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Spin fluc&ua&ions and covalence in the half-filled narrow-band Hubbard model
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We calculate the spin density within the widely accepted model for the insulating parents (La2Cu04
and YBa2Cu~06) of the superconducting cuprates, namely, the half-filled narrow-one-band Hubbard

model as mapped from the three-band model for the Cu02 planes. The result, which includes quan-

tum spin Auctuations and covalence simultaneously, disagrees strongly with neutron-diffraction results.

Possible remedies are discussed. A reinterpretation of the neutron data on these insulators gives con-

siderable, but insu%cient, improvement.

Over the past several years, extensive literature has
developed a picture of the electronic structure of the
high-T, . superconducting oxides that is widely believed to
provide satisfactory understanding, at least for the insu-

lating "parents, " La2Cu04 and YBa2Cu306. ' On the
contrary, the present work demonstrates that neutron-
diffraction results disagree sharply with this picture in

even the simplest case, the insulating ground state. We
discuss some possible ways to overcome the difficulty.

The most common picture' of these materials is that
they are antiferromagnetic (AF) Mott insulators. The
electrons that give rise to the low-lying excitations are lo-
calized around the Cuz+ ions, the site spins (spin —,

' ) are
governed predominantly by the nearest-neighbor Heisen-
berg model, the corresponding orbitals being Cu 3d states
covalently mixed with the nearby oxygen p states. Furth-
ermore, the calculation of the ordered AF spin in the
Heisenberg-model ground state is also generally agreed
upon. The existence of a problem with this picture
vis a vis exp-er-imental results was recently pointed out.
Namely, the ordered moment at low temperature as found

by magnetic neutron-Bragg-scattering experiments,
which is widely accepted, ' ' agrees closely with the-
ory based on the Heisenberg model. This theory gives
a large reduction (about 40%) from the nominal 1pit, due
to zero-point spin fluctuations. Ho~ever, this agreement
is misleading because it leaves no room for the large addi-
tional reduction expected from the covalence. ' The fact
that such a problem exists is made more difficult to under-
stand by the fact that many other properties of these ma-
terials are well explained by the Heisenberg model. '

Our claim that such a difficulty exists was strengthened by
recent neutron-diffraction studies of the closely related
material La2Ni04, which indeed found very large covalent
effects. '

Using the same data and essentially the same theory,
Tranquada et al. concluded that covalent contributions to
the ordered moment (in YBa2Cu306) are negligible.
Here, we show that present theory based on Hubbard-type
models implies the existence of a very large covalent con-
tribution to the ordered moment. '

We noted a possible solution to the above problem that
involved an unorthodox idea' concerning the relation be-
tween the order parameters m and mo in the broken- and
unbroken-symmetry ground states of the spin Hamiltoni-

an, and this remains viable. ' Here we look in another
direction, partially motivated by the fact that previous
work treated spin fluctuations and covalence' sepa-
rately, whereas the two should of course be treated to-
gether. We calculate the spin density, which determines
the neutron-Bragg-scattering cross section, within the
single-band Hubbard model with the band half filled and
narrow. As far as we know, this is the first such calcula-
tion (although it is related to a recent simulation, 's as dis-
cussed below).

We find a covalence contribution in 0(t /U ), t and U
being the usual Hubbard-model parameters. This, which
we call d-d covalence, ' is different from the usual d-p
covalence of Hubbard and Marshall' (HM). We also in-
corporate the d-p covalence by choosing the Wannier
function that underlies the one-band Hubbard model in

the spirit of the HM approach, namely a Cu d orbital of
the appropriate symmetry mixed with neighboring oxygen

p orbitals. This is also in the spirit of the mapping of the
well-known three-band model on to the one-band case.
We find that both types of covalence introduce a
modification of the ordered moment; on using common
values of the parameters in the three-band model, we find
the modification to be a large additional reduction to that
from spin fluctuations, as we had expected. In other
words, given the commonly used reduction from spin fluc-
tuations, our calculation produces an ordered moment
that is much smaller than the one extracted from the
neutron experiments.

