
PHYSICAL REVIEW B VOLUME 45, NUMBER 1 1 JANUARY 1992-I

Detailed Lanczos study
of one- and two-hole band structure

and finite-size effects in the t;J model

T. Barnes
Physics Division and Center for Computationally Intensive Physics, Oak Ridge National Laboratory, Oak Ridge,

Tennessee 37831 637-3 and Department of Physics, University of Tennessee, ICnoxville, Tennessee 37996 12-00

A.E. Jacobs
Department of Physics, University of Toronto, Toronto, Ontario, Canada MSS1A7

M.D. Kovarik
Physics Division and Center for Computationally Intensive Physics, Oak Ridge National Laboratory, Oak Ridge,

Tennessee 37831 6373 a-nd Department of Physics, University of Tennessee, Iinozville, Tennessee 37996 1200-

W.G. Macready
Department of Physics, University of Toronto, Toronto, Ontario, Canada MSS1A7

(Received 4 January 1991)

We present accurate numerical results for low-lying one- and two-hole states in the t- J model on a
4 x 4 lattice. We find six level crossings in the one-hole ground state for 0 & t/ J & oo; accurate t/ J
values of these crossings and the associated ground-state quantum numbers are given. A degeneracy
of k = (0, 0) S = 1/2 and S = 3/2 one-hole levels at, t/ J = 1/2 is noted, which is consistent with
a recent analytical result. For small t/J, the S = 1/2 one-hole and S = 0 two-hole bandwidths on
the 4 x 4 lattice are Wr, ——[1.1904457(1)]t and Wi, i, = [2.575(4)]t /J, respectively. The origin of
these qualitatively different behaviors is discussed, and a simple relation is found between the small-

(t/J) one-hole bandwidth and a static-hole ground-state matrix element. The linear-t term in Wa is
apparently a finite-lattice artifact. As a measure of finite-size effects we determined the rms hole-hole
separation in the two-hole ground states; we find evidence of important finite-size effects for t/ J 1,
for which the rms hole-hole separation is clearly constrained by the 4 x 4 lattice. Intermediate-(t/ J)
hole separations and binding energies for 0.3 + t/J & 1, however, scale approximately as powers
of t/ J, and can be used to give bulk-limit estimates for t/ J = 3. In particular, we estimate that
the bulk-limit ground-state rms hole-hole separation at t/J = 3 is 1.8ao, corresponding to 7 A

in the high-temperature superconductors. The similarity to the observed in-plane coherence length
of (,s 14 A supports the identification of t Jmodel hole -pairs with the Cooper pairs of high-
temperature superconductivity.

I. INTRODUCTION: THE t-J MODEL

The suggestion that two-dimensional Hubbard and
Heisenberg spin systems might provide useful mod-
els for the study of high-temperature superconductors
has motivated many recent investigations of the two-
dimensional Heisenberg antiferromagnet with a hopping
term. This t-J model is described by the Hamiltonian

II = t ) (eI —e, +H. c.)+J ) (S;.S, —4n, n,-),

with an implicit restriction to unoccupied or singly oc-
cupied sites. This Iiamiltonian incorporates the large
antiferromagnetic interaction observed between Cu + d
electrons in the copper-oxygen planes (the J term) and
allows hole hopping if vacancies are present (the t term).
The t-J lmodel was originally derived as a limit of the

single-band Hubbard model for large Coulomb repulsion,
U/t )) l. Although its relevance to the Hubbard model
is problematical for small t/J, it is nonetheless an inter-
esting model of the interplay between hole dynamics and
antiferromagnetism in itself.

Experiment finds that hole doping of antiferromagnetic
insulators such as LazCu04 and YBazCusos s [which are
modeled by (I) with one electron per site] leads to the dis-

ruption of antiferromagnetic order and results in a spin-

glass phase followed by an insulator-to-metal transition;
this metal has a superconducting phase characterized by
a positive Hall coeKcient and Cooper pairs with ~Q~ = 2e

(for a recent review see Birgeneau ). To compare the tJ-
model (I) with experiment one would like to determine
whether this model predicts such a phase diagram. A

more detailed question is whether (I) predicts the forma-
tion of hole-hole bound states which act as Cooper pairs,
this being a candidate mechanism for high-temperature
superconductivity.
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Energies and other matrix elements of (1) have been
studied extensively using Lanczos techniques (these ap-
plications have been reviewed by Dagottoii), and al-
though it does appear that a bound two-hole system is
energetically favored over two separate holes it is now
widely believed that this pairing is actually the initial
step of hole phase separation. ii i~ [Of course, phase sep-
aration has not been convincingly demonstrated for ar-
bitrary t/J, ' ' and has only been argued to occur for
the large- and small-(t/J) limits. j Phase separation in
the system (1) with finite hole doping will lead to a bulk-
limit ground state with separate hole-rich and hole-free
regions, and as this behavior is not observed in the su-
perconductors it is an unphysical feature of the model.

It has been suggested that phase separation may
be an artifact of the neglect of hole-hole Coulomb
interactions, ' ' and that the incorporation of this
Coulomb repulsion may prevent hole clustering beyond
the formation of two-hole bound states, due to the exces-
sive Coulomb energy of larger hole clusters. i In a previ-
ous study of the energies of static-hole clusters in the
t Jmo-del we presented numerical results which support
this picture: In a generalized t J em-od-el with ez/n hole
Coulomb interactions we found that the range of dielec-
tric constant e for which hole clustering stops with hole
pair formation in the insulating (dilute hole) phase is not
far from the observed c, given the experimental value of
J 125 meV.

