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The mechanical stability of a flux-line lattice (FLL) having parameters appropriate for the high-T, su-
perconductors is determined using the self-consistent phonon theory of lattice dynamics. Nearly parallel
flux lines (FL’s) are assumed and FL pinning is neglected. The FLL becomes unstable when a phonon
frequency goes to zero. At instability the rms vibrational amplitude diverges and the FL’s can no longer
be localized. In Bi,Sr,CaCuO,0Qy, the instability line as a function of temperature and magnetic field lies

below but in reasonable agreement with the observed irreversibility line.

In YBa,Cu;0;, it lies

significantly below. The present instability line is a reliable upper bound to the FLL melting line. Iden-
tifying instability with melting, we find the Lindemann criterion of melting does not hold. However, the
present instability lines and the melting lines obtained by Houghton et al. are found to have similar

shape.

I. INTRODUCTION

Flux lines (FL’s) in high-temperature superconductors
(HTSC’s) display interesting dynamic,! ~® entangled, and
glassy!! 71® behavior. Since T, is high, the FL’s acquire
significant thermal energy in the superconducting phase.
The HTSC’s are extreme type-II superconductors having
a large Ginsburg-Landau ratio k=A/£. This means the
correlation length £ is small and that the interaction be-
tween the FL’s is quite well represented by the weak mag-
netic repulsion described by the London field equations.
The HTSC’s are also extremely anisotropic, having a
nearly layered structure. This layered structure may be
represented by an anisotropic effective mass. The weak
interaction combined with an anisotropic mass leads to
large thermal displacements of the FL’s below T, and to
interesting dynamic behavior.

To date, the HTSC’s have been divided into ‘“clean”
and “dirty” materials. In clean materials pinning of FL’s

by impurities and defects is neglected and the flux lines
form an ordered triangular lattice at low tempera-
ture.” ! Since 7, is high, this three-dimensional (3D)
flux-line lattice (FLL) melts as a result of thermal vibra-
tion well below T,.. The melting temperature T, is sensi-
tive to « and the anisotropic mass. Above T,, hexatic
and entangled FL phases have been proposed.®!* In dir-
ty materials, where pinning is dominant, the FL’s form a
glass!' 713 at low T. This glass also “melts” well'! 1317
below T,. Understanding this melting or depin-
ning*% 182! js a critical issue in high-T, superconducting
technology since, if the FL’s are mobile, there is energy
loss in the superconducting state.

We study the lattice dynamics and mechanical stability
of the FLL in clean HTSC’s, ignoring pinning interac-
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tions. We make the approximation of nearly straight
FL’s. Specifically, with the FL’s aligned along the z axis,
we assume that dr(z)/dz is small, where r(z) [r =(x,y)]
is the position of the FL in the x-y plane at height z. The
displacements of the FL’s from their lattice points can be
large, but the displacements are assumed to be smoothly
varying with height z. The phonon frequencies and elas-
tic constants are calculated using the FL interaction in
this approximation proposed by Brandt.?? Since phonon
frequencies throughout the Brillouin zone are evaluated,
the dispersive nature of the interaction is fully incor-
porated. Parameters appropriate to Bi,Sr,CaCu,0; (Bi-
Sr-Ca-Cu-0),” YBa,Cu;0, (Y-Ba-Cu-0),* and conven-
tional superconductors are considered (see Table I).

For Bi-Sr-Ca-Cu-O we find that the rms vibrational
amplitudes {(u?2)!/? are large with a typical Lindemann?®
ratio y =(u?)!2/a,=0.25, where a, is the triangular
lattice spacing. The FLL is mechanically unstable well
below T,. At the instability temperature T, the trans-
verse phonon frequencies go to zero and y— . The
phonon frequencies go to zero over a narrow temperature
range characteristic of a sharp transition. Above the
transition the FL’s are no longer localized and the FL’s
can “pass through” each other, much as in the disentan-
glement models of mobility."* The instability line T;(B)
lies below but in reasonable agreement with the observed?
reversibility (FL mobility) lines in Bi-Sr-Ca-Cu-O. T;(B)
lies farther below the reversibility line in Y-Ba-Cu-O.
However, the values for the upper critical field B ,(T)
used here are too low.

