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Heisenberg model of subdomain fcc clusters: A Monte Carlo study
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We show that a Heisenberg model of a spin cluster can describe subdomain ferromagnetic particles,
from the dynamics of individual spins to the statistical behavior of the total magnetic moment of the

cluster. While an analytical solution of the quantum spin problem is given for small clusters, a classi-
cal Heisenberg numerical simulation is used to study clusters of up to 561 atoms. We have studied

magnetic behavior as a function of particle size, temperature, and magnetic field and find that the

magnetization of individual clusters is well described by a Langevin function, in very good agreement
with recent experiments on Co clusters in a molecular beam.

It has been observed recently ' that the behavior of free
cobalt clusters containing up to 400 atoms is well de-
scribed by a picture in which the cluster is considered as a
monodomain particle with a giant magnetic moment that
fluctuates in direction under thermal agitation. The
time-averaged projection of the magnetic moment, mea-
sured by the deflection of the cluster beam upon its pas-
sage through a gradient magnet, agrees quantitatively
with a Langevin function of argument NpH/kT where N
is the number of atoms in the cluster, p is the magnetic
moment per atom of the monodomain particle, H is the
magnetic field, and T the temperature. These observa-
tions hint strongly at the superparamagnetic nature of
these clusters. The experimental time scale over which

the phenomenon of superparamagnetism can be observed
is proportional to exp(KN/kT), where K is the crystal-
field anisotropy energy per atom. For particles in a solid-
state matrix or in a solution, a wide variety of experimen-
tal techniques ranging from Mossbauer spectroscopy to
superconducting quantum interference device (SQUID)
magnetometry ' can be used to test the mechanism of su-

perparamagnetic relaxation from the ns to the 10 s time
scale.

In an attempt to explain early deflection data on Fe
clusters, a Monte Carlo Ising model has been proposed
recently. The reduction in the measured magnetic mo-

ment is attributed to an intraparticle temperature-induced
spin disorder. Although the model describes qualitatively
part of the experimental data, the high temperatures,
necessary to account for the magnitude of the observed
magnetic moments are hard to reconcile with real life ex-
perimental conditions. In this work, we show that the sta-
tistical approach is thoroughly able to explain the experi-
mental results without invoking spin melting. We use a
Heisenberg picture in which the spins are located on a fcc
lattice because it is conceptually simple, can be solved nu-

merically for reasonably big lattices, and does not possess
the artificial monodirectional anisotropy of the Ising mod-
el.

The Heisenberg model has contributed in many ways to
the understanding of the cooperative effects leading to fer-
romagnetism and the major consequences of the model
have been worked out quite some time ago. Monte Carlo
calculations of classical Heisenberg models have also im-

proved our understanding of critical behavior and scal-
ing. While finite systems have been widely used to simu-
late bulk systems, finite systems have also been studied on
their own right. The theory of the Heisenberg super-
paramagnet is well established. ' However, since no gen-
eral analytical solution can be given, numerical techniques
have been used to study the impact of the cluster shape on
magnetization, " as well as the magnetization profiles
across the clusters, ' for simple lattices. Lately, it was
shown that sharper transitions are obtained by including
magnetic interactions in Monte Carlo simulations of the
melting process of ferromagnetic transition metal clus-
ters. '

In our analysis, magnetic anisotropies and magnetostat-
ic interactions are neglected. This assumption is justified
for a wide range of sizes and temperatures for the fer-
romagnetic clusters of 3d transition metals. ' We consid-
er the following Hamiltonian:

'H = —Jg S; SJ —h+S; .

The first summation is over all nearest-neighbor pairs of
the cluster while the second summation is over all atoms.
The isotropic Heisenberg model considers an effective
coupling J between spins which in a molecular-field theory
is estimated to be a fraction of the bulk Curie temperature
kT„"". The second term is the Zeeman term where S; is
the component of spin. Expression (I) is quite general
and can be particularized to either the classical (S tending
to infinity) or the quantum case. The first ste consists in

evaluating the partition function: Z =Tre " . Once Z
is known, thermodynamic values like the magnetization or
specific heat can be calculated by the usual rules of statist-
ical mechanics. In general, the solution of the Hamiltoni-
an for the energy levels must be found numerically. How-
ever, since the purpose of this work is to acquire a better
insight into the physics of small spin systems, it is quite in-
structive to start with some basic considerations valid for
small systems, in which case the Heisenberg Hamiltonian
can be solved analytically for quantum spins.