Our previous numerical study of Coulomb effects in
the t-J model considered the t = 0 limit only; one would
obviously like to generalize this to t & 0 and study the ef-
fect of the hopping term on hole-pair formation and phase
separation. In this paper we present detailed results for
one-hole and two-hole properties in the t Jmodel for-
comparison with results incorporating the Coulomb in-
teraction. In particular, we study the band structure and
quantum numbers of low-lying one- and two-hole states
in detail, and find evidence for simple scaling behavior
in the intermediate-(t/J) regime, which allows extrapo-
lation to the t/J 3 of the high-temperature supercon-
ductors.

Before presenting these results we shall briefly sum-
marize previous numerical studies of the t Jmodel. -The
first exact-diagonalization study of the t Jmodel on -a
periodic 4 x 4 lattice was due to Bonca, Prelovsek, and
Sega, s who determined several one- and two-hole ground-
state matrix elements, including one- and two-hole ener-
gies, band widths, magnetizations, spin-spin correlations,
and hole-hole correlations, and concluded that two-hole
bound states are energetically favored on 4 x 4 lattices
for t/J ~ 14. Dagotto, Moreo and Barnes9 later gave the
one-hole ground-state energy for several values of t/ J and
ground-state hole energies in each k sector, and found
that the one-hole ground state changes quantum num-
bers several times as t/J is increased from zero. Riera
studied one-, two-, and four-hole states on lattices up to
4 x 4 and noted the importance of testing for phase sep-
aration by measuring four-hole energies. Hasegawa and
Poilblanc gave the lowest-lying one-hole and two-hole
energies at f/J = 4.0 on the 4 x 4 lattice in each momen-
tum sector, and found that the two-hole ground-state

level has d-wave symmetry (for f/J ~ 10) and a nontriv-
ial degeneracy between momenta (0, 0) and (z, 0). They
also quote results for one-hole states on the ~18 x ~18
lattice. Dagotto et al. zi quote one-hole energies and
bandwidths on the 4 x 4 lattice for several values of t/J;
Chen and Schiittler22 discuss low-lying one-hole states
and bandwidths based on Lanczos studies on ~8 x +8
and 4 x 4 lattices; Elser, Huse, Shraiman and Siggia s

used Lanczos methods to study bandwidths and spin-
spin correlations in one-holes states on the ~18 x ~18
lattice; and Itoh, Arai, and Fujiwara2" have studied one-
and two-hole states on i/18 x ~18 and ~20 x ~20 lat-
tices. (These y 18 x ~18 and ~20 x ~20 results are of
special interest in studies of finite-size eKects and possi-
ble accidental degeneracies on the 4 x 4 lattice. ) Finally,
Dagotto, Riera, and Youngis have tabulated s-, p-, and
d-wave two-hole ground-state energies on the 4 x 4 lattice
for several values of t/J

We note in passing that two conventions for momenta
of one-hole states are in common use, which differ by
b,k = (s', z'). In this paper we follow the more frequently
used convention, which differs from that of Bonca,
Prelovsek, and Segas and Hasegawa and Poilblanc. zs One
should also note that some references have discarded the
—n;n~/4 term in the spin-spin interaction in (1), which

simply leads to an energy shift in no- and one-hole states
but gives different wave functions for two and more holes.

Finally, many numerical studies of correlation func-
tions and frequency-dependent response functions in one-
and two-hole states in the t Jmodel h-ave been re-
ported. These include results for equal-time pairing
correlations, zs spin-spin correlation functions, zs the opti-
cal conductivity, 2 zs pairing susceptibilities, is spectral
functions, is~as and Raman spectra. sss4

Although the t Jmodel h-as been inaccessible to Monte
Carlo studies due to the "minus-sign problem, " there
are no such difficulties in the static-hole limit (t/J =
0), which has been studied numerically by Barnes and
Kovarik 8 on 4 x 4, 6 x 6, and 8 x 8 lattices. This study
confirmed large finite-size effects in the ground-state en-
ergy of a single static hole in the t-J model, as predicted
by spin-wave theory. ss ss This result suggests that finite-
size effects may also be important for t/J ) 0, at least
in single-hole states.

In addition to the numerical work there have
been many approximate analytical studies of the
t-J model, using small-cluster studies, s7 ss Green-
function methods, s ~ variational methods, s ef-
fective hole-magnetization Hamiltonians, spin-wave
calculations, and string-basis calculations. 8 One
conclusion of these approximate calculations which is
of relevance here is that the one-hole ground state has
k = (kz'/2, +z/2) in the bulk limit.

The remainder of this paper is organized as follows: In
Sec. II A we present our results for one-hole energies and
quantum numbers, and give accurate results for the t/J
values of the various ground-state level crossings, includ-
ing a degeneracy of one-hole levels with diH'erent total
spin at t/J = 1/2. We also correct some minor nu-
merical inaccuracies in previous work. We then show
that the small-(t/J) one-hole band structure on a finite
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lattice can be understood using degenerate perturbation
theory in the hopping term, which leads to a simple re-
lation between the smail-(f/J) one-hole bandwidth and
a static-hole matrix element; this allows a very accurate
and independent bandwidth determination. In Sec. II B
we present results for the lowest-lying two-hole states,
in particular the energies and ground-state rms hole-hole
separations. In Sec. IIC we discuss approximate power-
law behavior in hole energies and hole-hole separations
at intermediate t/ J, and extrapolate these results to give
estimates for the bulk limit. Finally, Sec. III gives our
conclusions.