Below T; the FLL is very harmonic and the anhar-
monic nature is important only near instability. We find
that the Lindemann ratio y is not constant along the
T,(B) line; i.e., the Lindemann criterion?® that ¥ is con-

2409 ©1992 The American Physical Society



2410

stant at melting does not hold. However, the shape of the
melting line obtained by Houghton, Pelcovits, and
Sudbg’ using the Lindemann criterion is similar to that
found here. The present model and instability should
provide an upper bound to melting of the FLL.

In Sec. II we set out the model for the 3D FLL and
sketch the self-consistent phonon theory used to evaluate
the FLL dynamics. Results for the phonon dispersion
curves and the mechanical instability are presented in
Sec. ITI. Elastic properties are set out in Sec. IV. The re-
sults are discussed in Sec. V.

II. FLUX-LINE LATTICE AND MODEL

A. Flux-line lattice

We consider N nearly straight, parallel FL’s in a bulk
HTSC sample. We assume that the applied field B, paral-
lel to the c axis, penetrates the sample completely. The
sample has length L (parallel to c, the z axis) and area A4
in the x -y plane (see Fig. 1). The total flux B4 in the
sample is confined to the N FL’s, each line having a quan-
tum of flux ®y=h/2e=2.07X10""° Tm? B4 =N,
This requires a FL density n=N/A =B /®, We as-
sume a triangular FLL (see Fig. 1). The side of the trian-
gle (attice constant) a, is given by A/N=n""'
=(V'3/2)a}or

172 172

@

3 (1)

For a typical field, B =2.65 T=26.5 kG, a, =300 A.

The magnetic flux associated with each FL penetrates
a distance A=3000 A into the superconducting region
around the FL. There is magnetic energy stored in this
field. This leads to a “self-energy” of each line and to a
repulsive ‘“‘interaction” energy between lines resulting
from the overlap of the magnetic fields of neighboring
lines. These magnetic energies may be evaluated using
London’s field equations.?>?° For nearly straight, parallel
lines, the interaction potential is*2

G _Vo.
U2—~2—2 V("'f)_T_E. v(r;), (2)
ij L]
where Vy=®3/27\ u,,

—K, ‘i] , 3)

r

v(r)=K, {3\7

ap

FIG. 1. Triangular flux-line lattice.
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and
A=MT)/(1—=b)2 g=E/[2(1—b)])"%. )

The coefficient V|, sets the interaction energy per unit
length of the FL’s where py=47X10"7 W/(Am) is the
permeability of free space (T =W/m?). The first repul-
sive term in (3), K4(r /A"), comes from the magnetic ener-
gy.?® In (3), K,(x) is a modified Bessel function having
asymptotic values

172
m —X
-— e as x — oo ,
Ky(x)~ 2x
—In(x/2)—0.577 as x -0 . )
A’ is the field-dependent penetration depth

[b =B /B_(T)], where B.,(T)=B_(1—1t) is the upper
critical ~ field, MT)=A/(1—t*), and ¢—T/T..
&2=d,/2mB,, is the FL correlation length A =«E&.

The second attractive term K,(r /£’) ensures that v (7)
is finite when the FL cores overlap (r < &’). Brandt?? ob-
tained (2) from his general potential for arbitrarily shaped
FL’s by assuming nearly straight lines. For Bi-Sr-Ca-
Cu-0 we have used B,,=44 T, which is probably too
small. This gives a correlation length

172

® o
0 ~30 A . (6)

27B,,

é‘:

We have used k=A/£=95. Thus, in Bi-Sr-Ca-Cu-O, we
have here

A~ 10ag,~ 100£ . (7

In this case the magnetic field of one FL overlaps many
neighbors, A X 10a,, but the cores of the FL’s are well
separated, £~a,/10. The interaction is very long range
(see Fig. 2), and in the sum in (2) we have typically
summed over 30000 shells of FL’s.