We can take advantage of the fact that the square of
the total spin operator (S') of the cluster is given by

gS; =gS;+gS;.SJ =S'(S'+ I) . (2)
I i&j
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This provides an easy solution to our Hamiltonian in the
case each atom is coupled to every other atom in the clus-
ter. Practically this assumption is only valid for relatively
small clusters, smaller than N =5 or so. Then, the eigen-
values of )V can be found easily,

E(S,S',M') = —, J(NS(S+I) —S'(S'+1)]+hM', (3)
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where h =gpqH, and the z component of the total angular
momentum M' has eigenvalues M' =S',S' —1, . . . ,—(S' —I), —S', where S'=0, 1,2, 3, . . . , NS for NS in-

tegral, and S'= &, —', , —', , . . . , NS for NS half-integral.
The partition function for the cluster is

Z =ggg(N S S')e JPS'(S'+ I)/2ehPM'
S' M'

(4)

P
' =kT. We have dropped the terms which depend only

on S and are the same for all states since they are of no in-
terest for our problems in magnetism. X(N, S,S') is the
number of ways to combine N spin S to obtain a total spin
S'. A, can be found in Ref. 8 for any S. Then

sinh[(S'+ —,
' )hP]

Z (J h ) g ge JPS'(S'+ I )/2

S' sinh(hP/2)

QP(J, h, S') .
S'

(5)

L (x) =cothx —1/x . (7)

An approximation originally used by Heisenberg (quoted
by van Vleck ), consists of assuming that for big systems
(large N), Z has a maximum at some particular value of
S' denoted S; therefore, it is sufficient to retain only terms
through the first order in the Taylor expansion about S,
and we get M =gp pSL (hPS).

The results of the quantum treatment for clusters with
spin 2 are shown in Fig. 1. The normalized magnetic mo-
ment per site, calculated from Eq. (6), is represented as a
function of temperature for various sizes N. It is a steeply
decreasing function of temperature. One finds that a tem-
perature of 0.02 3 (a few K from simple molecular-field
considerations) is enough to account for a 50% reduction
of the magnetization of a 4-atom cluster.

By the rules of statistical mechanics, the magnetization is
given by M =P '8(lnZ)/8H; T =const. With the use of
Eq. (5), the magnetization is found to be

ZP(J, h, S )S Bs'(hPS )
M =gpss (6)

ZP(J, h, S')
S'

where Bs is the Brillouin function.
The quantum-mechanical expression of Eq. (6) is valid

for any value of spin S. For bigger clusters, however, indi-
vidual atoms may no longer be nearest neighbors of each
other, Eq. (2) cannot be used anymore, and the geometry
of the cluster must be considered explicitly (see the fol-
lowing discussion). However, the general form M
=Pg(y)f(y)/Pg(y) of Eq. (6) is still conserved. ' It
can be seen that for S' ~ (that is, when all orientations
of the magnetic moment becomes possible), the phe-
nomenon of superparamagnetism appears as a weighted
average of Langevin L (hpS') contributions of spin S' with

keT

FIG. 1. Magnetic moment per site (p-) as a function of tem-
perature, calculated by means of Eq. (6) for small clusters of
spin —,

'
. All energies are measured in units of J.

1.0
I 0.8
006
a. 0.4
~ 0.2

0.0
0.0

5-Site Cluster '

T = 2.70

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
keT

FIG. 2. Magnitude of the total spin per atom as a function of
temperature for a 55-site cluster. The curve is the best fit to a

power law. Energy in units of J.

In order to study bigger systems, we use a numerical
Monte Carlo technique to solve the classical Heisenberg
model. Time averages for the magnitude of the total spin
and its projection on the z axis as a function of lattice size,
temperature, and applied field are calculated. The ex-
change interaction in Eq. (1) can be made I = I without
losing any generality, since this assignment merely estab-
lishes an energy scale. The lattices studied are complete
fcc cubo-octahedra having the total numbers of sites
N =13, 55, 147, 309, and 561 (more information on the

geometry can be found in Ref. 14).
Once a random configuration of spin orientation has

been generated, the Monte Carlo procedure can be sum-

marized as follows: For a given temperature and a given

field, each site is visited in order. A random spin orienta-
tion is picked from a 4x solid angle and it is decided
whether the state with the old spin orientation of energy
E; will be changed to the state with the new spin orienta-
tion of energy Ef. If Ef is lower than E;, the new state is

accepted, otherwise it is accepted conditionally with the

probability e ' . Relevant physical quantities, like
the energy E, E, and the magnetization are averaged
over 5 &106 MCS (Monte Carlo steps) per site. The tech-
nique is well documented (see, for instance, Ref. 15).

Results for the Heisenberg Monte Carlo simulation are
presented in Figs. 2-6, along with fits to a very simple
theory. In Fig. 2 we see that the individual spins of the
55-site cubo-octahedral cluster are completely aligned at
zero temperature, giving a total magnetic moment per site
of 1. At higher temperature, the magnitude of the total
magnetic moment decreases. The calculations could be
fitted to critical parameters from second-order phase tran-
sition theory of finite systems: however, since our purpose
here is not to study criticality but rather to describe sta-
tistical behavior at low temperatures, we find it more con-
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FIG. 3. Time-average projection (p-) of the magnetic mo-

ment per site on the field axis for 55-site cluster at T=0.50 as a
function of applied magnetic field. The curve is a parameterless

fit by means of a Langevin function.