II. RESULTS

A. One-hole states

1. 1Vumerical results for one hole -energies

To generate our numerical results we used a I anczos
technique which is essentially identical to that described
by Hasegawa and Poilblanc for the t-J model, with the
exception that we used only translational symmetries to
construct our basis states rather than implementing par-
ity and other discrete symmetries. The differences we
fiud relative to other references, for example the compli-
cated set of ground-state quantum number changes we
show in Fig. 2, reflect our detailed scan in f/J and the
large number of Lanczos iterations we have carried out,
rather than any important improvement in technique.

On a 4 x 4 lattice the allowed values of k~ and k& are
—7r /2, 0, s'/2, and x. Parity and discrete rotation sym-

metry lead to degeneracies under the discrete transforma-
tions (k, , kv) ~ (+ke, +k&) and (k, kz) ~ (kv, k ),
which leave at most six nondegenerate momentum levels,
which we talce to be (0, 0), (vr/2, 0), (ii, 0), (ir/2, x/2),
(s, s /2), and (~, x). The one-hole ground-state levels
with (7r, 0) and (x/2, 7r/2) are degenerate; this finite-
lattice artifact is due to a hypercubical symmetry of the
4 x 4 periodic lattice. 9 2

In Table I and Figs. 1(a) and 1(b) we present the
lowest-lying one-hole energies ea(k) = Ea(k) —Eo for
the six independent momenta; we show the ranges 0 &

l/J & 4.0 in Fig. 1(a) and 0 & l/J & 0.6 in Fig. 1(b).
Here Eo is the ground-state energy of the t-J model in
the no-hole (Heisenberg) sector, which in our conventions
is 16 x (—1.20178. . .)J on the 4 x 4 lattice. With a few
exceptions we confirm the energies of Dagotto, Moreo,
and Barness for t/J = 0.5, 1.0, and 2.0, Hasegawa and
Poilblanc~o for t/J = 4.0, Dagotto, Riera, and Youngi
for t/J = 0.5, 1.0, and 2.0, and Dagotto et al fo. r l/J =
0.1, 0.2, 0.5, 1.0, and 5.0 (these are the t/J values that
coincide with ours) to their quoted accuracies to within
occasional discrepancies in the final digit. (Note that our
momentum convention differs from that of Hasegawa and
Poilblanc, as stated previously. ) The minor discrepancies
we have found with the literature are summarized in our
references.

At small t/J on a finite lattice the one-hole energies
are asymptotically linear in t as l/J ~ 0 [see Fig. 1(b)j,
and a, numerical fit to our results gives a bandwidth

(for S = I/2) of Wg = 1.190446(1)t, consistent with

the 1.19t quoted by Dagotto el a/. The small-(l/J)
band evidently has a symmetric linear-t dispersion about
the degenerate (n, 0) and (ir/2, ir/2) levels, ivhich them-

TABLE 1. Lowest-lying one-hole energies ea(k) = Ep, (k) —Ee for each independent momentum on a 4 x 4 lattice. The

(s, 0) and (ir/2, ir/2) energies are degenerate.

0.000
0.001
0.010
0.025
0.050
0.075
0.100
0.200
0.400
0.500
0.600
0.800
1.000
1.200
1.400
1.600
1.800
2.000
3.000
4.000
5.000

10.000

ep, (0, 0)/J
2.348 563 09
2.349 158 10
2.354 494 38
2.363 312 30
2.377 794 92
2.392 004 35
2.405 932 94
2.458 644 05
2.546 513 93
2 ~ 578 598 34
2.443 604 73
2.158 897 80
1.849 168 57
1.506 394 16
1.122 879 20
0.695 025 95
0.225 585 86

—0.278 189 74
—3.105 409 68
—6.135 716 81
—9.189 570 55

—24.927 475 60

ei, (s /2, 0)/ J
2.348 563 09
2.348 858 41
2.351 309 29
2.354 561 33
2.357 647 76
2.357 798 74
2.355 015 23
2.315 383 77
2.119621 64
1.978 581 61
1.817 348 76
1.450 844 09
1.042 459 09
0.603 970 55
0.142 327 67

—0.337 835 07
—0.833 138 26
—1.340 985 89
—4.009 320 04
—6.806 728 95
—9.743 648 33

—25.045 944 08

ei, (s, 0)/ J
2.348 563 09
2.348 560 10
2.348 264 34
2.346 697 36
2.341 120 46
2.331 892 12
2.319 108 19
2.235 287 03
1.947 458 40
1.763 655 31
1.562 619 09
1.124 804 15
0.654 803 67
0.163 044 21

—0.344 641 27
—0.864 641 78
—1.394 532 37
—1.932 580 59
—4.708 458 87
—7.574 029 14

—10.492 021 68
—25.450 107 50

ea(7r, s/2)/ J
2.348 563 09
2.348 263 18
2.345 358 31
2.339 700 26
2.328 041 59
2.313 67'4 45
2.296 701 46
2.205 13344
1.933 770 97
1.767 11747
1.585 950 91
1.191 142 33
0.764 421 62
0.314 015 87

—0.155 075 39
—0.639 490 76
—1.136 786 12
—1.645 085 15
—4.307 894 53
—7.104 526 37
—9.985 165 63

