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Weak-localization correction to the number density of superconducting electrons
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Anticipating that the backscattering processes that lead to weak localization in normal metals will

occur also in dirty superconductors, we have evaluated the effect of these processes on the number densi-

ty of superconducting electrons. We find a reduction in this density similar in form to the reduction in
conductivity for the normal metal, except that the superconducting gap now provides the lower energy
cutoff instead of the inelastic scattering rate. This result can be derived heuristically from the conduc-
tivity sum rule, and also from the use of an exact-eigenstates method. The localization effect leads to a
weakening of the superconducting state to a point at which order-parameter amplitude fluctuations be-
come important.

I. INTRODUCTION

The phenomenon of weak localization in normal met-
als has been extensively investigated, both theoretically
and experimentally, over the past decade and is now well
understood. ' It arises from the coherent scattering of
electrons from impurities in the metal: A constructive in-
terference between electrons scattered backward via
different paths reduces the current at fixed voltage. This
process has provided a quantitative explanation for de-
creases in the conductivity of thin films proportional to
the logarithm of the absolute temperature T and for the
positive magnetoconductivities found in such systems.

The same quantum interference process must occur in
superconductors. Here the backscattering involves su-
perconducting quasiparticles and their attendant coher-
ence factors, but it is reasonable, nonetheless, to expect
observable consequences. Even though the zero-
frequency conductivity is infinite in a superconductor, the
effects might occur in the number density of supercon-
ducting electrons, n, (T). This is made plausible by the
following scaling argument. ' In the absence of weak lo-
calization, in the dirty limit 6 « I =~ ', where 6 is the
superconducting energy gap and I is the elastic-
scattering rate, one knows that n, (T) scales with the dc
conductivity in the normal state, cr(co =0):

n, (T) mm.
b, tanh —Ph

a (to =0) 2

where m and e are the electron's mass and charge and P
is the reciprocal of the absolute temperature. If this scal-
ing were to persist into the weak-localization regime, one
would indeed see weak-localization effects in supercon-
ductors.

The motivation for considering such processes lies in
recent experimental and theoretical work on the
superconductor-insulator transition " (for a recent re-
view, see Ref. 12.) Strong enough disorder appears to
destroy superconducting order eventually, leaving an in-
sulator, just as disorder is known to destroy metallic be-

havior. A theory' of the noninteracting metal-insulator
transition was obtained by combining scaling ideas with
weak-localization calculations. Proceeding by analogy,
we might expect such calculations also to be important in
the superconducting case.

In this paper we perform a rigorous calculation —the
exact superconducting analog of the normal-metal weak-
localization calculation —and show that there is indeed a
weak-localization correction to n, . Ma and Lee calculat-
ed forms for n, in the strong-disorder regime from the
normal conductivity tr(co) using a relation valid for one-
body potentials derived, for example, by de Gennes. '

However, they did not use this method to calculate the
weak-localization correction, although it is possible to do
this (as we show later). The weak-localization result
turns out to be flat in the low-temperature limit, which
makes experimental observation unlikely. It is of theoret-
ical importance because it shows how backscattering, al-
though not capable of extinguishing superconductivity,
weakens it enough for other fluctuation effects to become
important. These may then lead to the destruction of the
superconductivity.

In Sec. II we sketch the superconducting weak-
localization calculation. (Some details are relegated to
the Appendix. ) The material here is essentially of a tech-
nical nature. These sections may be skipped by those in-
terested only in the meaning and observable conse-
quences of the calculation, which are discussed in Sec.
III. There we show that the number density of supercon-
ducting electrons, n, (T), does scale with zero-frequency
conductivity cr(co=0), in agreement with an argument,
which we summarize, based on the conductivity sum rule.
Possible difficulties of interpretation in the superconduct-
ing state are discussed.