We also find that the d-p covalence dominates the large
covalent moment reduction (it is of the same order of
magnitude found' in La2Ni04), the d-d covalence being
negligible compared to the —50% effects we are con-
cerned with. This has the consequence that the large
physical effects come from a relatively simple theory (the
ground state to zero order in t/U). The rather more com-
plicated perturbation calculation described below is need-
ed only for the negative, but important, conclusion that
the d-d covalence is negligible. Finally, we point out that
the interpretation of the neutron-Bragg-peak intensities,
used by all the groups to come up with a value of the or-
dered moment, is not optimum, given the available infor-
mation; and we give an alternate procedure based on the
result obtained here. This interpretation gives a much
more reasonable picture, but, unfortunately, a serious
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(2)

H, =QJiJS;.SJ.+O(t /U ), (4)

where S; is the spin at site i, and J;i =2t; /U ~is the ex-
change parameter for the Heisenberg Hamiltonian. We
calculated the ground-state expectation of (2) to
O(t /U ); the contributions to the Bragg peaks are '

(s(q)) =mf„,(q) [1 —2Zy(t/U) ]F(q) . (5)

Here m =(S„=),.„„r,the average in the (broken-symmetry)

problem remains. Other possibilities for solving this prob-
lem are mentioned.

The Hubbard Hamiltonian is

H =gt;~ a; . a~ +Urn;tn;1, (1)
I/ I

where a; creates a fermion in the (one-particle) state
w; =w;(r)a and n; =a; a; .w;(r) =w(r —R;) is the
Wannier function at site R; and a is the spin state
(cr = ~ 1). The w; form an orthonormal set, they are real
and have the site symmetry of the lattice considered; we
assume the usual condition, t;J =t =t* when i and j are
nearest neighbors, zero otherwise; and U) 0. We take
the external field to be zero, except insofar as a staggered
field is understood for purposes of spontaneous symmetry
breaking.

We seek the expectation value of the spin density
(Fourier transform),

s(q) =—gf j(q)cJa; aj.
IJO'

in the ground state of (I). Here

f~(q) = exp(iq r)w;(r)wj(r)d r.
This approach differs slightly from (and is simpler than)
that of Ref. 7, where we calculated (s(q)s( —q)). For
the broken-symmetry state we expect &s(q)s( —q))= ~(s(q)) ( in the thermodynamic limit, for q correspond-
ing to a Bragg peak (see Ref. 16 for discussion).

Hirsch and Tang ' calculated

S(q) =(4/N) gexp[iq (R; —Rt)](S Sj'&,

with S,'= 2 (n;1 —n;1). Writing (2) as s(q) =sD(q)
+soD(q), sD containing only the terms with i =j, one sees
that (sD(q)sD( —q)) =N~f~(q)

~ S(q), where

f (q) = exp(iq r)w(r) d r. (3)

Thus we are calculating the same thing, aside from the
factor (f (q) ~, provided soD is neglected, and we use the
relation m/mo= J3 assumed' in Ref. 18. It turns out '

that for the antiferromagnetic Bragg peaks (q =qAF), soD
does not contribute (although it will for ferromagnetic
Bragg peaks, which occur on application of a uniform
field; and soD will contribute to diffuse scattering). Be-
sides these in-principle relationships between our work
and theirs, we also note that for the large U of interest,
their simulation has large numerical uncertainty. ' This
suffices to motivate the present calculation; the unsatisfac-
tory situation in the literature discussed above makes the
calculation even more desirable.

The treatment of (1) when the hopping term is small is
well known. The low-lying energy eigenvalues are those
of the spin Hamiltonian

ground state of (4), F(q) =+exp[i(q —qAp) R~] is the
structure factor that gives Bragg peaks at the antifer-
romagnetic wave vectors qAI:, Z is the number of near-
est neighbors, and y= —,

' —3(S„S),„,where n, m are
nearest neighbors.

As discussed above, m will be reduced from its mean-
field value of 7 due to zero-point spin fluctuations. The
additional reduction in (s(q)) seen in (5), of O(t ) and q
independent, can be understood physically through the
(unrestricted) Hartree-Fock approximation to the ground
state of (I ):Taking the occupied orbitals for the 2 sites to
have spin up, with the 8 sites down, and allowing the spa-
tial part of each state to be a linear combination of the
w;(r), we recover (5) provided m and y have their
mean-field values, & and 1. To the order of the calcula-
tion, an 3-site state, e.g., is [w; —(t/U) gw~]a, the sum

going over nearest neighbors. Thus the up (down) elec-
tron spreads out onto the neighboring down (up) sites,
thereby lowering the ordered moment. Although this
reduction is not due to the same covalence effect discussed
previously, ' ' which involves interplay between para-
magnetic and diamagnetic ions, the effect here is very
similar. This plus an effect contained in f (q) depending
on d-d overlap [see Eq. (7)], we call d-d covalence
[Hirsch and Tang' call the effect excluding f„(q)charge
fluctuations].