—25.082 427 68

ea(~r, s)/ J
2.348 563 09
2,347 967 66
2.342 590 04
2.333 552 86
2.318286 26
2.302 767 01
2.286 997 97
2.221 452 69
2.078 246 15
2.000 000 00
1 ~ 916 574 49
1.730 346 72
1.508 61939
1.235 692 98
0.896 930 04
0.489 854 14
0.026 423 90

—0.476 985 31
—3.267 298 90
—6.228 771 82
—9.258 369 64

—24.901 265 32
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selves depart from the static-hole energy quadratically
(oc tz/J). This linear-t behavior is a consequence of
degenerate perturbation theory on a finite lattice, as we

shall subsequently demonstrate.
Two ground-state level crossings occur in the small-

and intermediate-(t/J) regime, from (z, z) to (z, vr/2) at
t/J 0.1526 and from (z', Ir/2) to (z, 0) at t/J 0.4814
[see Fig. 1(b)]. These small-(t/J) level crossings are pre-
sumably finite-lattice artifacts which recede to t/J = 0
in the bulk limit; they follow from the linear-t one-

hole bandwidth, which is itself a finite lattice effect in

the S = 1/2 sector, as we shall discuss at the end
of the next section. These crossings have previously
been reported in the literature, zi z~ albeit with less ac-
curate t/J values, For t/J ~ 0.4814 the one-hole ground
state remains a twelvefold-degenerate S = 1/2 multiplet
comprising the momenta (0, z), (z, 0), and (kz/2, her/2)
until t/J ~ 13, where a complicated transition to the
S = 15/2 Nagaoka state begins. With increasing t/J,
the ground state changes from the (S = 1/2) state to
)S;k) = (3/2;(0, 0)) at t/J 12.8290, to )5/2;(Ir, ir)) at
t/J 13.0582, (7/2; (0, 0)) at t/J 15.8469, and finally
becomes the (15/2; (0, 0)) Nagaoka state with ei, —— 4t-
for t/J ~ 15.8972. (This sequence of ground-state tran-
sitions is summarized in Fig. 2.) The final S = (Lz —1)/2
Nagaoka state is generated as a result of the global dis-

1/2 1/2 1/2 3/2 5/2 7/2

(kx ky) (K g) (it R/2) (lt 0)+K/2 Ã/2) (0 0) (it Tt) (0 0)

15/2

(0,0)

t/J = 0 0.1526 0.4814 12.8290 13.0582 15.8469 15.898

FIG. 2. One-hole ground-state level crossings and quan-
tum numbers on the 4 x 4 lattice.

eh(z, z)
c/J=1/2

(2)

ordering effect of hole motion on the spin alignment of
the entire lattice. Since this state requires disruption of
the antiferromagnetic order throughout the entire lattice
by a single hole, it appears at much larger t/J on larger
lattices and recedes to t/J = oo in the bulk limit. (See
Barnes, Dagotto, Moreo, and Swanson5a for a clarifica-
tion of why this random spin state is a member of the
"ferromagnetic" Nagaoka multiplet. )

One can establish certain exact results for the t J-
model at the special value t/J = 1/2; in particular we

confirm Cappon's result for the ground-state energy of
a single hole with k = (Ir, z), which in our conventions is
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Note also that a level crossing in the k = (0, 0) sector
of the one-hole system takes place at t/J=1/2 [se'e

Fig. 1(b)], where S = 1/2 and S = 3/2 one-hole states are
degenerate. Cappon5i anticipates that such degeneracies
at t/J = 1/2 will be accompanied by levels with one
more and one less hole and with the average spin value
(here S = 1), at energies separated by plus and minus 4t,
respectively; comparison of e (I,0)0/ J 2.57859834 in
Table I and the pure Heisenberg singlet;triplet gap of

0.578 598 336J (in our conventions) shows that this re-
lation is satisfied to high accuracy in the no- and one-hole
sectors.

2

t/J
8. A.nalytical one-hole band 8trecture

on a finite lattice fovt/J (( 1'
~ ~ ~ ~ I ~ ~ ~ 1 I \ ~ ~ ~ I ~ I ~ ~ I ~ ~ ~ ~ I ~ ~ ~ I3

(b)

e (k, k )/J

2.5

1.5

oooob
QQQQQQQ ooooo QQQOQQQQQ i QQQ

QQQ
0

OQQQQQ Qo
Qooooo I II

oooo
I IIItfgt

xxgAA+~~ 040
XX ~ ++g~ 00

(0 0) xgily +++P+ 00

(~2,0)
~ (~,0)=(w/2, ~2)

Wg ' 00
(@PE/2) 0

nk
+ (a,m) & 1gi

IA
I

I II

0.1 0.2 0.3 0.4 0.5 0.6

FIG. 1. (a) e (k, k„)/1 vs t/J for 0 & t/1 & 4. (b)
eI, (k~, k„)/ J for 0 & t/ j & 0.6.

