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Development of the optical conductivity with doping in single-domain YBa2Cu306+
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Optical studies of single-domain crystals of YBazCu306+„allow us to separate the Cu02-plane and

CuO-chain contributions to the optical conductivity as a function of doping between 0.025 and 5.5 eV.
We find several interesting consequences of doping on the optical conductivity of YBa2Cu306+„.. the

4. 1-eV transition in tetragonal YBa2Cu306. [ is split into a- and b-axis-polarized components by CuO-

chain formation; oscillator strength associated with the charge-transfer band of insulating YBa2Cu306. [

is redistributed to low frequencies; and the low-frequency conductivity in the Cu02 planes evolves into

a non-Drude response comprised of a single resolvable component. The CuO-chain conductivity, by

contrast, is dominated by a midinfrared absorption band.

A number of unconventional properties of high-T, com-
pounds have been documented by optical studies, includ-
ing the presence of a non-Drude low-frequency conduc-
tivity tr(to) in metallic YBa2Cu30s+„, ' and La2 „Sr„
-Cuq04, and an anomalous redistribution of spectral
weight with doping in 2:1:4 compounds such as
La2 —„Sr„Cu204, Nd2-„Ce„Cu204, and Pr2-„Ce„Cu2-
04. Among the important questions these phenomena
raise are the following: (1) Does the non-Drude response
in the cuprates reflect the presence of more than one ab-
sorption band, or, rather, a single component of strongly
interacting carriers; and (2) is the unusual spectral weight
redistribution in the 2:1:4 compounds a universal conse-
quence of doping in the cuprates~ Unfortunately, CuO-
chain contributions to the optical conductivity make it
diScult to resolve these issues in studies of twinned

YBa2Cu306p„.
In this paper we report reflectivity and ellipsornetry

measurements of single-domain YBa2Cu306~„, which al-
low us to isolate the development of the Cu02 plane con-
ductivity as a function of doping. We find a number of in-

teresting consequences of doping in YBa2Cu306+„, in-

cluding a splitting of the 4.1-eV excitation in tetragonal
YBa2Cu306 i into a- and b-axis-polarized components, a
redistribution of the spectral weight above the charge-
transfer band in YBa2Cu30s ~

to low energies, and the ap-
pearance of a non-Drude low-frequency conductivity in

the Cu02 planes that is comprised of a single resolvable
component.

Optical reflectivity and ellipsornetry studies were per-
formed on single-domain samples of YBa2Cu306+„with
x-0.1, x-0.6 (T„=66 K), and x-1 (T„=90K). The
samples were grown using a method described else-
where. ' Optical reflectivity spectra from 0.025 to 5.5 eV
were obtained in a near-normal incidence configuration
with a rapid scanning interferometer. The different
sources, polarizers, and detectors used in these studies
provided substantial spectral overlap, and the different
spectral ranges covered had reflectivity mismatches of less
than 1%. In order to accurately determine the conductivi-
ties and other optical parameters from our reflectivity
data, we used ellipsornetry spectra on the same samples to
correct errors that result from extrapolating the reflec-
tivity in a standard Kramers-Kronig analysis. The ellip-

sometric measurements were obtained between 1.5 and
5.5 eV using a technique detailed elsewhere. Our correc-
tion procedure is similar to that described recently by Bo-
zovic, ' and it involves first selecting a reflectivity extrapo-
lation so that the phase estimated from the Kramers-
Kronig analysis, 8xx(co), provides the best possible over-

lap with the "exact" phase determined from ellipsometry
measurements, 8,ii;v(to). 8xK(to) is then forced to equal

8,ii;~(to) above roughly 3 eV in order to correct any
remaining errors at high frequencies. Finally, the optical
constants between 0.025 and 5 eV are determined from
the measured R(to) and the corrected 8KK(to) using stan-
dard constitutive relations. The optical constants deter-
mined between 0.025 and 5 eV in this fashion merge
smoothly into the exact ellipsornetric values between 2
and 5 eV [see the top curve of Fig. 2(a)], and are there-
fore expected to be accurate to within experimental error.