II. OUTLINE OF CALCULATION

As is by now well known, backscattering effects are
contained in the so-called maximally crossed diagrams,
identified by Langer and Neal. ' In what follows we
evaluate the sum of these diagrams, shown in Fig. 1(a),
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gram is the lowest-order term in a 1/kFI expansion, as
discussed in the Appendix. The dressed-electron Green
function of Fig. 1(b) is given by'

(a)
G(p ico

where
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FIG. 1. (a) Maximally crossed conductivity diagram leading

to backscattering corrections calculated in the text; (b) impurity

dressing of electron propagators used in (a).
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with superconducting electron propagators, including im-

purity scattering, as indicated in Fig. 1(b). This calcula-
tion is the exact superconducting analog of the normal
weak-localization calculation, which can be found in, for
example, Bergmann. ' As in the normal case, this dia-

I

Since we are interested in calculating n, (T), we perform
the calculation for zero external Matsubara frequency i co

and zero momentum Q, although, for convenience, we

first keep the frequency nonzero. The contribution of the
nth diagram to the electromagnetic response kernel is

e 1 dp d&
K'"(3((q =O,i co„)= —g f 3 p (Q —p)&(I /2n. )"+'

m P ( (2n. ) (2n. )

d p.
X g f Tr[6(p, ico(+ico )G(p, ico()736(p(, ico()73 6(p„,ico(}736(Q p, ico()—

(2m )

X 6 ( Q p, I co(—+ ( co„)73G( Q p» I co( —+ I co„)73 73

X G (Q p„,(co(+—(co„)73],

where E &
relates the current response J to the applied electromagnetic potential A& via

J (q, co)= K(3(q, co) A—(3(q, co) . (4)

From the normal-metal result, we expect the greatest contribution to come from zero total momentum Q, and so out-

side the trace we set Q =0. We also expect most contributions to Jd p, to come from near the Fermi surface, and so

we substitute

f d p;/(2m)~N. (0)f de ,' f dx-;,

where N(0) is the density of states at the Fermi surface and x, = cos8;, with 8; the angle between p and Q. Finally, not-

ing that, by isotropy, p (Q —
p}&—+ ,

' kF5 (( and d—efi—ning K,(3
=K5 (3, we find

ne + f d p d Q [N(0)l /2n. ]"+'
2(r(13 ( (2n ) (2n ) N (0)

n dx;
x p fdc;Tr, [6'(p)6(p)7 GI736 . 7 G„7,

2

X G(Q —p)6'(Q —p)73G', 7362 736„73] . (5)

Here all the G"s have the frequency z'=i~I+iso and all the G's have the frequency z =ivor. Further, in G„' the

momentum is Q —p„, and in G„ the momentum is p„.
In order to do the p, integration, one must move G; next to G,'. This would appear to be a problem because matrices

do not necessarily commute. However, from the explicit form (2a), we easily see that the 736's commute among them-

selves:

(z+E,7, b7, )(z+e, 7—3+67, )

(z —e, —6 )(z —e.—6 )

=D '[(z +E;c., b, )+z(s;+s, )73+(zA zh—)7,+i(E;—+E, )672]

=~3G ~3G; .

The same is obviously true for the ~3G
"s. Thus we can rearrange the factors as follows:
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Tr[G'G (r3G, )(r3Gz) . . (r3G„)(r3G& ~)r3(~3G& ~)(r3G„') . (r3Gz)(r3G', )r3]

= Tr[(r3G& )r3G'G (r3G& )(r3G, )(r3G2) . (r3G„)r3(r3G„') (r3Gz)(r3G', )r3]
= T [(r3Gg pr3G~G~r3Gg „)G,v3G2. . . r3G„G„'r3. . . r3G2r3GI ] .

Now, at the center, we have G„G„', and we can perform
the p„ integral. Vfe define the p„ integral by

C =(I /2~) f f«G(P z)G(Q P z)—1 2

and evaluate this in the Appendix, arriving at

where we define G by

Z —C73+ A7,

z —c —5
(13)

Then performing the p„, integral yields
aC —a(z /h)C', where C' is defined by

C =a 1+—71
Z

where

(9)
C'=(I'/2m)

dx f (z —e &3 br()(z—+eg pr3+br))
(z —s —b, )(z —e~ —Q )

z +zh71

[1—2ir(z —b, )' ](z —b, )

D 2

X 1— (10)
[1—2ir(z —b, )' ]