The simple k dependence of the one-hole band at small
t/J on a finite lattice can be understood using perturba-
tion theory in the hopping parameter t (For related dis-.
cussions see Dagotto et al. and Elser, Huse, Shraiman,
and Siggia .) In a perturbative expansion in the hop-
ping parameter, the states connected by Hh &

are static-
hole states in a Heisenberg spin background; as these
unperturbed static-hole ground states all have the same
zeroth-order (Heisenberg) energy, one must apply degen-
erate perturbation theory and construct a basis of lin-
ear combinations of these states which diagonalizes the
hopping term. These linear combinations can be taken
to be momentum eigenstates, and each has a hopping-
term matrix element which is linear in t. Thus, the
linear-t behavior of the one-hole bandwidth is a conse-
quence of the degeneracy of static-hole states under hole
translations. Note that the two-hole sector has different



BARNES, JACOBS, KOVARIK, AND MACREADY

properties; application of the hopping term to a pair of
nearest-neighbor static holes gives an inequivalent static
hole configuration with a different unperturbed energy,
so nondegenerate perturbation theory applies and the
leading-order level shifts and bandwidth are proportional
to I((hh)'IHhopl(hh)) I /AEo(hh) (x t /J

Degenerate perturbation theory as described above
leads to a relation between the linear-t component of the
small-(t/J) one-hole bandwidth and a static-hole matrix
element. The k-diagonal superpositions of static-hole
states, which are the unperturbed basis states in this
approach, are given by

g') (k)) = ) .@o($,J )e*"' IS, y ),
S,g

where y = (j,jz) is the hole location, 8 is a generic
z-diagonal spin configuration on the remaining I —1
occupied sites, and @p($,y ) is the amplitude to find the
spin configuration 8 given a static hole at site y, normal-
ized to

(4)

The energy shift to leading order in the hopping term is

bE(k„k„) = t —(gc(k) ) (c,,c;, + H. c.) gc(k)).
(ij),t7

(5)

Application of a ct c, hopping term to a static-hole
ground state gives a new state with a new static-hole
location y

' = y+b, where y
' and y are nearest, neighbors.

This new state has a nontrivial hopping-term matrix
element with the initial state. The application of the

hopping Hamiltonian to static-hole states with holes at
each of the four nearest-neighbor sites to y thus leads to
a nonzero matrix element with the state IS, y ), so that
we find

Hh~plg), (k)) = t ) —ilio(S, y+ 6)P(b)e'" & + llS, y ) .

S,g, b

The (P(b) }are the phase factors introduced by hole hops
in directions b = (1,0), (—1, 0), (0, 1), and (0, —1), which
depend on the ordering convention used to define the
fermion basis states. Thus, to O(t) we have

(gi, (k)IHhopl@i, (k)) = —t ) @P(S,g )[ @P($,(j + 1, jv))P(1, 0)e'" + @P(8,(j —1,j„))P(—1, 0)e
S,g

+@p(8, (j,j& + 1))P(0, l)e " + 4'p($, (j,jv —1))P(0, —1)e '""]. (7)

The quantities P& klro(S, g )@p(S,g + 6 )P(b ) in

(7) must be independent of 6 due to discrete rotational
invariance, so we fii&d

(Q), (k)IHh, pl/I, (k)) = t (e' ' + e-
+"'"+e '"")(III'll)

2t (cosk, +—coskv)(III' II),

where (IIIill) is the reduced matrix element

(8)

(llll~&lll)
=- Oc(o) ): (c.'.c,.+ H') Oc(O))

(ij),e

(9)

This quantity is simply an oA-diagonal matrix element
of the ground-state wave function of a static hole in.

the IIeisenberg antiferromagnet; in terms of the static-
hole ground state of a hole at site g, Igp), (y ))
P~ @o($,y ) IS, g ), this reduced matrix element is

(III'll) = ) .~o($', g' )~o($, ~ ) (10)

so the small-(t/J) bandwidth, defined here as Wi,
e&(0, 0) —e&(z, 7r), is given by

lim W), ——8t ) iI(o(S', Z
' )iI(p(S, y ) .

f/J 0 S

In the above equations @p($', y
'

) is the amplitude to

find a spin configuration 8' in a static-hole ground state
with a hole at g

' = y+ z, where the pair (8', y+i) is con-
structed from (S,g ) by exchanging the hole at site y with
the spin at site y+ i. An independent Lanczos evalua-
tion of the S = 1/2 static-hole matrix element (10) gives

(IIIill) = 0.148805 71(1) and hence a one-hole bandwidth
of Wp, = [1.1904457(l)]t in the small-(t/J) limit, which
is consistent with the [1.190446(1)]t we previously esti-
mated directly from our t/ J ) 0 Lanczos results for ei, .

The theoretical small-(t/J) dispersion relation obtained
from (8) and (10) is also consistent with the numerical
results shown in Fig. 1(b) at the smaller values of t/J

Note that our t Jbasis used -in the derivation of (ll)
does not employ the "checkerboard" minus-sign phase
convention required to give negative off-diagonal terms
in the spin-spin interaction Hamiltonian. In our basis
the S; . Sj Hamiltonian is positive off-diagonal, so that
the (ilip}, although real, are not of definite sign, and
hence W), is not positive definite. Negative Wi, in (ll)
simply implies an inverted multiplet relative to 8 = 1/2,
and hence a k = (0, 0) level at the bottom of the band
rather than (z, vr).