Figure 1 illustrates the normal-state reflectivity spectra
of single-domain YBa2Cu306+, for several values of x,
and for incident light polarized along the a (solid lines)
and b axis (dashed lines). Our room-temperature re-
flectivity results for single-domain YBa~Cu307 are corn-
parable to those observed by Schlesinger et al. , and are
slightly higher than those obtained by Koch, Geserich,
and Wolf" and Petrov et al. ' In Fig. 2, the a-axis and
b-axis normal-state conductivities of single-domain
YBa2Cu306+„have been obtained from our reflectivity
spectra using the correction procedure described above.
The conductivity of insulating YBa2Cu306 ~ [top curve,
Fig. 2(a)) exhibits an absorption gap below 1.5 eV and
sharp peaks near 1.75 and 4. 1 eV. The 1.75-eV peak has
an analog in all the cuprates, ' and has been associated
with transitions across the 0 2p-Cu 3d charge-transfer
gap. ' '" The 4. 1-eV peak, however, is specific to
YBa2Cu306+, - and has been variously attributed to
Cu(1)-0(4) transitions, ' excitations in the Ba-0(4)
planes, ' and intraionic excitations on the Cu(l) site. '

Upon doping from YBaqCu306 ~
to orthorhombic YBa2-

Cu3066, a metallic low-frequency conductivity develops in
both a and b directions, spectral weight in the conductivity
between 1.5 and 3 eV diminishes, and the 4. l-eV peak
weakens and appears to split into a- and b-axis-polarized
components near 4. 1 and 4.7 eV, respectively.

While the loss of spectral weight in the 4. 1-eV transi-
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FIG. 1. Room-temperature reflectivity vs frequency for

single-domain YBa2Cu306+„with x-0.1 (lower curve), x
-0.6 (T, =66 K) (middle curves), and x-1 (T, =90 K) (top
curves). For data on orthorhombic samples (middle and top

curves), the solid lines are the rettectivities obtained with in-

cident light along the a axis, E;Ila, while the dashed lines are ob-

tained with E;Ilb.

tion and the appearance of a 4.7-eV feature with doping
have been observed in previous ellipsometric studies of
twinned samples, " the lack of polarization informa-
tion has hampered a definitive assignment of these excita-
tions. Our results illustrate that the 4.1-eV excitation be-
comes strongly polarized along the b direction upon plac-
ing oxygen into chain sites, supporting the attribution, by
Kircher et al. , of this feature to 3d3. —

i to 4p„,, transitions
on the Cu(l) site. ' Ba-O(4)-plane transitions, '

by con-
trast, should be less sensitive to the addition of oxygen
into the chains, while Cu(1)-O(4) excitations should be
predominantly c axis polarized. Furthermore, the appear-
ance of an additional a-axis-polarized feature at inter-
mediate doping suggests that a degeneracy associated
with the initial or final state of the 4. 1-eV transition is lift-
ed by CuO-chain formation. A possible candidate is the
degenerate 4p, , final state in the interpretation of Kirch-
er et al. , since the presence of regular lengths of CuO
chains should strongly affect the 4p, band between the L
and M points of the Brillouin zone, while leaving the 4p, ,

band between V and M relatively undisturbed.

The conductivity associated with the charge-transfer
band (1.5-3 eV) is also quite sensitive to doping, exhibit-
ing a substantial loss of oscillator strength through the
metal-insulator transition. This behavior can be more
quantitatively illustrated by examining the integrated
spectral weight in the conductivity between 0 and co,
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FIG. 2. Room-temperature conductivity vs frequency along
(a) the a axis (=CuO planes) (E;lla), and (b) the b axis (E;lib),
for x-0.1, x-0.6 (T, =66 K), and x- I (T, =90 K). In (a),
the open circles on the top curve (x-0.1) show the conductivity
determined directly from ellipsometry measurements.

