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Local vibrational states of glasses
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A glass system is argued to be a collection of clusters. The average density of vibrational states from
these clusters is calculated and found to be universal. The theoretical result is then compared with the
density of vibrational states obtained from recent inelastic-neutron-scattering experiments and a good
agreement is found in the intermediate-energy region of 1.5-15 meV.

The interesting debate' about what is the correct pic-
ture to describe low-temperature properties of insulating
glasses has shed some doubts on the widely accepted
two-level tunneling description. ' More importantly, the
strong argument made there shows that anomalies in the
specific heat and thermal conductivity in glasses are
more or less universal in the moderate-temperature re-
gion around 10 K. Most recently, the density of vibra-
tional states (DVS) obtained from inelastic-neutron-
scattering experiments and the Raman spectra ' for
various glasses are found to be universal in the energy re-
gion about 1.5 —15 meV. '

However, what causes the universal structure in the
DVS and Raman spectra is still unclear. The distinct
feature of glass systems is their structures in the inter-

0
mediate distances around few tens of A. If a dimension
analysis is made, one will find that the peak positions in
the DVS do correspond to the intermediate length scales.
The length scale corresponding to a given energy Ace is
L -c/co where c is the sound velocity in the glass. All
data of the Raman spectra for various glass systems can
be well described by log-normal functions. This indi-
cates that if the broad peaks in the Raman spectra result
from the structures with intermediate length scales, the
size distribution of these structures will be log-normal,
too. For convenience, let us call these structures with
intermediate length scales clusters. The vibrational prop-
erties of a single cluster may be inferred from the vibra-
tional properties of microcrystals in a glass system. Ex-
periments have shown that the microcrystals in glass
systems have similar but sharper peaks in the Raman
spectra with peak positions at co-c/L with L as the di-
ameters of the microcrystals. The characteristic length
of clusters in a glass system can also be estimated from
the sharp peaks of x-ray experiments. An interesting dis-
cussion' attributes the universal structure in the DVS
and Raman spectra to a special kind of one-dimensional
clusters in glasses, the so-called Rivier lines formed by
odd member rings in the glass structures. "'

In the present work we assume that the clusters in
glasses are three-dimensional structures with a log-
normal size distribution. Later we will show that the
dimensionality of the clusters is not important. With
help of this log-normal distribution, we derive a simple
expression for the DVS in glasses. The obtained DVS is

universal with a characteristic energy scale. We then
compare the theoretical DVS with those found from the
inelastic-neutron-scattering experiments and find that the
theoretical expression for the DVS represents experimen-
tal data very well in the energy region of 1.5 —15 meV.

As discussed above, a glass system is considered a col-
lection of clusters with various sizes. It is not easy to
identify one specific cluster in the system since each clus-
ter may percolate into several other clusters to keep the
whole system homogeneous. However, even though the
clear separation between two clusters is very diScult, one
can still assign a characteristic length L for each cluster,
which is approximately the diameter across the cluster.
The DVS of the whole system is then given by the aver-
age of the DVS in all clusters:

g (to) = J gL(to)Pt dL, (1)

gL (co) to (2)

at the low-energy region. Here D is the dimension of the
cluster. Of course, Eq. (2) cannot be true if the size effect
dominates the spectra. As evidenced from the experi-
ments, the dispersion in the clusters should be more like
those obtained from the vibrations of an elastic sphere. '

There is a low-energy cutoff in gL (co) due to the finite-size
effect: a/L and a is a constant close to c, the average
sound velocity. This cutoff means that, when the energy
is less than n/L, the vibration cannot exist in the cluster.
If the cluster is taken as a cube with volume L and the
dispersion relation is assumed to be linear, a is given by
a=2~c; or if the cluster is assumed as an elastic sphere
with diameter L, a is given by a=0.35c. ' Pi in Eq. (1)
is the probability of a cluster with characteristic length L
forming in a specific glass system and is normalized to l,

PLdL =1 .

