1 in each row.

Defining d„= (d, —d, )/Jd, —d, ), a = )d, —d, (,
and q = q/(q(, we can write

e' ' —e' " qae' '(iq 'd, , ),

where

(15) which is a valid approximation, since qa (& 1 because a
is much smaller than the lattice vector of the fcc lattice.
Thus we have

0.93V (so)a qo q
)~

i ) (eq a„„)(e&„a„)e' ' " (q a„„~)(q a„I)U U ~U„U I .

The terms in the summation are negligible unless s = r
and s' = r', for which case we have

k~ being the Fermi wave vector. The coupling constant
A is then given by

and

) .(e;. a- )(e;. a- ) = 1

7
(19) A = N(EF)Z,

where

(24)

) (q a„„~)(q a„~)U, U, , (U ) ) (q a„)
S,S'

(20)
0.93V ()o) aqokFI . 1

2 M~2 (25)

) (q a, , )'=
5)5

cos @de = 90. (21)

In order to calculate the dimensionless electron-phonon
coupling parameter A we still need to double average

~If &, ~

over the Fermi surface. Noting that

f do. f do'(k' —k)2vF 'vF

f do. fdo'vF 'vF (22)

where do and do' are elements of the Fermi surface, vg
and v& are the corresponding Fermi velocities. Assuming
that the Fermi surface is spherical, we obtain

((q')) = »F (23)

where (U2) = 1/60. The summation over s' extends from
1 to 3, while the summation over s, which extends from
1 to 60, can be replaced by averaging cos g, g being the
angle between q and a„,over a sphere,

Here N(EF) is the density of states Per sPin Per Coo
unit and M is the mass of a Cso molecule. If the d
scaling for interatomic matrix elements is adopted, then
qoa = 2. The value of V ()'o) in Coo can be taken to be
the same as in graphite, which is 2.4 eV. The Fermi
wave vector k~ can be calculated by assuming that the
Fermi surface is spherical and that the charge transfer
from the alkali atoms to the C6o molecules is complete,
resulting in exactly one electron per energy band. We
then find that I"y ——0.35 A

The electrons in the energy bands, which are derived
from the triply degenerate F~„state in C6o couple to A&
and H& phonon modes. Most of the contributions to A

come from the low-frequency radial modes in the range
273—770 cm . They contribute 65 meV to Z, while the
higher-frequency tangential modes contribute 10 meV.
The value of N(EF) is uncertain, but extended Hiickel
band-structure calculations give a value of about 20
states/eV per spin per Coo unit. It is, however, noted
that this calculation may overestimate N(EF) by 50%.
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Thus if, N{E~) is taken as 12 states/eV per spin per
C6p unit, then a value of A = 09 is obtained. We then
estimate T, using the McMillan formula

HD —1.04(l + A)

1.45 A —p'(1+ 0.62A) ) ' (26)

where p* = O. l, A = 0.9, and the Debye temperature
OD 500 K, which corresponds to an average frequency
of 350 cm characteristic of the phonon frequencies in
the range 270—770 cm ', thus yielding T, 30K.

In conclusion, we have shown that the curvature of Csp
leads to a slight decrease in the intrinsic electron-phonon
interaction V'J, relative to that of graphite. The larger
T, in alkali-metal-doped C60 relative to heavily doped
graphite intercalation compounds, such as Csl& for which
T,=3 K, essentially results from the fact that electrons in
MsCsp can couple strongly to the low-lying As and Hs
radial modes. The planar structure of graphite causes the
coupling between the corresponding out-of-plane mode
A2„and the graphite vr electrons to vanish.

The model presented here also is consistent with an

increase in T, as the separation between the fullerenes
increases due to selection of the alkali metal dopant. In-
creasing the separation between fullerenes does not re-
duce the intrinsic electron-phonon coupling in this sys-
tem, since we are concerned here with the modulation of
the overlap matrix element for two neighboring atoms in
the fullerene. However, the quantity Z, given by Eq. (25)
is slightly reduced because of the slight reduction in k~.
In contrast, the electronic density of states increases due
to the narrowing of the bands, which results from the
decreased coupling between fullerenes. The net effect is

an increase in the value of A, and consequently an in-
crease in T„as the separation between balls increases, in
agreement with experiment. ""
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