Above, D is the diffusion constant; D =UFO'/d in d-

dimensions. Unfortunately, our result for C, being of the
form a[1+(z/b, )r&], does not commute with r3. This

prevents us from writing down the sum of all diagrams as
a geometric series, such as occurs in the normal-state cal-
culation, in C. However, carrying on with the calcula-
tion, we see that, in the trace, we now have

Z I
73G„173a 1 + 71 736 —

1

C' is also evaluated in the Appendix, giving the result

Z' ZC'=a +—7
g2

(14)

a 1+—7 —a—7a2 Z Z
1 g 1

Z' Z

2
+

In this way we can successively perform all the p, in-

tegrals. For the n =1 diagram, we just found the contri-
bution C =a[1+(z/b, )r, ], and for the n =2 diagram we
now obtain

r,G„,a 1 ——r, G„)r3 . (11)Z 1

Z2=a 1—2

Q2

Z1+ 71

Using the properties of Pauli matrices to move 6„
through the a[1

(zlzz,

)r, ] term yiel—ds

Z I6 1a 1 ——71 6„

Z=aG„,G„',—a—716„16„' (12)

One can easily prove by induction that for the nth-order
diagram, one gets

Z
2

n —1

Za" 1—
Q2

1+—71

So we get a geometric series after all and, adding it up,
obtain

Tr(r3GQ pT3G'G r3GQ pr3S) .
4m am% 0 I (2')3 (2~)3

(19)

b, [[1 2ir(z b—)' ] —DQ r] [1+—(z/b, )r, ]

(z —6 )([1 2ir(z b, )' —] [[1——2ir(z ——b, )' ] —DQ r])
Substituting this into Eq. (4}, we get an expression for K(0,0), which can also be written as n, e /m, thereby defining
the superconducting number density:

n, e

This is calculated in the Appendix, giving

"se 2~De ~r

m mP

Q2

(z b, }[1—2ir(z2 —b )'~ ] [1——2ir(z —b2) ~2] —[[1—2ir(z —b, )~ ] —DQ r]
(20)
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In the dirty limit I ))6, we finally obtain, from the Appendix, the extremely simple result

5n, (T)e 4De2 1

~2+ g2 DQ2+ 2(e12+ g2)1/2
(21)

This is the correction to the number density of superconducting electrons due to weak-localization effects, the quantity
we wished to evaluate. We should compare this to the normal-state result for the correction to the conductivity, given
by

(0)
2De 1

~ Dg'+r, (22)

In Eq. (22) the lower cutoff in Q is given by DQ =I;, where I; is the inelastic-scattering rate. In the superconducting
case [Eq. (21)], the lower cutoff is given by DQ =28. We can include the inelastic scattering in the superconducting
case by evaluating the frequency-dependent response,

2D CO1(Ci)1+ CO~)
IC(0, iso„)=— g g 1+

f3 ( 2+ g2)1/2(( + )2+ g2) DQ2+( 2+ g2)1/2+ )( + )2+ g2)1/2
(23)

and replacing iso ~I; to obtain, for the case I, ))6,

5n, e 4De2 1

P co +b Dg +2(rd +6 )' +r

tanh( —,'Pb, )

2A
(26)

we obtain approximate T=O expressions for 5n, e /m,
which are listed in Table I.

At T =0 we can obtain the exact results by expanding
the integral in terms of the small parameter 5/I . The
exact results are very similar to the ones in Table I in that
the leading two terms are the same, but the numerical
coefficients are different in some cases. This is to be ex-
pected, and we should also be wary about coefficients
arising from the upper Q cutoff because of its arbitrary
nature.

(24)

Thus, for the superconducting case, it appears that we
have +&1/DQ with lower cutoff Q„

I/l&, I, »b,
V'D/2b, , I, ((b, ,

where 1&
=+Dr, is the inelastic diffusion length and

~, =I, ' is the inelastic lifetime. Since our electron wave
function incorporates elastic scattering off impurities, the
lower length scale in the problem, which has disappeared
because of the expansion in Q, is the elastic mean free
path l =UF~. This leads to an upper momentum cutoff
Q2 = 1/1. Performing this sum and using

A. Conductivity sum rule

From our result for 5n, (T) and the known results for
the BCS superconducting number density, ' the weak-
localization correction to conductivity' 5cr(0}, and the
Drude conductivity o (0), we find that, at T =0 in the
limit I', ))5,

5n, (T)
50 (0)

n, (T)
0(0)

m~&
2 (27)

TABLE I. Formulas for correction to n„ the number density

of superconducting electrons.