".“\\ FL Interaction

v(r) / Vy

r/ ag

FIG. 2. Flux line pair potential V(r)/Vy=Ky(r/A")
—Ky(r/&') given by (3) for 0.01<b=0.5 using parameters
appropriate for Bi-Sr-Ca-Cu-O: B,,=44 T, £2=®,/(27B,,),
A=«kE, k=95, E=E/[2(1—-b)]""2, AM=A/(1—0)"2,
b =B /B.,, and lattice spacing aj =(§)'/2(¢0/B).
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The elastic or self-energy of a FL, €, may be obtained
from (2) and (3) by setting r =0. This gives

£,=V,lnk , (8)

which represents the stored magnetic energy per unit
length. If the end points of the FL are fixed and we dis-
place the FL at its midpoint in the x -y plane, the FL
length is increased. The energy associated with the in-
creased length &/ is 8E =¢,8/. For anisotropic materials
a closer analysis® shows that for displacements in the x -y
plane, €, should be replaced by

@
21Tkzﬂo

€ _
M,/M

Ink
M,/M ’

where M, and M are the effective mass parallel and per-
pendicular to the c axis.

Taking account of the self- and interaction energies,
the free energy of the FLL for an arbitrary location 7;(z)
of the FL’s is®

F _ 1 rL
kT*kaodz

2

dz

1
P>

+1 > 3 Vinz (10)

ij

—r;(z))

The first term is the stretching self-energy valid for dis-
placements r;(z) slowly varying with z, i.e., dr; /dz small.
The FL’s, however, can be displaced a large distance
from their lattice points. The interaction is “local” in z
in the sense that interaction between FL’s at the same
height z only is accounted for in (10). The local and
dr; /dz << 1 limits are valid for nearly straight FL’s.

B. Boson analogy

The free energy F/kT in (10) can be used to calculate
the classical partition function (configuration integral) for
the 3D FLL. A monolayer of bosons confined to the x -y
plane can be described by the action

1 s dr;
ﬁfo dr dr

1
M2

+1 5 > Velri(t)—r;(7))

ij

(1D

This action S may be used to evaluate the partition func-
tion of the bosons in a path-integral representation. Nel-
son and Seung® have emphasized that the 3D FLL and
the monolayer of bosons are identical (have identical par-
tition functions) if we set

vV, (12)

where €; and V are given by (9) and (2), respectively.
Thus we may “map” the 3D FLL onto a monolayer of
bosons. We have also taken L — o so that Bfi— «.
Thus the classical 3D FLL (at temperature T) having
infinite height corresponds to a monolayer of bosons at
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T =0 K. We have used this boson analogy to evaluate
the lattice dynamics of a monolayer of bosons having
mass M interacting via potential ¥V and translated this
back to the 3D FLL using (12). The boson interaction in
(11) is local in time.

C. Self-consistent phonons

The self-consistent theory of lattice dynamics for 2D
systems has been discussed extensively.?’” We sketch here
only the self-consistent harmonic (SCH) approximation.
In the SCH approximation, the frequency w,; of a pho-
non having wave vector q and branch A is given by the
usual harmonic result

Wl = MB ze(q,Me,,(q,MEH e Ry i),

(13)

where €(q,A) are the polarization vectors and R; are the
triangular lattice vectors. The SCH force constants ® g
are the usual second derivative of the potential ¥V aver-

aged over the vibrational displacements u; =r; —R; of the
FL’s from the lattice points, i.e.,
*Vy(ry;)
D olis )= = ) 14
wolin) ( S (14)

where u =u;;=u;—u; is the relative displacement. The
dependence of @4 on the vibrational displacements is a
key feature of the SCH approximation. We assume a
Gaussian vibrational distribution

( >=(272|A_,)—1/2fdue—(1/2)u-A"-u , (15)
having width given by
Aaﬁ(i,j)=<(u,‘_uj')a(ui_uj)B>
# iqR.. 1
= (1—e " Y)eylq,A)eglq,A)—
NM, qEA P
(16)

Equations (13)-(16) constitute the SCH approximation.
The equations are iterated until consistent. Except near
the instability (large B or large T), we found that the FLL
was very harmonic. This means that, although A(i,})
may be large, the Gaussian in (15) is well approximated
by a delta function 8(u;;). This is because the potential
V (r) is slowly varying with r.

