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Nonlinear excitation in an S=1/2 Heisenberg ferromagnetic chain
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Nonlinear excitations in an S=— Heisenberg ferromagnetic chain are investigated by using the

squeezed fermion coherent states and the Jordan-Wigner fermionic transformation of spin-z operators.

The equation of motion for a fermion operator is a modified Schrodinger equation. Solitonlike excita-
tions are obtained, and their spectrum has a linear dispersion at low energies.

The nonlinear excitations such as solitary waves and
solitons in the Heisenberg spin chain have generated a
great deal of experimental' and theoretical ' in-
terest. Theoretically, there are several methods to study
these nonlinear excitations in one-dimensional magnets.
In the classical method, ' general soliton solutions are
obtained for a continuum version of the classical Heisen-
berg chain. Zakharov and Takhtajan showed that there
is a gauge equivalence between the Heisenberg ferromag-
net and nonlinear Schrodinger system. It is well known
that there are several boson representations of spin opera-
tors for the quantum spin system. In Schwinger's boson
representation, ' two sets of boson operators are intro-
duced. By using this representation, Cieplak and Turski
investigated soliton excitations in a homogeneous fer-
romagnetic chain in the continuum limit. They obtained
an effective Hamiltonian after some quartic terms of bo-
son operators were neglected (this results in only one set
of bosons being retained). By using the coherent spin
state, ' Balakrishnan and Bishop studied nonlinear exci-
tations in an isotropic quantum ferromagnetic chain in
the continuum approximation (the Hamiltonian is ex-
panded to a order, where a is a lattice constant). This is
a useful method to study the nonlinear dynamics in a
magnetic chain, but it seems that there are some
difhculties in the anisotropic case. The other coherent-
state treatments ' use a severely truncated Holstein-
Primakoff expansion' for S,—+. Working with G1auber's
coherent-state representation, ' and by making the
small-amplitude and lone-wave approximations, one finds
solitary wave profiles identical to classical solitons.
When this representation is used to investigate the non-
linear excitations in the spin system, attention should be
paid to the relative ratio of e to g for determining the
modified terms of the equation of motion; ' ' here
a=1/&S and g=a/k, where S is spin length, a is lattice
constant, and A, is characteristic wavelength.

The above methods are not suitable for studying the
nonlinear excitation in an S =

—,
' Heisenberg chain. Gen-

erally, the S=
—,
' operators can be written in terms of ex-

act fermion operators through the Jordan-Wigner trans-
formation. ' To solve the equation of motion it is neces-
sary to introduce a coherent-state representation. Re-
cently Svozil derived the squeezed fermion coherent
states in analogy to squeezed light. This allows us to

study the nonlinear excitation of an S =
—,
' Heisenberg fer-

romagnetic chain. I obtain the spectrum of solitonlike
excitations at low energies which agrees with Haldane's
recent result on the exact spectrum of spinon excitations
in an S =

—,
' Heisenberg chain. '

The Hamiltonian for an S =
—,
' Heisenberg ferromag-

netic chain is

( A B)a= 2 "8"+A~8~+(1 b) 2'8' . —

The spin- —, operators in one dimension can be written in

terms of exact fermion operators through the Jordan-
Wigner transformation:

~l —1

'~mm=l m m c—

l C~C
(3)

The number operator for each site is n1=C1 C1. By sub-

stituting Eq. (3) into Eq. (1) we obtain the Hamiltonian

y C,'C, +s+J(1 ~) y C,'C
1,5 1

J(1—b, ) g C, Ct+sct+sc
1, 5

(4)

where H, =H Ho, Ho= —J(—1 h)N/4, 5=+1—, and N
is the number of lattice sites. The fermion operators
satisfy the following equation of motion:

ih'(t)lt)t)c = [C,K, j

—J(1—b ) g C&+sc, +scj .