Number of
dimensions

5n, e /m

I, »b,

2De2 2De'A~;

2e 6
fry

D
2h

1/2
2

(l~ —I )

Thus we see that n, still scales with o (0}when we include
the weak-localization corrections in the limit I, ))6, but
not in the limit I; &&A.

One can understand the scaling of n, with o (0) by us-

ing a "missing-area" argument' based on the conductivi-
ty sum rule. In the superconducting case at T=O, the
conductivity is zero up to co=26, while the normal con-
ductivity is finite. In the superconducting case, therefore,
one loses some area under the 0(co) curve, which shows
up as area in the 5(co) pole at the origin. In fact, the two

III. PHYSICAL MEANING

2Q
ln(25~)2~ " e'6

ln
2m' 7

Equation (21) is the central result of our calculation.
We shall now try to elucidate the physical meaning of
this result and the formulas derived from it in Table I.

e 6 1

m fi

2h
D

I /2
e 6 1 1

m A'
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areas are proportional, not equal:

nn, e 2

f dcoo(a)) .
2m 4 0

(28)

For I;))5 this leads to direct proportionality between

n, and 0 (0},which persists even when weak localization
is included. In the limit I; «b„one finds that 5cr(co) is

not constant over the frequency region up to 2h —the
conductivity varies on a frequency scale of order I;, be-

ing given by

2De rlr d "Q 1

(2m ) DQ i co+—I;
(29)

TABLE II. Formulas for correction to 0(co), the frequency-
dependent conductivity.

Number of
Dimensions ap ((I;

5o (co)

co &&I;
2De' I
off Q7

' I/2

This can be exactly evaluated for d =0, 1,2, 3, and the
low- and high-frequency behavior is summarized in Table
II.

One finds that the sum rule is still obeyed to leading or-
der in 6/I in the limit I;«b, for dimension d 2. For
d (2 the sum rule reproduces the correct functional
form, but gives the wrong coefficient. This is because the
frequency dependence in 5cr(co} goes as co' '~, and in-

tegrating this up to 2h gives a correction term that is
0((b, /I )' '~ ), which is subdominant only for d )2.
This argument does not apply to the d =2 case, which
has logarithmic dependence, and so the success of the
sum rule in this case is the only "nontrivial" case. Note
that, in all cases, the sum rule always reproduces the
correct functional forms —it is only numerical
coefficients it get wrong. In short, our results can essen-
tially be reproduced by the missing-area argument.

The correct physical limit is I; &(6 as superconduc-
tivity cannot persist in the opposite limit. This is because
the electrons which would form a Cooper pair are then
only coherent over a distance l&=QDw; «)=+col
=&D/b„where g is the dirty coherence length and go
the BCS coherence length. Thus the electron wave func-
tions are dephased over a region smaller than the size of a
Cooper pair and the superconducting state cannot form.
That this is the physical limit is confirmed in two-
dimensional (2D) thin films where one finds that the ex-
perimental parameters satisfy I ))6))I;. All of the re-

1,(e„)=v,(E„)r,(ek)=v~r=l .
(30)

The inelastic lifetime is more of a problem, because it de-
pends on the particular inelastic scattering important in
the system. In general, it will be expected to depend on
the energy of the state being scattered. This introduces a
calculational difficulty —the r;(co) has to be incorporated
into the self-energy of the original Green functions. This
problem has been encountered before in the study of
thermal conductivity in superconductors. There inelas-
tic processes such as phonon scattering were introduced
into the superconducting Green functions in an Eliash-
berg equation. One finds that, if we write

G (k, co) = 1

Z (co)co ek r3 Z—(co)b (—co)r,

then the decay rate I (co) is given by

Z, I (co) =2Z~(co —b f)—25,6~Z, ,

(31)