defined as

N, tt(to) =, a(to')dro',2m V

ze

where %dr(to)(m/m ) is the effective number of carriers
per unit cell contributing to the conductivity below m, m
and e are the bare electron mass and charge, respectively,
m is the effective electron mass, and V is the unit-cell
volume. Figure 3 illustrates the development of the in-
tegrated spectral weights in the a-axis conductivities [Fig.
2(a)] as a function of frequency. The integrated spectral
weight in insulating YBa2Cu306 ~

remains near zero
through the conductivity gap [see Fig. 2(a)], but begins to
attain appreciable values above the charge-transfer ab-
sorption edge. In the metallic phase (x~0.6), the in-

tegrated spectral weight exhibits a rapid rise at low fre-
quencies, retlecting the presence of a Drude-like band
formed by the dopants. Yet in spite of the additional
dopant contribution at x-0.6, the integrated spectral
weight curves for YBa2Cu 306 i and YBa2Cu 306 6 inter-
sect near 3 eV. This result implies that doping between
x =0.1 and 0.6 does not affect the total spectral weight in

the CuO~-plane conductivity below 3 eV, but rather
causes a redistribution of weight from the charge-transfer
band region (1.5-3 eV) to lower frequencies (to~ 1.5
eV). The redistribution of spectral weight in

YBa2Cu306+,- is similar to that observed in the 2:1:4com-
pounds, ' and it reflects a reconstruction of the high-
energy electronic states in the CuO~ planes with doping.
Notably, the deleterious effect of doping on the charge-
transfer band is inconsistent with a simple single-electron
picture of Cu-0 charge transfer in the cuprates. Rather,
there appear to be many-body contributions to the funda-
mental absorption band in the cuprates that are strongly



DEVELOPMENT OF THE OPTICAL CONDUCTIVITY %ITH. . . 2551

1.5

2 ~ 1-

I I I

YBazCu306+x

0 1 2 3 4
Energy (eV)

FIG. 3. Integrated spectral weight vs frequency for the a-axis
conduetivities in Fig. 2(a), obtained using Eq. (1). The inset

summarizes the spectral weights integrated to ra 1.5 eV for the

b axis (solid squares), a axis ( =CuO& plane) (solid circles), and

chain I =ah(ru) —cr, (c»)I (open squares) contributions to the

conductivity. The dashed line is the estimated doping contribu-

tion to the CuOp planes, N, [r =0.5x, assuming the effective mass

equals the free-electron mass.

affected by the addition of carriers.
In view of the redistribution of high-frequency states

with doping in YBazCu306+„, it is important to examine
to what extent the growth of spectral weight below the ab-
sorption gap (r» ~ 1.5 eV) originates from dopant contri-
butions or from weight transferred from above the
charge-transfer band. This is examined in the inset of
Fig. 3, which compares the integrated spectral weight
below the absorption edge [N,s(r» =1.5 eV)] as a function
of doping for b-axis (solid squares), a-axis (=CuOz
plane) (solid circles), and CuO-chain (=ab —cr, ) (open
squares) contributions. A comparison of chain and plane
contributions for x~0.6 illustrates that the low-fre-
quency spectral weight in the metallic phases is evenly di-
vided between the planes and chains. Assuming equivalent
effective masses on the chains and planes, therefore, we
estimate that 50% of the holes introduced by doping go
onto the CuOq planes in metallic YBaqCu306+„with the
balance going onto the CuO chains. Significantly, the in-
tegrated CuOq-plane spectral weight below co=1.5 eV
exceeds that attributable to doping alone, N, g=0.5x
(dashed line, inset), suggesting that additional spectral
weight must arise by transferring weight from the
charge-transfer band to low frequencies. This result cor-
roborates reports of similar behavior in 2:1:4 com-
pounds. '

Perhaps the most interesting feature of the normal-state
optical response in the cuprates is the non-Drude low-
frequency conductivity, which has been alternatively as-
cribed to frequency-dependent scattering of a single elec-
tronic component, ' ' ' and two-component absorption
involving intraband and interband transitions. ' Unfor-
tunately, identifying the optical response associated with
the CuOq planes in twinned YBaqCu306+ is diScult be-

cause of CuO-chain contributions to the conductivity. In
Fig. 4(a), we isolate the low-frequency CuO&-plane con-
ductivity (cr, ) as a function of doping in single-domain
YBazCu306+ (solid lines). Also shown for comparison
are the CuO-chain (ob —cr, ) contributions for x-0.6
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FIG. 4. (a) Room-temperature a-axis conductivity vs fre-

quency in single-domain YBaqCuq06+, for x —0.6 (T„=66 K)
and x—I (T, =90 K) (solid lines). The dotted line compares
the chain contributions to the conductivity, ab(m) —cro(co), for
x—0.6 and I; (b) renormalized scattering rate 1/z*(co) (open
and solid circles) and etfective-mass enhancement m*(co)/m
(dashed )ines), derived from the measured complex conductivity
cx(co) using Eq. (2). At each value of x, co„' is obtained using the
value of N, g at co=1.5 eV.