To solve Eq. (5) we introduce the squeezed fermion
coherent state

K=J g(S S, +, )a .
J

Exchange anisotropy is controlled by a parameter 6 and
defined as follows:
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lp&= pip()&,

c, lp&=p, lp&,

Ip) e(c t) t)—* c)
IO)

n (x, t) and localized magnetization S'(x, t), reduce to

n(x, t)=sech [(x—xo —Vst)IA, ],
S'(x, t) =sech [(x —xo —V't)/A, ]——,

'

with

(15}

When Eq. (5) acts on a squeezed coherent state and goes
to the continuum limit [p, (t)~p(x, t)] we find n(xo, t =0)=1, n(+oo, t)=0,

S'(xo, t =0)=—,', S'(+oo, t)= —
—,
' .(d/dt) p= A,—P A—p, A,—IPI'p A,—IPI„'„p,

A(=J(1+6,)/fi, A2=Ja2/))i,

A3=2J(1 —b, )/A, A4=J(22(1 —5)/g .

where p;+s is expanded to a order, and (2 is a lattice con-
stant. To solve Eq. (7} we use the method of multiple
scales. For weak nonlinear waves with dispersion, we
can introduce the slow variables

(7) We see that Eqs. (15) and (16) demonstrate explicitly a
nonlinear excitation in the S=

—, spin chain, as shown in

Fig. 1. The other interesting result is that there is no soli-
ton excitation for the S =

—,
' XFHeisenberg spin chain be-

cause n(x, t)=0 for b, = l.
In the coherent-state representation, the energy of the

excitation is given by

iU, +AU2g +A I3UI U=O

with

p p(1)+0( 2)

p(1) U(g )ei(kx a)t)—

A2k A

(10)

where k is the wave number. Then the single soliton
solution is

g=p(x —V t), r=p't

and the asymptotic expansion

p —p(1)+ 2p2+ 3p3+. . .

where p is a small parameter denoting the relative ampli-
tude of the excitation. Vs =dao/dk is the group velocity
of the linear wave. Then we obtain

=J [(k +ao)'a + 12( 1 —6) —12( 1 —b ) —
2) ( 1+9 )] .

(17)

Haldane predicted that integer spins correspond to the
standard quantization of the O(3} o model, therefore the
nonlinear excitations have a gap (so-called Haldane gap);
the half-integer spins correspond to a nonstandard quant-
ization of the cr model and its nonlinear excitation may
not have a soliton gap. Here we use this argument to set
E =0 at k =0 and from Eq. (17) we find

a()=(1/(2)[ —,)(1+iI),)+12(l—6) —12(1—6) ]'

I I I
I

I I I
I

I I I

I
I I I

p(x, t) = 2A2

A3

Xe
iI(k+a )x —ot —P ]0

1/2

kop sech[kop(x —xo —
Vg t) ] 0.5—

A=co+(ao k,p )A2, —

Vg =2(k +a())A2,

(12)

where ko, o.o, x are integral constants and Vg is the ve-
locity of the soliton. The normalization of p(x, t) sets
kop =a A 3/2 A 2. Then the occupation number

)1 (x, t) =
I p(x, t) I' is

I I I
II

I I I

0.5—

0—

I
I

I I I

n (x, t) =(1—b, )sech [(x —xo —
Vg )/A, ], (13)

where the soliton width is )(, =(2/2(1 —b ) and its velocity
is V'=2Ja (k+ao)/fi. The local magnetization distri-
bution S'(x, t) is given by

S'(x, t) = n (x, t) —
—,
'

—0.5
-I

I I I I I I I I I I I I I I-
—4 —2 0 8 4

X

=(1—5)sech [(x —xo —V't)/1] ——',
For the isotropic case 6=0, the occupation number

FIG. l. Occupation number n(x) and local magnetization
S'(x) distributions for a soliton excitation in an S =

z isotropic
Heisenberg ferromagnetic chain at xo =0, t =0.
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Thus the nonlinear excitation spectrum for the isotropic
case (6=0) reads

E;„=J(&2ak+k a ) .

At low energies (k~O) this ferromagnet has a linear
dispersion which agrees with Haldane's recent result '

that the S=—,
' Heisenberg ferromagnetic chain has a

linear magnon dispersion at low energies [Eq. (20) of Ref.
21].

In conclusion, we have obtained the solitonlike excita-
tions for an S =

—,
' Heisenberg ferromagnetic chain based

on squeezed fermion coherent states. The spectrum has
the form ak +bk, which reduces to a linear dispersion at
low energies (k~O), and which agrees with Haldane's
recent result on the exact spectrum in terms of fermionic
S=—,

' spinon excitation. The other interesting result we

find is that there may be no solitonlike excitations in an
S=

—,
' XY spin chain.
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