(32)

where Z=Z, +iZz and h=h&+iAz. For the impurity
Green function we used, this gives 1(co)=1/r, as one
might expect. In general, the Green function will be very
complicated and will probably only be known numerical-
ly. However, Ambegaokar and Woo found that the de-
cay rate due to inelastic phonon scattering in lead did not
differ much between normal and superconducting cases,
and so we may feel justified in using the same ~,- in both
cases. Thus we feel confident in using the same parame-
ters in both cases. Note that as long as superconductivity
persists, we must still have the limit I,- ((h.

suits in the physical limit I; &(5 are not temperature
dependent at low temperature since 6 is flat here, and so
this correction cannot easily be seen experimentally, un-
like the situation for weak localization in the normal
state.

We must also check that the elastic mean free path and
inelastic diffusion lengths are the same in both the normal
and superconducting states if we are going to compare
formulas and limits directly. In the normal case, I =vF~
is the elastic mean free path and I& ="v/D~; is the inelas-
tic diffusion length. Thus we need to see whether I and ~;
are different in normal and superconducting states. The
elastic mean free path can easily be calculated from a
Boltzmann-equation argument' and is found to be the
same as in the normal case. The lifetime ~ for low-lying
quasiparticles increases in the superconducting state, but
their velocity is lower than in the normal case by an ex-
actly compensating factor:

Ek
Tz(ek ) — T, Vz(ek ) — VF

k

2e
(/ —I)

e +i
1n( —)2+fr

e 1 1
( ———)

m'A I Ip

2e
HR

2

1n(cor)
2+%

e 1 co

I D

I /2

B. Physical picture

The weak-localization phenomena in superconductors
can be understood in a more physical manner by using
the picture developed by Bergmann' for weak localiza-
tion in normal metals. This picture interprets the
Langer-Neal diagrams as the interference terms between
two processes involving the coherent backscattering of
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electrons —the scattering of electrons in a momentum
state k to the momentum state —k. In the superconduct-
ing case, we can think of the localization as being due to
the backscattering of the "bare" Cooper pairs. The back-
scattering process reduces the ability of these bare Coop-
er pairs to carry supercurrent and so reduces n, . The
conductivity diagram is one of a family of diagrams re-
quired for charge conservation in which current vertices
are inserted into the maximally crossed diagrams in all
ways. These other diagrams are of higher order and so
need not be evaluated in our lowest-order calculation, but
they clearly show the Cooper-pair propagator being
dressed by backscattering processes to yield the final
"dressed" Cooper pairs. It is the latter objects that prop-
agate without scattering.

Calculating the change in n, for such a process should
lead to a term proportional to +&1/DQ as occurs in the
normal case. Then, for example, in 2D we end up with a
term of the form In(Qz/Q, ), where Q, and Qz are the
upper and lower momentum cutoffs. The appropriate
cutoffs then have to be provided by the theory.

In both the normal and superconducting states, the
lower length scale is the elastic mean free path as this is
the distance an electron moves before making a
collision —or, put another way, the spatial size of the
single-electron wave function. Thus the upper momen-
tum cutoff is Qz=1/l. In the normal state the upper
length scale is the distance an electron diffuses before
making a dephasing inelastic collision, i& =+Dr;, which
leads to a lower momentum cutoff of Q, =l/I&. This
leads to a weak-localization correction to the conductivi-

C. Exact eigenstate formula

For a system of particles in the presence of a one-body
potential, such as that due to a set of impurities, the
Hamiltonian is separable and we end up with a set of in-

dependent electrons with a energy spectrum c. . These
levels are filled up in order of increasing energy up to
some Fermi energy. Both the normal-state conductivity
and the number density of superconducting electrons can
then be related to matrix elements of the current operator
and, thus, to each other. We then have a relation from
which we can calculate superconducting properties given
the normal-state ones. '

We will now derive the appropriate relations. The
Green function for our system is

G(r, r';icoI )= 'd(r)d(r')
I COI

(33)

and we can substitute this into the usual formulas for
conductivity to get

ty in the 2D case proportional to —in(r; /r), as one finds
from the diagrams. In the superconducting case the
upper length scale is the size of the superconductor two-
electron wave function, the coherence length

~ =Q(ol =&D/b, leading to a lower momentum cutoff

Q&
= I/g. This then leads to a 6n, term proportional to

1n(b, w) as was found earlier. Similar results obtain in all
dimensions, since this picture just works by setting the
appropriate length scales.

