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Weak-coupling model of spin fluctuations in the superconducting state of the layered cuprates
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Previous work on the modeling of normal-state spin fluctuations in YBa2Cu307 is extended to the su-

perconducting state. In this paper the effect of superconductivity on the spin fluctuations is approxi-
mately treated by using the BCS result for the irreducible susceptibility that enters the random-phase-
approximation expression for the dynamic spin susceptibility. The resulting susceptibility is then used to
calculate Cu(2) and O(2,3) Knight shifts and nuclear relaxation rates. Calculations are done using both
s- and d-wave gap symmetries. A comparison of the results with the experimental NMR data on
YBa&Cu307 is presented.

I. INTRODUCTION

NMR measurements of nuclear relaxation rates and
Knight shifts provide a microscopic probe of the low-
frequency spin fluctuations on the CuOz sheets of the
high-temperature superconductors. ' From the Knight
shifts and the anisotropy of the Cu(2) relaxation rates, a
model of the hyperfine couplings has been constructed.
Using these couplings it has been shown that a random-
phase approximation (RPA) form for the electronic spin
susceptibility y(q, co) can be adjusted to give a reasonably
quantitative fit to the normal state NMR data on
YBazCu307. Here we attempt to extend this work on
the normal state to the superconducting state by includ-
ing the effects of a superconducting gap and coherence
factors in computing the irreducible part of the suscepti-
bility that enters the RPA expression. This is the sim-
plest modification one can make to the normal state
theory which takes into account both the spin fluctua-
tions and the pairing correlations. Just as in our previous
RPA calculations for the normal state, we view this ap-
proach as providing an approximate framework for relat-
ed experimental results to the structure of the underlying
spin fluctuations. In particular, here we are interested in
understanding the way in which the spin fluctuations
change in the superconducting state and the effects of
different gap symmetries on the Knight shifts and nuclear
spin relaxation rates. ' In addition, we are interested in
exploring the limitations of this approach.

In Sec. II, we begin by discussing the modified RPA
form which will be used to model the dynamic spin sus-
ceptibility of the super conducting state. Using this
parametrized susceptibility, in Sec. III we calculate the
Knight shifts for s- and d-wave gaps and examine the in-
terplay of the Stoner enhancement and superconductivi-
ty. The nuclear relaxation rates for Cu(2) and O(2, 3) nu-
clei are discussed in Sec. IV. In the one-band model that
we are using, the Cu(2) and O(2, 3) nuclear spins are cou-
pled to the same susceptibility with different form factors.
While the O(2,3) nuclear relaxation rate is isotropic, the
Cu(2) relaxation rate is anisotropic and depends on
whether the external magnetic field H lays in the ab plane

or is oriented along the c axis, with the corresponding re-
laxation rates (T, ),b and (T, )„respectively. Experi-
mentally, (T, '),b, (Ti ')„and (T, ')o do not have
Hebel-Slichter peaks below T„but rather show a rapid
decrease as T drops below T, . In addition, the observed
Cu(2) anisotropy, ' '" (T, '), lb(T, ')„and the Cu(2) to
O(2, 3) anisotropy ratio' (T, '), l(T& ')o exhibit unusual
temperature variations as T/T, decreases. In Sec. IV we
examine this anisotropy and its possible relationship to
the symmetry and magnitude of the gap. Section V con-
tains a summary of our conclusions.

II. DYNAMIC SPIN SUSCEPTIBILITY FOR T & T,

In previous work on the normal state we used as RPA
form for the susceptibility y(q, co) given by
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FIG. 1. Static susceptibility yo(q, O) vs q along a path from I
to X to M to I" in the Brillouin zone for an s-wave gap as T is
lowered below T, . Here the amplitude of the superconducting
gap is 260=3.52kT, .
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to describe the spin dynamics in the metallic regime of
the layered cuprates. Here go(q, co) is the noninteracting
susceptibility and U is a reduced Coulomb repulsion,
which is assumed to be renormalized due to particle-
particle correlations. The strength of antiferromagnetic
(AF) fluctuations required to fit the normal state NMR
data was adjusted by varying U and the filling (n ). In