and x-I (dotted lines). Our study illustrates that for
x 0.6, the chain conductivity exhibits both Drude and
midinfrared components, while the CuOq-plane conduc-
tivity appears to exhibit a single-component response that
falls off much more slowly than a standard Drude term
(-r» ). These results corroborate and extend to lower
doping earlier studies of single-domain YBapCu307.
Notably, the absence of a distinguishable secondary ab-
sorption in the a-axis conductivity of moderately doped
YBaqCu306+, places stronger limitations on the possibili-
ty of two-component absorption in the CuO~ planes of
YBapCu306+„. It is also interesting that the absence of a
resolvable secondary band in the CuOz plane conductivity
of YBazCu3066 is in contrast to the large midinfrared
band observed at intermediate doping in several 2:I:4
compounds. This discrepancy suggests that the 2:1:4
compounds transit more slowly than YBapCu306+„be-
tween a low-density metallic regime, in which impurity
or other secondary absorption processes can be substan-
tial, and a high-density metallic regime characterized by a
single low-frequency contribution. '

Evidence that the a-axis conductivity below 1 eV is
comprised of a single component [Fig. 4(a)] also suggests
that the non-Drude CuOz-plane conductivity in doped
YBazCu306+„(x ~ 0.6) may arise from frequency-
dependent scattering of the carriers. ' In this case, the
a-axis conductivities are more appropriately described by
a generalized Drude model,

a(ra) = cop/4K
(2)

[m*(o))/m] [r' '(co) ir»] '—
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where m (to)/m is the effective-mass enhancement, and
I/r*(to) =I/r(to)[m/m*(to)] is the renormalized scat-
tering rate. Figure 4(b) illustrates the effective-mass
enhancements m*(to)/m and renormalized scattering
rates I/r*(to) obtained from the a-axis conductivities in

Fig. 4(a). The effective-mass enhancement in the CuOq
planes is found to decrease from 4 to 2 upon doping from
x-0.6 to x-1. Furthermore, the renormalized scatter-
ing rate is linear in frequency throughout much of the me-
tallic phase, I/r*(ro) ~to, with a slope that decreases
with doping from 1.33 at x-0.6 to 0.75 at x —l. As not-
ed previously for YBazCu307, the linear frequency
dependence of I/z (ro) in YBa2Cu306+„ is consistent
with various models of the strongly correlated normal
state in which the imaginary part of the quasiparticle
self-energ scales linearly with energy, !mZ(to)
a: to. zo 2' 6 However, the frequency-dependent scattering
analysis in Fig. 4(b) also indicates an increase in the slope
of I/r*(to) with decreased doping, refiecting an increased
quasiparticle coupling at low doping. This result is not
obviously consistent with any of the above models, al-
though a better assessment of this issue must await a more
detailed theoretical treatment of doping effects.

In summary, we have studied the development of the
optical conductivity in single-domain crystals of YBa2-
Cu306+ as a function of x. We find evidence that the

4.1-eV transition in YBaqCu306 evolves into a- and 6-
axis-polarized components at intermediate doping. This
behavior is attributed to the splitting of a degenerate band
in YBa2Cu306 ~ upon forming CuO chains. %e also find
that the Cu02 planes evolve with doping by transferring
spectral weight from the charge-transfer band region
(1.5-3 eV) to low frequencies, in agreement with earlier
results in 2:1:4compounds. Unlike these earlier studies,
however, we find no evidence for an intrinsic midinfrared
band in the low-frequency optical conductivity of the
Cu02 planes. Rather, by separating the CuO-chain and
plane contributions to the low-frequency optical conduc-
tivity for x ~ 0.6, we conclude that the chains are dom-
inated by a midinfrared absorption band, while the planes
exhibit a single-component, non-Drude response. We an-
alyze the latter response with a frequency-dependent
scattering model, and find a linear in frequency scattering
rate that decreases in slope with increased doping.
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