K &(r, r', ice, ) =

where we define

e

2m

2
1 1 1 p„(r)p„p(r'),
P I idol —E~ icol + ico„—e„™a (34)

(35)

We now approximate the energy levels by a continuous spectrum and change variables to c=c.„,c'=c. —c„. Finally,
setting +~2N(0) fds gives

K &(r;r';iso, )= e

2m

2

2N(0) —g g JdE, . p„(r)p„~(r') .1 1 1

I m

(36)

Now, for the c, integration to be nonzero, we need col and col +~ to have opposite sign, so that
2

e 1 1K &(r, r', ice ) = 2N(0) —g +2mi, 6( co&) (6' Ic+o„)p„—(r)p„&(r'),
2m P ( 1 ci) e

and since

(37)

1 CO~—+6(—co, )6(co, +co )
=P, ' ' 2'

and o(i~ )=K(ice )/ice, we finally obtain

N(0)e 1
o i3(r, r', iso )= g p„(r)p„13(r') .

2m lcd +6, E,„

(38)

(39)
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To get the zero-momentum conductivity, we simply average over all impurity configurations and over all spatial posi-
tions r.

In the superconducting case we have a similar formula for the response function K,
2

K g(r, r', 0}= e

2m

1 1 1

f3 1 „1co1 E~ r3 67 1 LN1 eq1 3 57 1

™~
7

(40)

where the trace is over the Nambu-G'orkov matrix elements. Making the same substitutions as before leads to

—coi + ( E+ e )E'+ b,
K r, r', 0 =2N 0) —V V dE p„(r)p„p(r') .~P ' '

2r12 p ~ ~
( 2+ g2+ 2}[( + i)2+ g2+ 2] &~& nmP

Performing the c integral gives the result

(41)

1 1

i(~'+&') 2i (co,'+6 )'/'+c, —s 2i (co'+b, ')'/'+e —e
(42)

and since these two terms give equal results after summing over c, , we end up with

2 p ~ ~ 2+F2 2
~

( 2+g2)1/2+8 (43)

When this is averaged over all impurity configurations and all spatial positions r, this just yields n, e /m. We see that

n, e
cr [2i (co +b)' ,]

1ll P 1 Q)1++

By identical means we find a formula for E (q =0,i co„):

CO +CO

(CO, +b )' [(021+CO„) +b, ]'

(44)

(45)

If we now insert the known form for the frequency-
dependent normal-state conductivity [Eq. (29)] into Eqs.
(44) and (45), we reproduce our earlier results [Eqs. (21)
and (23)]. The exact eigenstate method can be used to ob-
tain any superconducting result from the corresponding
normal result in the case of a system with a one-body
potential —however, it cannot be used to discuss phonon
and Coulomb interactions, whereas the diagrammatic ap-
proach can. Thus the diagrammatic approach is not
made obsolete by the exact-eigenstate approach.
Equivalent exact-eigenstate formulas have been used in
previous papers by Ma and Lee, Kotliar and Kapitul-
nik, "and Ramakrjshnan.

Rp=
E

ln
2A

(47)

similar to Eq. (15) in Ref. 22. Similarly, in the 3D case
we have, for n„

(48}

giving a normal-state conductivity of

as we increase the elastic-scattering rate I, n, decreases
and equals zero at a value of I equivalent to normal-state
resistance,

IV. CONCLUSIONS

We have proved that there is indeed a weak-
localization correction to the number density of super-
conducting electrons. It does not have a strong tempera-
ture dependence at low temperature as a result of the
upper length scale being the coherence length rather than
the inelastic dephasing length. Let us see at which point
we would naively expect the extinction of superconduc-
tivity. In the case of a 2D film, n, is given by

t'

1 e
(3~5)1/2 ~ F (49)

2D 1 e
~min

(50)

for destruction of superconductivity. The results [Eqs.
(47) and (49)] should be compared to the results corre-
sponding to the Ioffe-Regel criterion in 2D and 3D:

mA
n, =mnb, r+ ln(4b, 2.) . .