The V(r) for different fields B is shown in Fig. 2. As
b =B /B,, increases, the potential becomes flatter and of
larger range. At a critical B and T, the V' (r) is so flat
that the FL’s can no longer be confined by V(7). In this
case the rms vibrational amplitude continues to increase
in the iterations of the SCH equations. At instability, ad-
jacent flux lines can pass through one another (parallel
flux-line cutting).

The Lindemann ratio y%=
directly from the o, as

(u?) /a} may be calculated
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2— ’2 = 21 2 #i (17)
ag aON A 2MBqu
= kT 1 (18)
Nao q,A Z?quk

Equation (17) is the T =0 K boson result, and in (18) we
have used (12). Indeed, the boson analogy can be
developed by requiring that ¢ be the same for the bosons
at 7=0 K and for the FLL at temperature 7. Equation
(18) can be reduced to the approximate result quoted by
Nelson and Sueng,8

n

2 kT | _n
47K

ag

) (19)

J

by retaining only the long-wave limit of the transverse
phonon frequencies, where u=cg=(Vyn /16)2 is an ap-
proximate transverse elastic constant, and allowing &;n to
play the role of the tilt modulus, K =c4 =¢€n, where
n=B/®,. We have found that (18) and (19) give compa-
rable values for y at low T and B.

III. PHONONS AND MECHANICAL STABILITY

The SCH phonon frequencies wg, describing the collec-
tive vibrations of the FLL in the x -y plane are shown in
Fig. 3 for Bi-Sr-Ca-Cu-O at T'=15 K in applied field
B=2.65 T. The parameters characterizing Bi-Sr-Ca-
Cu-O are listed in Table I. The “boson mass” is
My =%, /kT~(M,/M)"!, so that a large anisotropy
corresponds to a “light” FL and to large-amplitude vi-
bration. In Fig. 3 the dispersion curves run from the
center of the Brillouin zone (BZ) I" to the BZ edge K,
along the BZ edge from K to M and back to the BZ
center. The longitudinal (L) frequencies lie well above
the transverse (7) values, reflecting the large anisotropy
of the FLL; i.e., the longitudinal elastic constant is
A=cee~5X10°u. 2, may be viewed as diagonal, q-

q
0.06
HE. L
0.04
< E
<
c- X
3
oo2f i,
M
: r K
0 1 !
r K M r

FIG. 3. SCH phonon frequency dispersion curves in Bi-Sr-
Ca-Cu-O at T=15 K and B=2.65 T. T is the Brillouin-zone
center, and points K and M are at the zone edge. The wg, are in
(length) ~', the units in the corresponding boson model.
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TABLE I. Parameters used to represent Bi-Sr-Ca-Cu-O and
Y-Ba-Cu-O (see Refs. 9, 23, and 24).

Tc BCZ

(K) (T) K M,/M
Bi-Sr-Ca-Cu-O 87 44 95 3600
Y-Ba-Cu-O 87 44 50 25

dependent elastic constants. At 7=15 K the SCH and
harmonic (H) frequencies are identical and the Lin-
demann ratio is ¥ =0.20. This shows that even for large
v the FLL dynamics is harmonic, which follows from the
smooth potential shown in Fig. 2. We have also evalu-
ated the cubic anharmonic contribution to wg, and found
it negligible.

In Fig. 4 we show y(T) at B=2.65 T (a,=300 A,
A=3000 A) calculated in the harmonic approximation
from (18) in Bi-Sr-Ca-Cu-O as a function of 7. There we
see y(T) is large. In the harmonic approximation (HA)
for purely T-independent parameters, y(T) is proportion-
al to V'T. There is significant departure from V'T at
higher T since B.,(T) and A'(T) depend on T. At T =62
K, y(T) diverges, reflecting the temperature at which the
harmonic transverse elastic constant p g —0.