I

the normal state we were able to fit the data on the Cu(2)
and O(2, 3) relaxation rates and the Cu(2) anisotropy on
YBazCu3O7 by using U=2t and (n) =0.86. Here we

will continue to use these values for U and (n ).
In order to model y(q, co) below T„we use the RPA

form of Eq. (1) with the irreducible BCS susceptibility

yo(q, co) given by
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This expression contains the usual coherence factors
which are in square brackets, the dispersion relation
E =Qe+b, l and E = —2t(cosp„+cospz) —p, with p
the chemical potential and 6 the gap. For the gap we
will examine both an s-wave form, b,~=6,o(T), and a d-

wave form, ~, =Id,o(T)/2](cosp, —cosp ), with a BCS
temperature dependence for ho(T). In addition, a finite
broadening I was used to model lifetime effects and con-
trol Hebel-Slichter logarithmic divergences. ' ' In a
physical system this broadening would be due to the
effects of spin fluctuations on the quasiparticle self-

energy. We have taken for the superconducting transi-
tion temperature T, =0.1t. At T=0.1t the normal state

g(q, co) has enough AF weight to give the right magni-
tude for Cu(2) relaxation rates measured at about 100 K
in YBa2Cu307.

In Fig. 1 we show the effects of an s-wave supercon-
ducting gap on yo(q, co=0) at temperatures below T, .
We see that an s-wave gap suppresses yo(q, O) over much

of the Brillouin zone. There is a strong suppression of

Imp(q, co)

CO CO~0

Imgo(q, co)/A@I„

I:1—UXo(q 0) I'
(3)

a decrease in yo(Q, O) can give rise to a significant de-

I

yo(q-0, 0) for Iql ~ ksc' where gsc is the superconduct-
ing correlation length gsc=0. 18fiUF/', . This reflects the
singlet pair formation which occurs below T, . In addi-
tion, yo(q, O) is suppressed for q-Q=(n. , m) as the gap
opens, which causes the AF part of the RPA susceptibili-
ty to decrease rapidly. This can be understood by realiz-
ing that if, for example, 2b, (0)=4kT„ then the smearing
of the Fermi surface when the system is fully supercon-
ducting is similar to the normal state at a temperature
2b, (0)-400 K. Thus as T decreases below T, and the

gap opens, there is a rapid decrease in yo(q-Q, O). Since,
as discussed in Sec. IV, the spectral weight which deter-
mines the nuclear spin relaxation varies as the imaginary
part of Eq. (1)
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FIG. 2. Static susceptibility go(q, 0) vs q in the Brillouin zone
for a d-wave gap as T is lowered below T, . Here 26O= 3.52kT, .

FIG. 3. Do(q) = lim o Imgo(q, co) /co vs T/T, at q
=(0.05~,0) for s- and d-wave gaps. Here 26o=3.52kT, . Here
and in Fig. 4 a broadening I =0.3T, has been used to control
the Hebel-Slichter logarithmic singularity.
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crease in the size of the antiferromagnetic spin Auctua-
tions through the factor [ I —Uyo(q, O) j

As seen in Fig. 2, for a d-wave gap the situation is
different, and go(q, O) gets suppressed only for
~q~

~ I/gsc. The lack of suppression for q-(m. , m. ) is due
to the nodes of the d-wave gap. Consequently, important
AF spin Auctuations continue to exist in the d-wave su-
perconducting state in contrast with their suppression for
an s-wave gap.

As shown in Eq. (3), another factor that enters the ex-
pression for T, ' is

3
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In Fig. 3 we show Do(q) versus T at a small wave vector
q=(0.05m, O) for gaps with s- and d-wave sytnmetries. A
similar plot is given in Fig. 4 for q-q' -=(n.,0.9n. ), which
is in the AF region of the Brillouin zone. The wave vec-
tor q' is the point where yo(q, O) peaks at low tempera-
tures and can connect two nearly nested regions of the
Fermi surface of the tight-binding model for the filling of
( n ) =0.86. For an s-wave gap Do(q) has a
Hebel —Slichter-like peak below T, at both small and
large wave vectors. Do(q) has a similar peak for a d-

wave gap at q= (0.05m. , O), however it is quite different at
q-q . At this latter wave vector, Do(q) does not have a
peak below T, for a d-wave gap and in addition exhibits a
substantial spectral weight even at low temperatures.
These features arise for a d-wave gap because of the
nodes on the Fermi surface and the behavior of the
coherence factors.

Finally, in this section, we show the superconducting
density of states

T

1+ 5(co Ez ), co )0—,1 1 &p

N 2 E

0 I I

-O.e -O.4 -O.2 0
t

I

0.2
I

0.4 O.B

for both s- and d-wave gaps. In Fig. 5, Ns(co) is shown
for an s-wave gap of magnitude 50=0.2t and different
values of the broadening parameter I . For I =0, Ns(co)
has a square-root singularity for an s-wave gap. The
second peak seen for co)0 in Fig. 5 is due to the van
Hove logarithmic singularity of the tight-binding model
in two dimensions.