A trivial case of Eq. (1) is for the lattice system, where
one has only one cluster with L ~ ~ and Eq. (1) reduces

where gL (co) is the DVS in a cluster with characteristic
length L. If size effect is ignored, the density of vibra-
tional states in a cluster will have the Debye form
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to the Debye form of Eq. (2). Hereafter we will exclude
such case and assume that the cluster distribution has a
peak at a characteristic length Lp and that the probabili-
ty goes to zero as L ~00. Many random processes 14, 15

have shown that the clusters formed have log-normal size
distributions and the log-normal fit for the Raman spec-
tra provides another strong evidence. This motivates
our assumption that the size distribution of clusters in
glass systems is log-normal:
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1 (lnL —inLo)
P& = — exp

~2m oL 2cr'
(4)

with 0 the half width of the log-normal distribution.
Let us assume at the moment that the DVS in a cluster

is a constant, that is, gL (co)=go. Later we will show that
the resultant average density of vibrational states will not
change qualitatively as long as gi (co) has a power-law be-
havior, gI (co)-d'or. It is straightforward to show using
Eqs. (1) and (4) that when gI (co) =go, one has
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g(co)= erfc Pln
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where erfc(x) is the complementary error function
(b)

00

erfc(x)= f e "dx,
v'~ x

and coo=a/Lo and P= 1/~2cr.
Now if the DVS of a cluster has a power-law behavior,

gI (co)-d'or with y=D —1 for the Debye case, we can ex-
press this power-law density of states in terms of the
characteristic length of the cluster using co-1/L in the
cluster ' as gz (co)=g (Lo/L)r. It is straightforward to
show that g(co) is still given by Eq. (5) but with

2 2/2 2 (Tgo=gee ~ andcoo=ae ~ /Lo. Pleasenote that pis
assumed not to change with the dimension or the specific
choice of gL(co). This is consistent with the later
discovery in our numerical results that p is almost a con-
stant for all glass systems (see the numbers for p in Table
I below). So the expression for the DVS in Eq. (5) will be
an identical curve for all glass systems if the amplitude is
rescaled by gp and the energy is rescaled by cop. This is
precisely what was observed in the inelastic-neutron-
scattering experiments in the energy region of 1.5—15
meV. Later we will show that the universal structure in
the Raman spectra ' in the corresponding energy region
also originates from the cluster size distribution.

Now let us see how well the expression of Eq. (5)
represents experimental results. In Fig. 1, we plot three
sets of experimental data of the DVS for glass systems
As2S3, SiO2, and Mg7pZn3p taken from Ref. 5 and the
DVS of Eq. (5). go, P, and coo for each case are oPtimized
by a least-squares fit of Eq. (5) to the experimental data at
given energy points in Fig. 1. It is very clear that the
DVS from Eq. (5) represents all three sets of experimen-
tal data very well in the energy region of 1.5 —15 meV.
The optimized parameters P, and coo for each case are
given in Table I. It is important to point out that the
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FIG. 1. Density of vibrational states observed in the
inelastic-neutron-scattering experiments of Ref. 5 () compared
with the theoretical expression in Eq. (5) (0) by a least-squares
fit to determine go, P, and coo in Eq. (5): (a) AsS3, (b) SION, and
(c) Mg70Zn30.
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TABLE I. The optimized P with too in Eq. (5) for various
glass systems by a least-squares fit to the experimental data of
Ref. 5.

Scop (meV)

AsS,

1.32
3.05

Si02

1.52
5.34

Mg7pZn3Q

1.29
6.29

quantity P (or o) for all three materials are almost the
same.

In conclusion, the universal structure of the density of
vibrational states in the glass systems is successfully attri-

buted to the local vibrations of the clusters in the glass
systems with structures at intermediate length scales.
The simple expression obtained for the DVS of glasses is
universal as long as the cluster size distribution is log-
normal. In order to relate the universal DVS of glasses to
the universal nature of the thermal properties, more work
is still needed to find out the temperature dependence of
the scattering length of phonons at this region.
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