In Fig. 5 we show the SCH frequencies in Bi-Sr-Ca-
Cu-O for B =2.65 T and T =22 K right on the instability
line. Shown are wg from four consecutive iterations
(1,2,3,4) of the SCH equations. Iteration one (1) is the
harmonic limit. In successive iterations the oy, decrease
until on the fourth iteration most of the transverse fre-
quencies @,r have become imaginary [a)é;t in (13) be-
comes negative]. At this B and T, the FLL is unstable to
vibration. The corresponding Lindemann ratio calculat-
ed from (17) diverges, and the FL’s can no longer be lo-
calized. We have found that instability is sudden, occur-
ring over a narrow range of 7 and B. Right up to the in-
stability, the dynamics is very harmonic. At instability
the interaction potential is not steep enough to confine
the FL’s at their lattice points.

0.8 T
| |
|
06 Harmonic |
FLL |
+ B=2.64T }
E o4t |
& [
r |
|
0.2+ |
| T
B |
0 Il l
0 5 10
VT (K%)
FIG. 4. Lindemann ratio y=<(u*)""?*/a,

in Bi-Sr-Ca-Cu-O in the harmonic approximation (HA). In the
HA with T-independent parameters, ¥ <V T. The vertical
dashed line indicates 7; in the HA where y diverges.
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FIG. 5. Self-consistent harmonic (SCH) dispersion curves in
Bi-Sr-Ca-Cu-O at T=22 K and B =2.65 T, showing FLL insta-
bility. As Egs. (13), (14), and (16) are iterated, the transverse (7)
frequencies decrease in value in successive iterations (1,2,3,4)
until on iteration 4 the w,r—0. The corresponding y given by
(18) in each iteration is listed.

The FLL instability line in Bi-Sr-Ca-Cu-O obtained
here in the SCH approximation is shown in Fig. 6 as a
solid line with squares. The numbers on the line are the
Lindemann ratio just below instability. We see that the
Lindemann ratio is not constant at instability, varying
from 0.17 to 0.30 in the range shown. The SCH instabili-
ty line lies well below B_,(T) and below the irreversibility
line observed by Gammel et al.!> The solid line with dia-
monds shows a melting line calculated by Ma and Chui?®
using the same parameters as in Table I for Bi-Sr-Ca-Cu-
O. This is a Monte Carlo calculation which uses the
same potential (1), but does not make the approximation
of nearly straight FL’s or the SCH approximation. We
expect the present instability to be an upper bound to

100

80

60

40

B (kG)

20

T(K)

FIG. 6. FLL instability line in Bi-Sr-Ca-Cu-O (B,,=44 T,
k=95, M,/M =3600, and T,=87 K) calculated here in the
SCH approximation (solid line with squares). The solid line
with diamonds is the FLL melting line calculated by Ma and
Chui (Ref. 28) without assuming nearly straight FL’s. The solid
line with triangles is the observed reversibility line identified
with the onset of free motion of the FL’s (Ref. 2). The numbers
are the Lindemann ratio ¥ immediately below the instability.
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FIG. 7. As in Fig. 6 for Y-Ba-Cu-O (B,=44 T, k=50,
M,/M=25,and T, =87 K).

B (kG)

melting; i.e., the lattice might melt for thermodynamic
reasons before it becomes mechanically unstable. Also,
the SCH approximation itself gives an upper limit to in-
stability.”’ We believe this is a close limit for the present
potential since higher anharmonic terms make a negligi-
ble contribution. Assuming nearly straight FL’s leads to
a stiffer and more stable FLL. For all these reasons, the
present instability is an upper bound to the FLL melting
line. Comparison with Ma and Chui?® suggests that the
present upper bound is reasonably close to the actual
melting line.