In Fig. 6, Ns(co) is shown for a d-wave gap. A d-wave

gap gives rise to a logarithmic singularity in the super-
conducting density of states at 50 in addition to the van
Hove singularity of the tight-binding model. Ns(co) for a
d-wave gap is linear in co as co—+0.

FIG. 5. Superconducting density of states N&(co) vs co for
U =0 with an s-wave gap. Here, N&(co) is shown for hp=0. 20t,
JM= —0.30t, and difference values of r. At T =0.10t a chemical
potential of p, = 0 30—t co.rresponds to ( n ) =0.86.
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FIG- 4. Dp(q) =lim„p Imp(q, co) /co vs T/T, at q
=(m.,0.9~) for s- and d-wave gaps. Here 26p=3. 52kT, .

FIG. 6. Superconducting density of states Nz(co) vs cu for
U =0 with a d-wave gap. Here N~(co) is shown for bp=0. 20t,

p = —0.30t, and different values of I .
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III. KNIGHT SHIFT 1.2

The spin contribution to the Knight shift Ks(T) is pro-
portional to y(q —+0,0). Here we will try to fit the experi-
mental data for the temperature dependence of the Cu(2)
and O(2, 3) Knight shifts by using bo as a free parameter
for both s- and d-wave gaps.

First consider the case of an s-wave gap. In Fig. 7,
Ks(T)/Ks(T, ) versus T/T, is plotted for U=O with
different gap amplitudes. This is just the well-known Yo-
sida' result

Bf(Ep)
yo(q~0, 0)= ——gE BE

for a tight-binding band. As T-O, Ks(T) decays ex-
ponentially. The points in the figure are the experimental
data of Takigawa et al. ' ' and Barrett et al. ' We see
that for U=O, Kz(T) calculated using 2b,0-5kT, pro-
vides a reasonable fit to the data.

When the Coulomb interaction U is present, the
Knight shift is proportional to
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In Eq. (7) the Yosida function for a tight-binding band
enters both the numerator and the denominator. In this
case, as T decreases below T, and go decreases,
y(q~0, 0) is further reduced by the decrease in the Ston-
er enhancement factor [I—Uyo(0, 0)] ' in Eq. (7) for the
parameters used here, U=2t and (n ) =0.86, the Stoner
enhancement in the normal state at T =0.1t is 1.75. Re-
sults' for U=2t are shown in Figs. 8(a) and 8(b). In this
case the fit is good for an s wave gap, if we use
26O=4kT, .

Next we analyze the data using a d-wave gap. In Fig.
9, Ks(T)/Ks(T ) versus T/T, is shown for U=O. We
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FIG. 8. Knight shift K&(T)/Ks(T, ) vs T/T, using an s-wave

gap for U =2t and (a) the same values of bp as shown in Fig. 7;
(b) a finer mesh of gap values near 25p=4kT, . The Stoner fac-
tor for UWO leads to a more rapid decrease in Ks(T)/Ks(T, )

for a given value of the gap so that a smaller value of 2hp can be
used. A gap amplitude of 25p=4kT provides a good fit to the
data.
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FIG. 7. Knight shift K&( T) /K&( T, ) vs T/T, using an s-wave

gap for U=0 and various values of hp. The points represent
the experimental data by Takigawa et al. (Refs. 16 and 17) on
O(2, 3) and Barrett et al. (Ref. 18) on Cu(2).
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FIG. 9. Knight shift Ks(T)/Ks(T, ) vs T/T, using a d-wave

gap for U =0 and various values of Ap.
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FIG. 10. Knight shift K&(T)/K&(T, j vs T/T, using a d-wave

gap for U =2t and various values of ho.

where the linear temperature dependence arises from the
nodes of the d-wave gap.

In conclusion, using the modified RPA form for
y(q, co) given by Eqs. (1) and (2) with the parameters
U=2t and (n }=0.86, which were used to fit the normal
state NMR data, the Knight shift data favors an s-wave

gap with an amplitude 2ho of order 4kT, . However, one
should keep in mind that the experimental data has error
bars and Kz has been obtained by assuming a tempera-
ture independent orbital contribution to the total Knight
shift. Thus the lowest temperature Cu(2} point is very
important. In addition, a small error in the value of the
low temperature orbital contribution for O(2, 3), which
shifts the zero down by less than 10%, would in fact
favor a linear temperature dependence at low tempera-
ture for the O(2, 3) Knight shift. Finally, throughout this
work we must keep in mind that we are testing whether
the simple form of y(q, co) provided by Eqs. (1) and (2) is
sufficient to provide a description of both the spin-
fluctuation and pairing correlations which exist for
T&T, .