FIG. 5. Time-average projection of the magnetic moment per
site on the field axis for particles of various sizes N at T=0.50
and h =0 010

venient to fit the calculations to a power law:

p = (1 —T/T ) it'

where p is the average moment per site, and T, is the crit-
ical temperature. The same power-law behavior and T,
are seen for all sized particles. It refiects the tempera-
ture-dependent disordering or "melting" of the system
when the system goes from an ordered state at low tem-
perature to a disordered state at high temperature. Since
the spontaneous symmetry breaking at T, can occur in the
thermodynamic limit only (N ~), the net alignment
does not drop to zero at T=T„ascan be seen from Fig.
2. Spin Auctuations lead to some small alignment even at
high temperatures. At very low temperature, quantum-
mechanical eA'ects come normally into play. However, the
standard Bloch T t law is only obeyed approximately in

clusters and the gap in the spin-wave spectrum is expected
to produce a very Aat dependence of p close to zero tem-
perature.

Equation (8) establishes the magnitude of the total
magnetic moment but not its orientation. Figure 3 shows
the time-averaged projection of spin per site on the field
axis for a 55-site cluster at T 0.50, as a function of ap-
plied magnetic field. The projection increases linearly
with field until it saturates at the maximum value given by
Eq. (8). Similarly, Fig. 4 shows the spin projection per
site for 55-site clusters for a field 5 =0.010, at various
temperatures. The projection is maximum at T=O and
decreases approximately as I/T, reAecting reductions in

both the magnitude of the total moment and in the align-
ment of that total moment with the magnetic field. Figure
4 is the classical analog for N=55 of the quantum case
(N =2-5) of Fig. l. Finally, Fig. 5 shows the spin projec-
tion per site for particles of various sizes N at T=0.50

and h =0.010. The projection per site increases linearly
with particle size before saturating at large sizes.

Despite its simplicity, this model explains quantitatively
all the features observed in the cluster beam experiment, '

namely, the linear variation of the observed magnetic mo-
ment as a function of cluster size and field as well as its
variation as a function of the inverse of temperature. The
overall behavior of the time-averaged projection of the
magnetic moment on the field axis (p, )/p is described ac-
curately by the Langevin function of Eq. (7) with argu-
ment x=PNpH, where p is given by Eq. (8), with
T„=2.70. Parameterless fits to the Monte Carlo results,
produced with this formula, appear in Figs. 3-5. The fit is

extremely good and gives confidence that Eqs. (7) and (8)
accurately predict the time averages of the magnetic mo-
ment per site and of its projection on the field axis. At the
temperatures under consideration here, there is little
departure of p from 1 [Eq. (8)], and the spins within the
clusters remain strongly coupled, therefore, each individu-

al cluster has a giant magnetic moment of the order 2Npg
as obtained from the theoretical ground-state calcula-
tions. ' ' Assuming a magnetic moment p per atom the
same as in the bulk (say 1.7@a for Co), a 147-atom clus-
ter at 77 K (liquid-nitrogen temperature) in a typical lab-
oratory field of 0.3 T, would show an observable magnetic
moment (p, ) =0.212, in very good agreement with the ex-
periment on Co clusters. ' Therefore, the cluster beam re-
sults do not need to be interpreted in terms of nearly criti-
cal high spin temperatures as deduced by Merikoski et
al but are a. consequence of the fact that clusters exhibit
superparamagnetism in the beam. In particular, because
of the rapid Auctuation of the total magnetic moment, the
model accounts in a natural way for the zero magnetiza-
tion observed in the absence of a magnetic field.

Due to its continuous spin space symmetry, the Heisen-
berg model is much more appropriate to describe large
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FIG. 4. Time-average projection of the magnetic moment per
site on the field axis for a 55-site cluster as a function of temper-
ature in a field of h 0.010.
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fluctuations observed in small clusters than is the Ising
model. The specific-heat expression C=((E ) —(E) )i'
kT, obtained from the sampling of E (the energy of the
system in the magnetic field), provides a measure of fluc-
tuations, represented by the term inside the parentheses. '

The calculated specific heat is given in Fig. 6 as a function
of temperature for various cluster sizes. 1he importance
of fluctuations is obvious from the nonzero contributions
at low and high temperature. Simultaneously, the specific
heat shows a rounded peak typical of higher-order phase
transitions.

1 he very good agreement between theory and experi-
ment give strong evidence that the magnetic anisotropy
energies are much smaller than the temperatures involved.

The fact that in a beam, magnetic moments exchange an-
gular momentum with the particle's lattice through crys-
tal anisotropy coupling does not invalidate the simple pic-
ture presented here. At most, it can modify slightly the
trajectory in the phase space, away from a purely fluctuat-
ing one (a purely coherent trajectory is expected for a
strong coupling), but the Boltzman distribution would still
be valid to describe the projection of magnetic moments
onto the field axis on the time scale of the experiment.
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