From Fig. 6 we see that the calculated instability or
melting line lies below experiment. This could be due to
the low value of B, used here. A higher B, would scale
the instability to higher B. Or it may be that the ob-
served reversibility is not associated with melting, but
rather with depinning in the FL liquid.>*!®

In Fig. 7 we show the instability line in Y-Ba-Cu-O.
Again, we see that the Lindemann ratio is not constant at
instability. In Y-Ba-Cu-O, y(T,B) is significantly smaller
because the boson mass (M /M, ) is larger in Y-Ba-Cu-O.
The smaller ¥ apparently leads to a nearly straight melt-
ing line. In Y-Ba-Cu-O the instability line lies ~25 K
below the observed reversibility line at B~5 T. This
difference is ~10 K in Bi-Sr-Ca-Cu-O.

IV. ELASTIC CONSTANTS

The elastic constants in the SCH approximation may
be calculated from the long-wave limit of the SCH disper-
sion curves shown in Figs. 3 and 5. From the dispersion
curves in Fig. 5, we see that the transverse frequencies at
low Q vanish at the instability. Thus the corresponding
transverse elastic constant pt=c¢q vanishes at the instabil-
ity in the SCH approximation.

We have found that u also vanishes in the HA, but at a
hizgzher temperature than in the SCH case. In the HA, u
is
Von
16

Uy =

S [R"(R;)+3Rv'(R;)] .

i

(20)

By direct evaluation of this sum, u(7,B) can be calculat-
ed in the present model. As a check we confirmed that
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FIG. 8. Transverse elastic constant u=c¢ of the FLL in Bi-
Sr-Ca-Cu-O in the self-consistent harmonic (SCH) and harmon-
ic (H) approximations. Also shown in pgyp, the Fetter, Hohen-
berg, and Pincus-(Ref. 30) expression pu=(n®3/27A"*uy)/8,
where n =B /®,. The upper figure shows u at constant 7" vs B
and the lower figure u at constant B vs T.

the direct evaluation of (20) agreed with uy(T,B) evalu-
ated from the long-wave limit of the harmonic wgr. In
Fig. 8 we show u(10 K, B) and u at constant B =2.65 T
vs T, u(T,265T) in the SCH and H approximations. For
comparison we have plotted p derived by Fetter, Hohen-
berg, and Pincus,°

[ Von
HFap ™~ l—1-6_

DB ,(T)
2\ 016

2b(1—-0b), 21

where B_,(T)=B_,(0)(1—t) and b=B/B,_,. Clearly, (20)
and (21) agree well at low T and low B. The temperature
dependence of ppyp comes predominantly from B ,(T)
and less so from A(T). From Fig. 8 we see that uy in (20)
vanishes below 7. and below B_,. The pgyp is finite
essentially over the whole superconducting range. Thus
the present model of nearly straight flux lines interacting
via the interaction (2) predicts that the FLL is mechani-
cally unstable (u g =0) below T, in the harmonic approxi-
mation. This instability occurs above the mechanical in-
stability already predicted by the more complete SCH ap-
proximation and so is of academic interest only. The
lines puy(T,B)=0 for Bi-Sr-Ca-Cu-O and Y-Ba-Cu-O are
set out in Fig. 9.

0
30 40 50 60
T(K)

FIG. 9. Instability of the FLL in the harmonic approxima-
tion identified by vanishing of the harmonic transverse elastic
constant ©=cg. The upper-figure is Bi-Sr-Ca-Cu-O and the
lower figure is Y-Ba-Cu-O.

90

The longitudinal elastic constant A (c;; =A+2u) can
also be calculated. This A is typically 5X10° times
greater than pu (c;; =A), reflecting the large anisotropy.
Direct evaluation of A from V (r) agreed well with

For example, we obtained A =5.54 X 10°J/m3 at B =2.64
T and T =22 K. The A is temperature independent ex-
cept right near T,, since the penetration length is
MT)=A0)(1—1%'"2

Finally, we have evaluated the instability line for a
“conventional” type-II superconductor, represented by
B.,=4T,K=3, M,/M=1, and T,=10 K. In this case
the Lindemann ratio is very small, ¥ ~0.005. The FLL is
unstable below but close to B,,(T) for this case. Since ¥
is so small, the FLL is very harmonic and the instability
line in the SCH and the harmonic (H) approximations are
identical. The present model is less appropriate for con-
ventional superconductors since £ and A=«§ are compa-
rable.