k, T
yo(q~0, 0)-0.22

0
(8)

see that a gap of 2ho= 8kT, can fit the data for T close to
T, but fails at lower temperatures. Results with U=2t
are shown in Fig. 10. In this case, a gap amplitude of
26O= 6kT, can fit the data near T, . However just as for
the U =0 results, it appears difficult to fit the data at low
reduced temperatures with a d-wave gap. The experi-
mental temperature dependence of Es(T) appears to
have a vanishing slope at T =0. This is in contrast to the
behavior of yo(q~0, 0) for a d-wave gap

IV. NUCLEAR RELAXATION RATE

The nuclear relaxation rate is given, with the appropri-
ate form factors and nuclear gyromagnetic ratios, by

T, '=y'(gp )' g lA(q)l'
k, T

q N~O

For Cu(2) we use a hyperfine Hamiltonian, in which the
Cu(2) nuclear spin has an anisotropic hyperfine coupling
to the onsite Cu(2) spin and an isotropic transferred
hyperfine coupling to the spins on the four neighboring
Cu(2) sites. The resulting form factor depends on the
orientation of the magnetic field:

[—,'(1—a„„) 4by ] + ,'(1—+a„„), H—llab,
}I'/A.'. = (, +4by }' (10)

where a„=A„„/l A„l, b =B/l A„l, and yq= ,'(cosq-
+cosq ). For O(2,3) nuclei we assume only an isotropic
transferred hyperfine coupling to the spins localized on
the Cu sites. Hence, the oxygen form factor is isotropic
and is given by

4cos (q„/2),
l Ao(q) I'/A Q 4 p( /2)

Experimentally, ICs(T) with Hllc, which is proportional
to ( A„+4B)g(q~0, 0), is very small. ' ' This requires
that b—=0.25. There is experimental uncertainty in the
value of a„,and we have studied values ranging from 0.4
to 0.0. Since we are only trying to fit the qualitative
features of the experiments we will use a =0.4. ' Also,
when we are plotting the relaxation rates, we will normal-
ize their magnitudes by their values at T„hence we do

not need the absolute values of A„and A o.
In Fig. 11 we show the Cu(2) form factors and the

O(2,3) form factor as a function of q in the Brillouin
zone. We see that the form factor for ( T, ' ),b,
l A,z(q)l, has the largest weight in the AF region of q
space. The form factor for (T, ' }„l A, (q)l, has its larg-
est weight around q-0, however it also has weight
around q-(m, )r}, even though it is small. The form fac-
tor for (T) ')o,

l Ao(q)l, vanishes at q=(m. , )r) and is
largest at q=(0, 0). Thus the relaxation rate (T& ' ),b de-
pends most strongly on the AF fluctuations, ( T, ' ), ex-
periences less of the AF fluctuations, where (T) ')o is

very weakly dependent on the AF fluctuations. This or-
dering of the relaxation rates according to their sensitivi-
ty to AF fluctuations will help us to understand the TI '

datafor T&T, .
Before presenting results for the Cu(2) and O(2, 3) re-
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laxation rates, we first study the relaxation rate for the
U =0 system with an isotropic onsite hyperfine coupling
A. In Fig. 12 we show T, ' versus T, for both s- and d-

wave gaps with

Imago(q, ro )
(12)

For an s-wave gap, T, ' exhibits the well-known Hebel-
Slichter peak just below T„which is due to the nonvan-
ishing coherence factors and the square-root singularity
in the density of states for an s-wave gap. An approxi-
mate expression for T, ' using an s-wave gap is

T, '(T)/T, '(T, )-2f(b, ) 1+ [1—f(b, )]ln

(13)

Here I is used to control the logarithmic singularity. As
T~O, Ti ' vanishes exponentially for an s-wave gap. In
contrast, for I =0.3T, and a constant form factor the d-
wave gap shows no Hebel-Slichter peak. Actually, for
smaller values of I one could have a weak maximum in
T&, but it is not singular. This is due to the fact that
the singularity in the density of states, Ns(ru), for a d-

wave gap is only logarithmic. At low temperatures, a d-
wave gap gives a T dependence for T, ', since the densi-

ty of states for a d-wave gap is linear in u as co~0.
NMR experiments on YBazCu307 in the superconduct-

ing state have produced many interesting features such as
the absence of a Hebel-Slichter peak for both Cu(2) and
O(2, 3) relaxation rates, as well as the distinctive tem-
perature dependences for the Cu(2) anisotropy,
(T& '),b/(T& ')„and the ratio (T& '), /T(, ')o. The
points in Figs. 13(a)—13(d) show the experimental data
that we will compare with our calculations. Experimen-

tally, at low temperatures (T-30 K) the relaxation rates
depend weakly on the external magnetic field. For the
Cu(2) nuclear relaxation rates (T, '),b and (T& '), we

use the data obtained by Takigawa et al. " in low exter-
nal magnetic field for a material which has a transition
temperature of 93 K. For the O(2, 3) nuclear relaxation
rate (T& ')o and the ratio (T, '), /(T, '