There is an important caveat regarding this small-

(t/J) dispersion relation. Elser, Huse, Siggia, and
Shraiman find that, the conclusion that S'g oc t is in-

valid in the bulk limit, given a nonzero staggered mag-
netization. States of two nearest-neighbor static holes
on an infinite lattice actually have zero overlap in (11)
in the bulk limit, because the staggered magnetizations
associated with static holes on different sublattices have
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B. Tvre-hole states

1. Numerical results for torso-hole energies

In Fig. 3(a) we show our results for esp, (k) = Ez~(k)—
Eo for the lowest-lying two-hole levels (which have S = 0)
for each independent momentum as functions of t/J
for 0 & t/J & 4.0. These two-hole energies are also
given in Table II for representative values of t/J. I"or

t/J & 4.1 the lowest levels have momenta (0, 0) [de-
generate with (z', 0)], (ir/2, 0) [degenerate with (z, 1r/2)],
and (z'/2, z'/2) [degenerate with (7r, tr)]. The degener-
acy of the (0, 0) and (z, 0) ground states was first noted
by Hasegawa and Poilblanc and is an artifact of the

e (k, k)/J
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0
0

0
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0 g
0 g

0 g
o Ol

3.90

(b):

opposite signatures. This leaves a bulk-limit one-hole
bandwidth Wt, oc f /J. Alternatively, one can view the
spontaneous selection of one Neel pattern as a dimer-
ization of the system, which reduces the size of the Bril-
louin zone and results in a degeneracy of bulk-limit states
which differ by b,k = (x, ir). On a finite lattice there is a
nonzero amplitude to find spin configurations similar to
"wrong-signature" backgrounds associated with a static
hole, so the wave-function overlap (11) does not vanish
and one finds a bandwidth S'I, oc t until one reaches the
bulk limit. zs Note however that static-hole states with
zero staggered magnetization, such as states with suffi-
ciently large total spin, will still have a linear-t bandwidth
in the bulk limit at small t/J.

Az i~ ——ezl, (k) —2e p, (k'), (12)

where ez~(k) = Ezg(k) —Eo and ep, (k') = EI,(k') —Eo.
Here E~(k') and Ezg(k) are the energies of the ground
states in the one- and two-hole sectors, and Eo is the
ground-state energy in the no-hole sector, as defined in
Sec. II A. In Fig. 4 we show this two-hole binding en-
ergy Az i~ as a function of t/J for 0 & t/J & 4.0.
Although Az i~/J does not change by more than 10%
from the static-hole value of —0.8142 in this range,
its detailed behavior for small t/J is rather complicated
due to changes in the quantum numbers of the one-hole
ground state. These imply changes in k' in the definition

(12), which lead to cusps in Az i~. These cusps occur at
t/J 0.1526 and t/J 0.4814 in Fig. 4, as noted in our
discussion of one-hole quantum numbers. As the low-

est s =
z one-hole level Presumably has k = (1r/2, ir/2)

in the bulk limit for all t/J ) 0, a generalized two-hole

binding energy Az i~ defined relative to this (1r/2, 1r/2)

-0.70

4 x 4 lattice; studies on ~18 x ~18 and ~20 x v20
latticesz4 find the (0, 0) level below (ir, 0), which is pre-
sumably true in the bulk limit as well. Beginning at
t/J 4.1 level crossings result in some lowest-lying levels
that do not support these degeneracies in general. (The
ground-state 1evels, however, apparently remain degener-
ate. ) At t/J = 5.0 we find ezra, (1r, x)/J = —20.991425 81,
and at t/J = 10.0, ezra, (z, z/2) = —50.75443P31 and
ezg(ir, 1r) = —51.01877608; comparison with Table II
shows that these are no longer degenerate with the
(1r/2, z'/2) and (1r/2, 0) levels.

Our results agree with the previous numerical studies
of Hasegawa and Poilblanczo (for two d-wave levels at
t/J = 4.0) and Dagotto, Riera, and Youngis (for the d-

wave two-hole ground-state energy at t/J = 0.5, 1.0, and
5.0) to the accuracy quoted by these references (after the
trivial change in the Hasegawa and Poilblanc momentum
convention noted previously). In Fig. 3(b) we show our
results for small t/J, 0 & t/ J & 0.1, versus (t/J)z. In the
small-(t/J) limit the two-hole energies evidently depart
from the static-hole energy as cotz/J; this behavior can
be understood perturbatively, as we noted in our discus-
sion of the one-hole bandwidth. A numerical fit to cotz/ J
gives a bandwidth estimate of Wj,h ——[2.575(4)]t /J.

The hole-pair binding energy on a finite lattice may be
defined by

3.88

e (k, k )/J

3.86

3.84

-0.75
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(e -2e)/J
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FIG. 3. (a) e2I, (k, k„)/J vs t/J for 0 & t/J & 4. (b)
22&, (k~, k„)/J vs (t/J) for 0 & t/J & 0.1.
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FIG. 4. Two-hole binding energy (e2& —2el, )/J vs t/J



262 BARNES, JACOBS, KOVARIK, AND MACREADY

TABLE II. Lowest-lying two-hole energies eely, (k) = E2p, (k) —En for each independent momen-
tum on the 4 x 4 lattice. Degeneracies are present in all these levels for t/J + 4.1; the (x, 0) level
is degenerate with (0, 0), (s'/2, 0) with (n', s'/2) and (x, x) with (x/2, x/2). (See text for t/ J ) 4.)