For (5) to be correct to O(t ) one must keep the terms
of O(t ) in (4). We write m=m~, ;,+bm=mp, ;,,(I
+(t /U + . ). Thus

(s(q)) =m~„.;j'„,(q) [1 —(2Zy —g)(t/U) ]F(q) . (5')

From the known ground-state energy ' we get y=1.26.
To estimate g we follow Takahashi and treat the spin
Hamiltonian through O(t /U ) in the spin-wave approxi-
mation (SWA). We find ( 4.23. Since both the energy
and the order parameter are given very well in the
SWA, we expect this to be a reasonable estimate.

For t/U ~
&

(5') gives the term in square brackets very
close to (&5% above) the Hartree-Fock value 1 8t /—
U . This is consistent with Hirsch and Tang's result that
m is close to what they called HF &SW. ' In fact, taking
m/mo J3 as they do, our result suggests that theirs is
somewhat low for large U (see the inset of Fig. 3 in Ref.
18).

To compare our result with neutron experiments we
need explicit Wannier functions ~;. It is therefore con-
venient to work in terms of unit-cell type of localized
functions u(r —R;) which are not in general orthogonal.
This allows one to use explicit Cu and 0 wave functions
(which are ordinarily not orthogonal at different sites).
We assume u(r) has the symmetry of w(r). As long as
the overlap integral h, between neighboring u functions is
small, our perturbation theory remains justified. For bi-
partite lattices one finds ' to O(h )

f~(qAF) =f.(qAF)( / (6)

where f„(q)is the Fourier transform of u(r) . To sum-
marize, we have

&s(q)& =mp„;J„(q)[1+ZA/2 —(2Zy —()(t/U) ]F(q) .

(7)



SPIN FLUCTUATIONS AND COVALENCE IN THE HALF-. . . 2567

where Z,„.=4 (number of anion neighbors of a cation),
fq(q) and fd„(q)being the Fourier transforms of d(r)
and d(r)p(r), respectively. Due to the AF order, the con-
tributions from the p~(r) cancel at q =qAF. ' In fact, if
we replace the square-bracketed factor in (7) by I, and
take the mean-field value of m H„„weobtain HM's
theory. Further, neglect of the correction terms in the
square-bracketed factor is correct in the following con-
text: From (8) we see that for small A the nearest-
neighbor u-u overlap, A=0(A ), and therefore t is also
O(A ); so these correction terms are O(A ), whereas
those kept are O(A ). HM refer to I —Z,,A in Eq. (9)
as the efl'ective moment per magnetic ion (in units of gptt)
seen in Bragg scattering, with the second term giving a
change in shape from the usual 3d form factor, fd(q).
From (7) and (9) we see that in the proper generalization
of weak covalence theory' to include spin fluctuations,
one is to identify

gpBm Heis(1 ZeaA ) ™ord2 (10)

as the ordered AF moment or effective moment for Bragg
scattering [note that the second term on the right-hand
side of (9) vanishes at qAF =0]. This definition is sensible
physically: The integral of the spin density s(r), whose
Fourier transform is given by (7) with (9), over the
Wigner-Seitz cell surrounding an up-spin Cu [which is a
nodal surface of s(r)], is M„,d/gpti, as can be shown. '

Allowing for stronger covalence, where Z„-„.A is not ((1,
but where the correction terms in the square brackets of
Eq. (7) are « I (of interest, as seen below) the ordered
AF moment is, within this one-band model

M,d =gpamH„.s[l +Z„A/(I —2Z„.AS)] ' . (10')

Neglect of the corrections in the square brackets in Eq.
(7) leads directly to the problem discussed earlier.
Namely, M„d found experimentally (in units of tttt) is
very close to the theoretical value, ' 0.64+ 7%, of gm H„,
(with g =2.2), whereas the covalent reduction =Z,,A
is expected to be large. (A statistical factor was included
in the error estimate. ) We now argue that for parameter
values thought to be appropriate for the cuprates, Z,,A

Hubbard and Marshall considered paramagnetic ca-
tions involving unfilled 3d shells surrounded by diamag-
netic anions (0 or F ); the interaction between the
magnetic ions occurs via the intervening anions, direct
cation-cation overlap being considered negligible. Thus
they chose the u function associated with a cation as

u(r) =C d(r) —Agp, (r) (8)

the sum going over the nearest-neighbor-anion p states
appropriate to the point symmetry of the magnetically ac-
tive cation d state (u, d, and p~ are normalized). For sim-
plicity we discuss this for Cu02 planes; then there is only
one active 3d orbital. Following HM, "we first assume
small A (weak covalence) and neglect overlap between
anion orbitals. We find

f.(qAF) fd(qAF)(1

2A g—lf~„,(qAF) —fd„,(0)fd(qAF)],

is large; also that the corrections in the square brackets of
Eq. (7) are small.