2' (46)
3D

~min
1 e

IcF ~

If we assume this holds in the strong-localization region, We see that the results have the same scale in both
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cases —this is not surprising since these are the only di-
mensionally correct quantities in the strong-localization
limit. If we could believe the above formulas, this would
indicate that localization phenomena in metals and su-
perconductors should occur on the same resistance scale.

The simple arguments given above are not valid, since
we are using a weak-perturbation result far beyond its
realm of validity. A quick glance at the exact-eigenstate
formula shows that given any nonzero normal-state resis-
tance, we will obtain a nonzero n, . This is because we
have ignored fluctuations in the amplitude of the order
parameter 6 in deriving the exact-eigenstate formula.
Such fluctuations have also been ignored in the diagram-
matics since we have not considered how impurities affect
the magnitude of 6, which would involve solving an
Eliashberg equation in the presence of impurities. Takagi
and Kuroda have performed such a calculation, but a
fully self-consistent procedure is lacking. However, as
Ramakrishnan has pointed out, the above arguments do
yield the resistance scale at which crossover of supercon-
ducting coherence and localization lengths occurs. At
this point local fluctuations in the order parameter be-
come important, and it is these which finally extinguish
the superconductivity.

It seems to be borne out that localization in the super-
conducting case occurs on the resistance scales predicted
above by our simple model. There seem to be essentially
two types of experimental systems —granular and homo-
geneous. In the homogeneous case T, decreases as the
normal-state resistance increases until superconductivity
is extinguished; in the granular case T, does not vary
much, but the phase coherence between grains is des-
troyed, leading to loss of superconductivity. In other
words, in the homogeneous case the amplitude of the or-
der parameter is depressed; in the granular case its phase
coherence is destroyed. Both granular and homogene-
ous ' thin films show a transition to insulating behavior
at resistance R~ of order 10 kQ. It has been suggest-
ed ' that both types of films may make the transition at
the universal resistance R z =h /4e . Similarly, both
granular and homogeneous bulk superconductor s
show suppression of superconductivity when the normal-
state resistivity p is of order pM, the Mott resistivity.

It has been suggested ' ' that both types of thin-film
superconductors may make the superconducting-to-
insulating transition at a universal resistance of order
Rz =h /4e . Our theory does not agree with this as the
expression for the transition resistance is sample depen-
dent. The data for thin homogenous films of Pb and Al
in Ref. 9 suggest nonuniversality, but the whole question
of universality remains an open one.

{a)
P
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I
X
I
I
I

a pL tT

I
I
X
I
I

~I
7v T
0 P. cr

I
I
X
I
I

FIG. 2. (a) Cooperon and (b) the diffusion propagators in the
superconducting case.

The weak-localization results derived above can be re-
garded as the onset of the transition from superconductor
to insulator, in that they show how superconducting
transport is depressed by backscattering processes. These
processes are not sufficient to extinguish fully
superconductivity —this can only be accomplished by in-
cluding fluctuations in the order-parameter amplitude.
This requires a self-consistent analysis of localization
effects on the superconducting interaction itself, which
will be the subject of future work.
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APPENDIX

Calculating C and C'

We first evaluate C, which is given by

C=(I /2~) f de f G(k, z)G(Q —k, z) .—1 2
(A 1)

we get

Now, using the expansion of e& k for small Q near the
Fermi surface

(Q —k) k Q.k
~Q —k

=ek —Qv~x, (A2)
2m 2m m

z+ck73+67] 2+EQ k73+
G (k, z)G (Q —k, z}=

(z+Egr3+br~ )[z+(Ek —QvFx)r3+kr] ]

(ek —z +b, )[(ek —QvFx) —z +6 ]

[z + e( E —Qv~x }+b, ] + z(2e —Qv~x )r3+ 2z b r, + i ( QvFx )b rz

(E —z +b, )[(e—QvFx) z+b,]— (A3)
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so that