)o we will use

the data obtained in a magnetic field of 8 T.' With this
value of the magnetic field the superconducting transition
occurs at T=86 K. In Fig. 13(c) we see that the Cu(2)
anisotropy is of order 3.7 at T= T, and drops rapidly to
values less than 3 as T decreases below T, . At still lower
temperatures it starts to increase and becomes of order 5

at 0.3T, . Meanwhile (T, '), /(T, ')o stays nearly con-
stant with only small temperature variations [Fig. 13(d)].
Here we will vary the gap amplitude ~o and the effective

damping I, in order to explore the possibility of fitting
these experimental observations using both s- and d-wave

gaps. Our intention is to see what type of gap symmetry
and amplitude the experimental data suggests.

We first do the analysis using an s-wave gap. In Figs.
13(a)—13(d) we show the nuclear relaxation rates ( T, ' ),
and (T, ')o, the Cu(2) anisotropy (T, '),b/(T, )„and
the ratio (T, '), /(T, ')o for the U =0 system using a
BCS gap of 25o=3.52T, and a modest broadening of
I =0.3T, . We see that both Cu(2) and O(2,3) relaxation
rates have Hebel-Slichter peaks. The calculated Cu(2) an-

isotropy is about 1.7 at T = T, and stays constant down
to T =0, in spite of the fact that ( T, ' ),b and ( T, ' ), de-

crease by many orders of magnitude. (T, '), /(T, ')o
also remains nearly constant below T, .

In Figs. 14(a)—14(d), the same set of plots are shown for
U=2t. At T=T, =0.1t this value of U provides an
RPA enhancement of about 12.0, 5.25, and 3.75 for the
relaxation rates (T, '),b, (T, ')„and (T, ')o, respec-
tively. Turning on U helps reduce the Hebel-Slichter
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FIG. 11. The Cu(2) form factors
i A,~(q)i /A„and

i A, (q) i /A„„, and the O(2 3) form factor i Ao(q) i'/A o vs q for
the same path in the Brillouin zone as used in Fig. 1.
Throughout this paper we have set a„„=A„„/i A„i =0.4 and
b =B/I A„I =0.25.

FIG. 12. The nuclear relaxation rate Tl ' vs T for U =0 with

an on-site isotropic hyperfine coupling. T, ' has been normal-

ized by its value at T = T, . Here the results are shown for both
s- and d-wave gap symmetries for 26o =3.52k T, and a quasipar-
ticle broadening I =0.3T, .



45 WEAK-COUPLING MODEL OF SPIN FLUCTUATIONS IN THE. . . 2377

peak for the Cu(2) relaxation rates since, as discussed in
Sec. II, there is a rapid reduction in [1—Uyo(q-Q, O) ]
as the gap opens below T, . For O(2,3) this suppression is
less pronounced, since the O(2,3) form factor filters out
most of the AF fluctuations. Thus this gap amplitude
and broadening are not sufficient to eliminate the Hebel-
Slichter peaks completely with the biggest problem being
the ' 0 relaxation rate. Due to the loss of AF fluctua-
tions the Cu(2) anisotropy (T, ' },b/(T, ' }, drops as the
gap opens and stays constant once the gap saturates. In
addition the experimental anisotropy has an upturn for
T &0.6T, . It is of course possible that as the quasiparti-
cle excitations are frozen out another weaker magnetic

relaxation mechanism with a large anisotropy becomes
dominant. The ratio ( T, ' ), /( T, '

)o calculated using an
s-wave gap also drops for T (T, . This drop is similar to
that found for the Cu(2) anisotropy and occurs for the
same reasons. It is, however, in disagreement with the
experimental data which shows little change in
(T, '), /(Ti ')o for 0.38 T/T, 51. At reduced temper-
atures below 0.3, the rates have decreased by several or-
ders of magnitude and other mechanisms are likely to be-
come visible, hence we have not shown the data points
taken below T=0.3T, on the plots. Here one needs to
keep in mind that the experimental data on
(T, '), /(T, '