0.000
0.010
0.025
0.050
0.075
0.100
Q.200
0.400
0.500
0.600
0.800
1.000
1.200
1.400
1.600
1.800
2.000
3.000
4.000
5.000

10.000

e,h(0, o)/J
3.882 735 19
3.882 023 53
3.878 293 79
3.865 060 70
3.843 298 76
3.813413 58
3.623 478 43
3.013294 86
2.638 366 72
2.233 417 81
1.358 672 98
0.422 346 48

—0.557 576 42
—1.570 078 74
—2.607 854 79
—3.665 790 10
—4.740 163 52

—10.280 770 95
—15.998 326 31
—21.830 562 94
—52.119292 60

e2~(s /2, 0)/ J
3.882 73519
3.882 152 66
3.879 098 14
3.868 240 07
3.850 315 95
3.825 570 78
3.665 391 29
3.131568 86
2.796 827 88
2.432 6Q4 53
1.639 867 23
0.784 13354

—0.118762 78
—1.058 946 67
—2.029 427 66
—3.024 944 87
—4.041 443 66
—9.429 411 81

—15.100 204 45
—20.891 081 77
—51.388 173 90

egg(x/2, x/2)/ J
3.882 735 19
3.882 281 80
3.879 902 75
3.871 423 10
3.857 348 56
3.837 764 29
3.706 99330
3.231 213 89
2.909 122 82
2.543 828 20
1.717 17545
0.806 354 90

—0.155 91673
—1.152 297 61
—2.173074 74
—3.212 302 36
—4.266 060 19
—9.678 805 84

—15.239 107 64
—20.929 349 28
—51.245 026 55

TABLE III. The rms hole-hole separation in the two in-
dependent two-hole ground states on the 4 x 4 lattice.

0.000
0.010
0.100
0.200
0.400
0.500
0.600
0.800
1.000
1.200
1.400
1.600
1.800
2.000
3.000
4.000
5.000

10.000

r, ,(o, o)/a,
1.000 000 00
1.000 154 05
1.020 714 09
1.068 398 88
1.177 188 04
1.228 078 90
1.275 354 60
1.358 308 44
1.426 316 Q7

1.481 492 99
1.526 412 84
1.563 360 10
1.594 140 16
1.620 11964
1.706 286 15
1.756 11696
1.791 068 88
1.888 408 26

rrms(&q 0)/+o

1.000 000 00
1.000 438 27
1.039 521 93
1.123 51138
1.280 438 32
1.339 900 92
1.389 320 52
1.466 397 84
1.523 409 70
1.567 034 95
1.601 422 85
1.629 267 00
1.652 351 51
1.671 879 15
1.738 186 63
1.778 247 46
1.806 934 73
1.890 31500

one-hole state is more relevant to bulk-limit results. This
generalized binding energy is also shown in Fig. 4; note
the increased binding with increasing t/J to a maximum
binding of b,z z~/J —0.892 at t/J 0.66, following
which the binding slowly decreases. At t/J = 3, it is

6z t~/J = 6g g~/J = —0.8639.

Ground-state rms hole-hole separations
and Pnite size eQect-s

A measure of the importance of finite-size effects is
provided by the rms hole-hole separation in the two-

hole ground states. [Recall that there are three degen-
erate two-hole ground states on the 4 x 4 lattice, with
k = (0, s), (z, 0), and (0, 0), and that only the first two
have rotationally equivalent wave functions. ] As t/J is
increased to infinity, the rms hole-hole separation

i/r
p hh;k t' p hh;k (13)

0.80

0.60

In{r /a) .

0.40

4x4 lattice
maximum0

0.20

0.00
-3 -2 0

In(t/ J)

(n, 0)
fitted (m, O)
(0,0)
fitted (0,0)

I

FIG. g. Ground-state rms hole-hole separation vs t/J.

approaches a maximum value which is determined by the
lattice size L. This maximum rms separation on the 4 x 4
lattice is r,m, (t/J = oo) 1.99ao (see Table III).

Figure 5 shows the rms separation versus t/J for the
two independent ground states, and the asymptotic lat-
tice maximum of 1.99an is shown as a dashed line. We
determined this maximum rms hole separation by iterat-
ing from a state with the two holes on nearest-neighbor
sites as well as at the maximum allowed separation of
2+2. The separation increases rapidly with increasing
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t/J, and has already traversed half the available range
of [1.0, 1.99]ap on the 4 x 4 lattice at t/J 0.88 for the
(s, 0) ground state and t/J 1.26 for (0, 0). At larger
values of t/J one sees a flattening of r,~ for t/J ) 1,
which suggests the presence of important finite-size ef-
fects. In Sec. IIC we shall discuss the t/J dependence
of two-hole matrix elements for t/J & 1, and show that
simple power-law behavior is suggested, and that this be-
havior can be extrapolated to give bulk-limit estimates
at t/J =3.

C. Power-law behavior in one- and two-hole states

(14)

(similarly for ezra/t) and

I/ao oc (t/J)'/~"+ )

so that

/up ~ (t/ J)1/(2P f-4)

(15)

(16)

Hence for the physical range 0 & p & 1 this potential
model analogy leads us to expect that r,~, should behave
as a power of t/J within the range

F /Q Oc (t/J)( ' (17)

Dagotto, Riera, and Young previously found that the
two-hole d-wave) ground-state energy e21,/t scales as
(t/J) s 2) over the range 2/3 & t/J & 5, which
through (16) implies p = 0.56(6) and an r„,scaling law
of r„,/a oc (t/J) '

One might expect energy levels and r„~, to scale ap-
proximately as powers of t/J for intermediate values of
t/J. This behavior can be motivated by approximat-
ing the hole interaction by an effective linear potential,
which arises from energetically unfavorable spin aligri-
ment in the wake of hole motion in an antiferromagnetic
background. In the Ising case (the t J, mod-el) this rea-
soning leads one to expect that hole motion produces a
string of flipped spins of length I oc (t/J, )1/s, so that the
hole-hole separation of a pair of holes connected by a ran-
dom string should scale as r„~,(t J,) v l-oc (t/ J)' /s.