1 f 1 dx [z +E(E Qvzx)+b ]+z(2E Q—VFX)r3+2zbv, +i(QV~X)hr2

2' —1 2 (E —z +5 )[(E—QvFx}2 —z +Z ]
(A4)

The t2 and t3 components vanish as a result of oddness in the integrands, and upon performing the c integral in the nor-
mal manner we obtain

i 1 dx 6 +2hzt12

261t -12 261 621
1

UFX
2

(A5)

where we define E1=(z —Z )'/ with a positive imaginary part. We then expand this for small Q, since most contribu-
tion will come from near Q =0, to get

( uFx)f (6 +bzr1) 1+
261t 1 2 4E, 1

b +zbr1 DQ2r

[1—»r(z' —&')'/2](z' —b, ') [1—2i1-(z' —6')'/2]2

where we have used

(A6)

(z' ~')'"=(z' S—')'"+ ', —z/S=z/a .2t '

We next evaluate C' in the same manner as we evaluated C. By definition,

f 1 dx f (2 7E3+hr )[1z+( —E QvFx )r3+671]
(E —z +b )[(E—QvFx) —z +b ]

which can be expanded to give

[z E(E Qvpx)+6 ] (Qvpx )zr3+2zhr1 —1(2E—QVFX)hr2C'= dc
27Tt —1 2 (E —z +6 )[(E—Qu~x) —z +b, ]

(A7}

(Ag)

(A9)

Again, the t2 and t3 components both vanish because of oddness in the integrands. Upon evaluating the c integrals, we
obtain

l f 1 dx z +zkrl—2

C'=—
2E1r —1 2 E21 —'(QVFx)2

(A10)

which is exactly the same as C except 6 +zbr1~z +zbr1. Thus we finally obtain, after making the small Q expan-
sion,

C'=— z +2zht1 DQ21—
[1 2ir(z —g )

/ ][(z —g ) /2] [1—2i (Z2 —g2)1/2]2 (A 1 1}

Details of n, calculation

From Sec. II we have

n, e
Tr(r3Gg r3G'G r3Gg r3S },

4mrmN 0
1 (2~)3 (2~)3

(A12}

and performing the trace gives us

2cx

( E2 E2)2
(A13)

Performing the c integral gives

(A14)
n, e 2~D Q2 [1 2ir(z i3, )' ]—DQ r— —

~P ~ 1 (z —b, )[1—2ir(z2 —b2)'/ ] [1—2ir(z2 —6 )' ] —[[1 2ir(z b, )' ]—DQ r]——
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In the dirty limit, we set ~~0, and so the sum becomes

n e 4De 2
1

P + 2+ g2 + Dg 2+ 2(co2+ g2 )1/2
(A15)

1/kF l expansion

It is well known in the theory of weak localization that, in two dimensions, diagrammatic series form an expansion in
the small parameter I lkF1. [In d%2 dimensions, the expansion parameter is ( I lk~1) '.] To prove this we group dia-
grams so that we have an expansion in terms of diffusion and cooperon ladders and find that the order of a given term
in the expansion parameter is the number of loops in the diagram. One then has only to calculate the interaction ver-
tices for the new propagators. This is been done by Hikami ' in order to map the localization problem onto a nonlinear
o. model.

In the superconducting case diffusion and cooperon ladders add up in the same manner to yield effective propagators
I &~& and A &~&, which now have four matrix indices, as shown in Fig. 2. To calculate A, for example, we see that it
satisfies

0 0
Aatsys at3ys+ apyv go vs ep~s (A16)

where

(A17)

and

Ilp, =
3 Gp (p, t'cot)G„,(g p, ico—t+ico ) .

d p
(2~)

Solving the above yields

1 1 (z yo hy, ) (z'y—o
—b,y, )A= +3 +3

4 ~(p)p Dg2+( 2+ g2)1/2+ [( + )2+ g2)1/2 3 3
( 2+g2)1/2[( + )2~ g2)1/2

(A18)

(A19)

with a similar result for the diffusion case. Apart from the matrix structure and cutoff at energy 2A, this is of the same
form as in the normal case and leads to a I/kFl expansion. The interaction vertices are affected only in that they pick
up a matrix structure and smaller terms of order h~—their order in 1/kF I is unaffected.
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