)o has been obtained in a magnetic field of
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FIG. 13. Here we give results for nuclear relaxation times computed using an s-wave gap with U=O, 260=3.52kT„and
1 =0.3T, . (a) The temperature dependence of the Cu(2) nuclear relaxation rate with H~~c, (T, ), . The points are experimental data
(Ref. 11) measured in zero magnetic field with NQR. (b) The temperature dependence of the O(2, 3) nuclear relaxation rate, (T, ' )o.
The points are experimental NMR data (Refs. 12 and 17) measured in an external magnetic field of 8 T. (c) The temperature depen-
dence of the Cu(2) anisotropy, (Tl ) g/(Tl ) . The points are the experimental data by Takigawa et al. (Ref. 11). The open circles
represent (T, ' ), data taken by NQR and (T, ' ),t, data taken by NMR in an external magnetic field of H =0.44T. The solid circles
represent data taken by NMR in an external magnetic field of H =0.44T. The dashed line represents the experimental data by Bar-
rett et al. (Ref. 10) taken both by NQR and in an external magnetic field. (d) The temperature dependence of the ratio
( T&

' ), I( Tl ' )o, normalized by its value at T = T, . The points are experimental data (Refs. 12 and 17) measured in an 8-T magnetic
field.
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8 T, whereas our calculation is for the case of zero mag-
netic field.

As we have seen, it is possible to reduce the Hebel-
Slichter peak by increasing b,o so that the spin fluctuation
enhancement factor [1—Uyo(q, O)] drops more rapidly
below T, . In addition, an increased broadening I is
known to suppress the Hebel-Slichter peak. With this in
mind we have tried a large s-wave gap of 26o=8kT, and
a very large temperature dependent broadening
I =2.5T, (T/T, ) . This type of temperature dependence
for I has been previously used' ' and reflects the idea
that as an s-wave gap starts to open the thermally excited
AF spin fluctuations which are responsible for the damp-
ing will decrease. The results are shown in Figs.
15(a)—15(e). With these large values for b,o and 1, the
Hebel-Slichter peaks are eliminated from both the Cu(2)
and the O(2, 3) relaxation rates, even though the fits to the
experimental data are not particularly good. The Cu(2)
anisotropy falls rapidly and then stays constant below T,
and ( T, ' ), /( T, '

)o has a similar temperature depen-
dence. Both of these reflect the sudden loss of AF Auc-
tuations for an s-wave gap below T, . Within the model

we are using, the explanation of the upturn in Cu(2) an-
isotropy below T(0.6T, requires an additional relaxa-
tion mechanism and the T dependence of the ratio
( T, ' ), /( T, '

)o is in disagreement with experiment.
Figure 15(e) shows the T dependence of (Ti ' ), on a log-
arithmic scale (solid line). The exponential decay of
(T, '), at low T for an s-wave gap lies below the mea-
sured values which appear to vary more like T at low
temperatures. Note that Takigawa et al. " have recently
confirmed that the nuclear relaxation above 30 K, corre-
sponding to essentially all of the data shown in Fig. 15(e),
is produced by magnetic processes while quadrupolar
processes become significant at lower temperatures.
Thus, there are a number of problems in fitting the relax-
ation rates with an s-wave gap. We see that even though
it is possible to eliminate the Hebel-Slichter peaks in the
relaxation rates using an s-wave gap with large values of
b o and I, fitting the detailed temperature dependences of
the data with a single s-wave gap is difficult.

Next we analyze the experimental data using a d-wave
gap. Just as for the previous case of an s-wave gap, it is
instructive to begin by considering the effect of a d-wave
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FIG. 14. Similar results to those shown in Fig. 13 with U =2t for an s-wave gap with 2b o= 3.52kT, and I =0.3T, .
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FIG. 15. Similar results to those shown in Fig. 13 with U =2t for an s-wave gap with 250= 8kT, and I =2.5T, (T/T, ) . Here (e)
shows log, o[T, '( T)/T, '( T, )] vs log, o(T/T, ) for the Cu(2) relaxation rate with H~~c (solid line). The open circles represent the data
taken with NQR (Ref. 11). The dashed line has a slope of three.
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FIG. 16. Similar results to those shown in Fig. 13 with U =0 and a d-wave gap with 25O= 3.52kT, and I =0.3T, . Here (e) shows

the temperature dependence of the Cu(2) nuclear relaxation rate with H~~ab, T(, '),b. The open circles represent the data on (T, ' ),~
measured in a low external magnetic field (Ref. 11).
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gap when U =0 and there is no Coulomb enhancement of
the spin fluctuations. Then following this, we will exam-
ine the behavior when U=2t. In Figs. 16(a)—16(e) we
show a set of plots with U =0 for a d-wave gap with
26o=3.52kT, and a broadening of I =0.3T, . As shown
in Figs. 3 and 4, Do[q-(m, vr)] does not peak below T„
while Do(q-0) does. Thus (T& '), and (TI ')o exhibit
small peaks below T, since their form factors have more
weight around q-0 while (T, ),b, shown in Fig. 16(e)
has no Hebel-Slichter peak because its form factor is
dominated by the q = ( m; m ) region. For these same
reasons ( T, ' ),b /( T, ' ), decreases below T, while

( T, ' ), /( T, '
)o shows only a weak T dependence.