This effective linear potential description has been dis-
cussed by Bulaevskii, Nagaev, and Khomskii, ss Shraiman
and Siggia, s4 and Kane, Lee, and Read, ss and the lat-
ter reference suggested the r,~,(t J,) oc (-t/J, )'/ behav-
ior. This in turn suggests that the ground-state hole
energy in the t J, model -should scale approximately
as e&/t cp + ci(t/ J,) /, which was found to be
a remarkably accurate parametrization over the range
0.02 & J,/t & 1 in recent Monte Carlo p and string-
basis 7 studies.

In the t Jmodel we e-xpect spin fluctuations to weaken
the effective linear potential in a complicated dynami-
cal manner; as a simple approximation we model this
by a slower-than-linear potential, V(l) oc Jl &, where
0 & p & 1. Simple dimensional arguments applied to
the Schrodinger equation with this potential suggest that
hole ground-state energies and the rms hole-hole separa-
tion should scale approximately as

ep, /f = cp+ ci(t/J)

and

r„,(~, 0)/up = [1.533(2)](t/ j)""(') (19)

(o o)/ o = [ ( )](t/ )"'"" (20)

and these numerical fits are shown in Fig. 5. Evi-
dently the observed power law is in good agreement with
the 0.195(5) one expects from the equi, power —0.78(2)
of Dagotto, Riera, and Young combined with our
Eqs. (14) and (16).

At the high-T, value of t/J = 3 and given a CuO2 site
spacing of 3.79 A. , Eqs. (19) and (20) imply for the bulk
limit

r„ ,(s', 0) = 7.2 A

and

,(0, 0) = 6.8 A. (22)

These numbers are similar to the coherence length
14 A observed in the high-temperature

superconductors, ss which provides a characteristic length
scale of the Cooper pairs. We suggest that this result con-
stitutes strong evidence in support of the identification of
hole pairs as described by the t Jmodel wi-th the Cooper
pairs of high-temperature superconductivity.

III. CONCLUSIONS

We have presented accurate numerical results for one-
and two-hole energies and rms hole-hole separations in
the t/J model on a 4 x 4 lattice for a wide range of val-
ues of t/J. In the small-(t/J) limit we found an S = 1/2
one-hole bandwidth of [1.190445 7(1)]tand an S = 0 two-
hole bandwidth of [2.5 75(4)]t z/J, and have shown that
these qualitatively different behaviors can be understood
using simple perturbative arguments. An application of
degenerate perturbation theory led to a relation between
the one-hole bandwidth and a static-hole ground-state
matrix element, which allowed an independent indirect
bandwidth determination. We also determined the t/J
values and quantum numbers associated with the six one-
hole ground-state level crossings. Momentum degenera-
cies and several other level crossings were also noted, in-
cluding a crossing of k = (0, 0) S = 1/2 and S = 3/2
one-hole levels at t/J = 1/2, which has properties con-
sistent with recent analytical results for t/J = 1/2.

If r,~, does scale as a power of t/J one should ob-
serve linear behavior in in(r, ,/ap) versus ln(t/J). Our
data for r,~, for the independent k = (z', 0) and (0, 0)
ground states is displayed in this form in Fig. 5, and
there is clear evidence for power-law behavior over the
range 0.4 & t/J ( 0.9. [The linear region actually oc-
curs somewhat lower in t/J for the (s, 0), (0, z) states,
which have a larger rms radius for a given t/J and hence
experience finite-size effects sooner as t/J is increased. ]
To estimate the power law we have fitted r„~, to the form

&'ims/up = &p(t/ J)
over the ranges 0.3 & t/J & 0.8 for k = (s', 0) and 0.4 &
t/J & 0.9 for k = (0, 0). The result of this fit is
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Our results for the ground-state rms hole-hole sepa-
ration on the 4 x 4 lattice indicate important finite-size
eft'ects for t/J ~ 1. This suggests that previous studies
of the two-hole system on a 4 x 4 lattice at t/J —3 may
incorporate large finite-size effects. As the characteristic
length scale r,m, of the two-hole system actually grows
as a relatively small power of t/J, we expect that 4 x 4
lattice results will at least be qualitatively similar to the
bulk limit results, and should provide useful indications
of bulk-limit physics. One may be able to avoid these
finite-size effects by identifying power-law behavior in t/ J
and extrapolating to large t/J In .this paper we have
identified such power-law behavior in the rms hole-hole
separation for intermediate t/J (0.3 ~ t/J ~ 1) where
finite-size effects are apparently small, so this matrix el-
ement can be extrapolated to give a bulk-limit estimate
for t/J = 3. We find that the bulk-limit rms ground-
state hole-hole separation at t/J = 3 is r„~, 1.8ao,
corresponding to 7 A in the high-temperature super-
conductors. The similarity of this result to the observed
high-T, coherence length, (,b 14 A. , supports the iden-
tification of hole pairs in the t Jmodel -with the Cooper

pairs of the high-temperature superconductors.
We should emphasize that we do not interpret this to

mean that the t-J model has a superconducting ground
state at finite doping, but rather that an isolated hole pair
in the t-J model has similarities to the observed Cooper
pairs. A realistic generalization of the t-J model would

need to address the problem of phase separation, pre-
sumably through the incorporation of hole-hole Coulomb
repulsion.
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