V. DISCUSSION

The Lindemann ratio y found here near the FLL insta-
bility is largest for Bi-Sr-Ca-Cu-O (y ~0.3) and smallest
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in the conventional superconductors (y=0.01). y is a
sensitive function of M, /M and «, particularly of M, /M.
If M,/M is large, the stretching modulus &, is small.
This means that the FL can be displaced with little in-
crease in energy and large vibrational amplitudes are pos-
sible. The corresponding boson mass Mgz =(#/kT)E, is
small, leading to a large kinetic energy and large values of
(u?) in the boson model.

When y is small the instability in the harmonic ap-
proximation, identified as the point where the harmonic
transverse elastic constant py(T,B)=0, coincides or
nearly coincides with the instability in the SCH approxi-
mation. This is the case for conventional superconduc-
tors and nearly so for Y-Ba-Cu-O (compare Figs. 7 and
9). For smaller ¥ and in the harmonic approximation,
the instability line is nearly straight, e.g., Figs. 7 and 10.
In Bi-Sr-Ca-Cu-O, v is significantly larger. In this case
the SCH instability line differs significantly from the har-
monic result. The SCH instability line of Bi-Sr-Ca-Cu-O,
shown in Fig. 6, is also curved. Thus the shape of the in-
stability line appears to depend on y (on M,/M). The
only difference between Bi-Sr-Ca-Cu-O and Y-Ba-Cu-O
here are the values of M, /M and «.

We have found that the Lindemann ratio is not con-
stant at instability. It differs by a factor of 2 in a given
material, as T or B is varied, and differs by an order of
magnitude from material to material, e.g., Bi-Sr-Ca-Cu-O
to conventional superconductors. In other solids the Lin-
demann criterion of melting appears to hold in the classi-
cal limit. That is, for crystals melting at temperatures
where quantum effects are negligible, melting takes place
when y=0.16, independent of the material.3!73* A
specific example is the Wigner crystal.>* However, when
melting takes place when quantum effects are important,
Y is not constant. For example, in solid helium
y=0.25-0.35, in the Wigner crystal®® at T=0 K,
Y=0.33, and for the Gaussian core model,
0.04 <y <0.35 at melting.?® Thus it is not clear whether
a Lindemann criterion is expected for the FLL and we do
not find one here. In spite of this, it is interesting that
Houghton, Pelcovits, and Sudbg’ obtained melting curves
in Bi-Sr-Ca-Cu-O and Y-Ba-Cu-O using the Lindemann
criteria having shapes similar to those found here in Figs.
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FIG. 10. Instability line in a conventional superconductor
(B;;=4 T, k=3, M,/M,=1, and T.=10 K). In this case the

FLL is very nearly harmonic (y $0.01) and the SCH and H ap-
proximations are identical.
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6 and 7. This needs further study. We have also investi-
gated the square FLL and found that it was unstable
(ug=0) at all T and B.

In the SCH approximation, we believe the instability
takes place when the potential can no longer confine the
FL’s to lattice points. At instability the FL’s can pass
through each other. As seen from Fig. 2, the FL interac-
tion does not have a “hard core” preventing overlap of
the FL’s. As T increases and {u?2) increases, a critical
temperature is reached when the FL can no longer be
contained by the soft core potential and FL’s can pass
through one another. To check this point, we added a
narrow hard core of height ¥ /V,=10° to ¥ (r) in Fig. 2.
With the hard core, the instability temperature increased
by more than a factor of 2 and the character of the insta-
bility changed significantly. We identify instability with
FL’s passing through each other much as in disentangle-
ment models of melting.'*

The upper critical field B.,=44 T used here is too
low.3® Since the field B enters the present model as
b =B/B,,, increasing B,, would scale our instability line
to higher B values. Indeed, we have found that, at con-
stant temperature, the field B at which instability takes
place is directly proportional to B,,. Only £ in (6) de-
pends on B_, itself, and the instability is relatively insensi-
tive to £&. Once B,, is known, this scaling can be made.
This will bring our instability lines into better agreement
with the observed irreversibility lines.