Results with U =2t, 26o=3.52kT„and I =0.3T, are
shown in Figs. 17(a)—17(d). (T, '), and (T& ')o do not
decay as rapidly as the data and ( T, '

)o still has a small

peak just below T, . However, the similarity of the calcu-
lated Cu(2) anisotropy to the experimental data is re-
markable. The calculated anisotropy first decreases from
3.8 to 2.8 as the gap opens, but for T &0.5T, it starts to
increase and reaches 5 at T-0.2T, . The initial drop in

the anisotropy is due to the fact that
~ A,b(q)~ has a

larger weight around q-(m. , n ) than
~ A, (q)~ . Thus since

Do[q —(n, m. )] decreases as T goes below T„whereas
Do(q-0) has a peak, the anisotropy ratio initially de-
creases. However, at lower reduced temperatures,
Do(q-0) decays faster than Do(q-q } because of the
nodes, as discussed in Sec. II, and this causes the eventual
upturn in the Cu(2) anisotropy. Within this model the
structure in the Cu(2) anisotropy can be attributed to the
nodes of a d-wave gap and to the behavior of the T

&

coherence factors for a gap with d-wave symmetry. For
similar reasons the comparison between the calculated
and the experimental ( T, ' ), /( T, '

)o is reasonable.
In order to remove the small peaks in (T, '), and

( T, ' }o we turn on a large gap of 2b, o
=8k T, and set

I = T, ( T/T, ) . The results for this set of parameters are
shown in Figs. 18(a)—18(e). We see that the temperature
dependences of (T, ')„(T, ')o, and (T& '),b/(T& '),
are in reasonable agreement with the experiment. How-
ever, the ratio ( T, ' ), /( T, '

)o dips more than the exper-
imental results below T, . Since our aim here is to com-
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FIG. 17. Similar results to those shown in Fig. 13 with U =2t and a d-wave gap with 2ho=3. 52kT, and I =0.3T, .
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pare qualitative features rather than making quantitative
fits to experiments, we have not tried further parameter
variations. Figure 18(e) shows the temperature depen-
dence of (T, ' ), on a logarithmic scale. The T decay of
( T, ' ), at low T for a d-wave gap does not require the ex-
istence of a second relaxation mechanism. Our scheme
for calculating T, ' just below T, may well be too simple,
and a more sophisticated calculation might eliminate the
peaks in ( T, ' ), and especially (T, '

)o using smaller
values for 60 and I .

V. CONCLUSIONS

We have analyzed the Knight shift and T
&

' data for
the Cu(2) and O(2,3) nuclei in YBazCu307 for T & T, us-

ing a weak coupling model for a metal with AF spin Auc-
tuations. This model has been previously used to fit the
normal state NMR data. The effective Coulomb interac-
tion U =2t and the average site occupancy ( n ) were pre-
viously fixed by fitting the normal state data. Here the
correlations arising in the superconducting state were
modeled by using superconducting propagators to calcu-
late the irreducible part of the susceptibility that appears
in the RPA expression for y(q, co). Then for T & T„we
considered calculations using both s- and d-wave gaps
with the gap amplitude 60 and the broadening I' used as
adjustable parameters.

An analysis of the Knight shift data showed that an s-
wave gap with 260=4kT, provided a satisfactory fit to
data. The Coulomb repulsion of U =2t that we are using
in our calculations provides a Stoner enhancement of
1.75 for Ks( T) at T = T, . With the same Stoner
enhancement a d-wave gap of order 2b,0=5 to 6kT, was
required to fit the initial drop in Es near T, . However, at
low temperatures the d-wave results did not give as satis-
factory a fit to the data as an s-wave gap. It is especially
difficult to fit the data with a d-wave gap at low tempera-
tures, where the data points seem to go to T=O with a
vanishing slope, in contrast with the linear T dependence
of Ks( T) for a d-wave gap at low T.

In the analysis of the T&
' data we have seen the im-

portance of the form factors. In our model (T, '),b,
(T, ')„and T(T, ')o sample the same susceptibility
with different form factors. We have observed that
(T, ),b is the most sensitive to the AF spin fluctuations,
(T, ), is less sensitive to the AF fluctuations than
( T, ' ),&, whereas ( T, ' }o is the least sensitive.