For the CuOz planes d(r) is the "x —y
"

e~ state
neglecting O-O overlap, (8) gives, to lowest order,
h=2AS —A, where S =fd(r)p(r) d r )0. To esti-
mate A we use the result that a hole in the insulating
ground state of the three-band model has 80% Cu, 20% 0
character, referring, of course, to Wannier functions wj
for the Cu and 0 sites. Thus if we write our unit-cell
function u =C(wc„—A g; wp;), then C =0.8, and thus
A =0.25. Rewriting u in terms of the nonorthogonal or-
bitais d(r) and p;(r) we find A =A+S. We estimate
S=O. I to 0.2 (e.g. , from the theory for the Ni com-
pound, ' S=0.I7 there). Thus we obtain A =0.35 to
0.45; the uncertainty in this for given S is = 10%, namely,
that quoted for the three-band-model parameters. In-
terestingly, the value 0.35 of A is just that found' for
La2Ni04. Of the various estimates of A and S discussed,
the smallest covalent reduction occurs for A =0.35
+ 10%, S=0.1; this gives a value for the square bracket

in (10') of =0.6, with corresponding uncertainty
= ~ 20%, a large covalent reduction indeed.

With the range of A and S values just mentioned,
Zh /2 [in (7)] ranges from 0.1% to 2.5%, much too small
to allow solution of this problem. The other term,—(2Zy —()(t/U), is = 3%, as found using the valuez6

t/U=0. 43/5. 4; furthermore, it tends to cancel the h~

term. So it is unlikely that these correction terms (the d
d covalence) will help significantly.

Apparent possibilities for solving this problem are (a)
m/mo is (appreciably) greater than J3, ' ' and (b) the
mapping of the three-band model to the one-band model
in this half-filled case fails.

We conclude with a discussion of another possibility,
which involves the interpretation of the neutron-intensity
measurements. Previous results" '' were obtained as fol-
lows. gp8(s(qAF)) was measured and was interpreted as
M„,Q(qAF), where f(q) is "the magnetic form factor of a
Cu" normalized to 1 at q =0. This is consistent with the
HM theory [(7), (9), and (10) with small Al provided
f(qAF) =f, (q A)F(/—I Z,-,A ). Further, the experimen-
talists" understand correctly that the ordered moment can
be reduced from the free-ion value by zero-point fluctua-
tions and covalence. Since there has been no independent
determination of f(q), they"' chose f(q) as that of the
essentially isostructural material K2CuF4. ' " For exam-
ple, for LazCu04 they '' took the value 0.835 of f(q)
appropriate to the (100) peak (at ~q~ =1.17 A '), with
very similar numbers for the 1:2:3 compound, " and this
led to the value 0.64pg ~6% for M„d, consistent with
f(0) = I for the f(q) used (a statistical factor was again
included in the error estimate). And the agreement of this
moment with spin-wave theory (0.67pti with g =2.2) led
to the conclusion that there is no, or negligible, covalent
reduction. Unfortunately, this procedure is quite arbi-
trary, particularly in light of the fact that KzCuF4 is a fer-
romagnet.

An alternate procedure, more reasonable in our opinion,
would be to use the form factor that K2CuF4 would show
if it were antiferromagnetically ordered as in LazCu04.
The difference is the presence of p(r) terms; subtracting
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those at the ~q~ of interest yields a value of f„(q)of
0.735 at the (nonzero) q for this reflection. Note that we

obtained f„(q)rather than f(q), consistent with the fact
that after subtraction of the p(r) terms, the result is no
longer unity at q=0. Thus from (7) (with the term in

square brackets replaced by 1), division of (s(qAF)) by
0.735 yields gpamH„-, =0.73pq ~6%; this is above the
theoretical value (0.64~7%), but within the error
bars. From Ref. 27 we see that f„(qAF=0) [as given in

(9)] =0.74, which is the ratio M„d/NtttmH, ;„asseen
from (9) and (10). That is, this procedure gives a co-
valent reduction of about 26%. Thus this interpretation of
the data gives appreciable covalence, and a value of m H„,
in a range above (but close to) theory, clearly a much
more reasonable picture. However, the covalence in the
oxides should be appreciably larger than that for the

fluoride. Judging from the three-band-model mapping
above, and from La2Ni04, ' there should be an additional
reduction in f„ofat least 15%, leading to gmH, ;, at least
0.84pz+ 6%, clearly larger than predicted by present
theory. ' Thus even after a more soundly based inter-
pretation of the data, there seems to remain a serious
problem with present theoretical views of these materials.
Further investigation, by calculation of the form factor for
La2Cu04, as well as consideration of the other possibilities
noted above, is in progress.
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