As noted, we have used a local interaction in (2) and
(10). This means that interaction between FL’s at the
same height z only is considered. In a nonlocal interac-
tion, interactions between FL’s at different heights,
v(ri(z;)—r;(z;)), are incorporated. If the FL’s are nearly
straight, the nonlocal expression reduces to the local re-
sult (2). Using a local interaction generally leads to stiffer
elastic properties.>’’ Thus the present instability is an
upper limit to the nonlocal case. Instability is also an
upper limit to melting. These points are consistent with
the melting line obtained by Ma and Chui,?® who used
the corresponding nonlocal potential, lying somewhat
below the present instability line as shown in Fig. 6. We
emphasize that the boson analogy can be carried through
for a nonlocal interaction. It leads to an interaction in
(11), which is nonlocal in time, and to a more complicat-
ed kinetic energy, reflecting the anisotropy of the interac-
tion. Path integrals with nonlocal interactions have
proved useful in many instances. An important next step
is to incorporate the nonlocal interaction®® in the FLL
dynamics.

We have also neglected pinning of FL’s. The observed
irreversibility line has been interpreted®®~#>37 as thermal-
ly activated depinning of FL’s rather than melting. Oth-
er measurements*>* of the irreversibility line in single-
crystal Y-Ba-Cu-O, often interpreted’’ as a depinning
line, lie above but close to the line observed by Gammel
et al.? shown here in Fig. 7. An important step would be
to incorporate pinning of the FL’s in the present model.
Simulations!’ suggest that in the presence of pinning, the
FLL melting line is depressed to lower temperature.

Civale, Worthington, and Gupta*’ have reported an in-
teresting dependence of the irreversibility line with thick-
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ness in Y-Ba-Cu-O films. As the thickness is reduced, the
irreversibility line moves to lower temperature. This
dependence can be understood within FLL melting and
the boson model. Comparing (10) and (11), the FLL
thickness L corresponds to #/kT in the boson model. A
finite L, corresponds to a finite T a smaller L corre-
sponds to higher T in the boson model. Thus we would
expect the FLL to melt more readily as L is reduced.

Thermal melting in crystals can generally be related to
the Debye temperature or some other characteristic tem-
perature, say, T,, ~®p (T,, =a®p ). In the boson model,
L=*#/kTor T,,—(#/k)L,,'. The Debye temperature
is ®p =fiwp /k. Thus we have

a = & =wpL,,

T

m

L,=1/awp .

The characteristic wp in Y-Ba-Cu-O we find here is
®p~0.005 A™! or L ~200 A with a=1. The observed
decrease in the irreversibility line begins at L ~1000 A in
Y-Ba-Cu-O, which is the same order. In Bi-Sr-Ca-Cu-O
we find that wp ~0.05 A~ (see Figs. 3 and 5 where the
maximum g, ~0.055 AN, Thus, in Bi-Sr-Ca-Cu-O,

H. R. GLYDE, L. K. MOLEKO, AND P. FINDEISEN 45

this argument suggests that the onset of the thickness
dependence of the irreversibility line due to “finite tem-
perature melting in the boson model” will begin at
L ~100 A. Thus, if irreversibility is partially related to
FLL melting, there should be a significant difference in
the onset of the thickness dependence of T, between Y-
Ba-Cu-O and Bi-Sr-Ca-Cu-O. FLL stability in films is
the subject of a forthcoming paper.

In conclusion, we have obtained an instability limit for
the FLL. This represents an upper limit to the FLL
melting line. The instability line lies below the observed
reversibility line in Bi-Sr-Ca-Cu-O and Y-Ba-Cu-O. One
reason that the present instability line is too low is be-
cause we have used a low value of B.,=44 T. The
present model depends on b =B /B, and can be scaled to
higher B when B,, is known. Although we find that the
Lindemann criterion does not hold, the shape of the
“melting” lines obtained here is similar to that obtained
by Houghton, Pelcovits, and Sudbg.
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