Within the framework of Eqs. (1) and (2), there are a
number of difficulties in fitting the T ' relaxation data
with an s-wave gap. The first problem is with the Hebel-
Slichter peaks which appear when an s-wave gap is used
unless there is an unphysically large damping factor. In
Sec. II, we have seen that when an s-wave gap opens, the
RPA enhancement of the spin fluctuations is reduced.
While this helps to suppress the Cu(2) Hebel-Slichter
peaks in ( Ti ' },b, and ( T, ' )„it does little to reinove the
peak in ( T, '

) ~, since the oxygen form factor has already
removed much of the AF spectral weight. Thus in Sec.
IV, we found that even a rough fit of the T&

' data re-
quired large values of both 260= Sk T, and

I =2.5T,(T/T, ) . However, as shown in Sec. III, such a
large value of 260 is inconsistent with the Knight shift
data. Furthermore, a I'(T, ) of 2.5T, corresponds to a
quasiparticle lifetime of 5T, which is significantly larger
than the value of order 2T, obtained from various trans-
port measurements. In addition even when the Hebel-
Slichter peaks have been eliminated using large values of
50 and I, the temperature dependence of the Cu(2) an-
isotropy and the (Ti '), /(Ti ')o ratio pose problems.
Since the ( T, ' ),& form factor sees more of the AF fluc-
tuations than the ( T i

' ), form factor, and the AF fluc-
tuations decrease rapidly as the s-wave gap opens, there is
an initial drop in the (T, ),b/(T, ), ratio. However,
at lower temperatures, this calculated anisotropy ratio
was found to remain constant. Thus, the experimentally
observed upturn in anisotropy would require that a
second mechanism becomes dominant for T/T, (0.7.
While this is certainly possible, it seems ad hoc. Finally,
the experimental temperature independence of the ratio
(T, ' ), /( T, '

)o for T & T, is in disagreement with the
predictions using an s-wave gap. With an s-wave gap we
found that ( T, ' ), /(T, '

)o initially drops below T„due
to the loss of AF fluctuations, and stays constant as T is
lowered further. In view of all these difficulties we con-
clude that it is difficult to fit the T, ' data using an s-
wave gap within the framework of our model.

On the other hand, a d-wave gap seems to yield results
more consistent with the T, ' data. Using the parame-
ters 2b0=8kT, and I =T,(T/T, )3, we have seen that
(T& ')„(T, ')o, and (T, '),b/(T, '), provide reason-
able fits to the experiment. The structures in
( T, ' ),b /( T, ' ), and ( T, ' ), /( T, '

)o arise from the
nodes of a d-wave gap on the Fermi surface and do not
involve a second relaxation mechanism.

Thus we are left with a puzzle. The temperature
dependence of the Knight shift, as well as the magnetic
penetration depth data, support the view that the gap is
nodeless. Yet within the framework provided by Eqs. (1)
and (2) we find that it is difficult to explain the T, ' data
with an s-wave gap and that a d-wave gap gives results
which on the surface look more like experiment. Thus
we conclude that while the RPA form provides a means
of parametrizing the data on YBazCu307 for T & T„ the
simple extension of it to the superconducting region
T (T, fails. However, we believe it provides some in-
teresting clues regarding the interplay of the spin-
fluctuation correlations and the pairing correlations.

First, the rapid decrease of the Knight shift, which
within the usual Yosida form implies a large value of
2b,0(0)/kT„can be obtained with a moderate sized
2b,0(0)/kT, when the spin-fluctuation "Stoner" enhance-
ment is taken into account.

Second, the Hebel-Slichter peak for Cu(2) is reduced
when the RPA corrections to the usual quasiparticle su-
perconducting susceptibility are kept [compare Fig. 14(a)
with Fig. 13(a)]. Thus, as suggested by Schrieffer,
Coulomb vertex corrections can affect the Hebel-Slichter
peak. Within the RPA form these vertex corrections lead
to
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Imago(qco )

Imp(q, co) =
[1—U Redo(q, co)] + [ U Imago(q, co)]

(14)

derstand the role of the para-antiferromagnetic spin-wave
fluctuations in providing T, relaxation in the supercon-
ducting state.

so that the nuclear relaxation process can arise from anti-
ferromagnetic fluctuations where [1—U Redo(q, O)] is

small, as well as the usual quasiparticle spin fluctuations
contained in Imago(q, co). It is these latter fluctuations
that contain the well-known Hebel-Slichter logarithmic
divergence. Unfortunately, within our present frame-
work it is difficult to remove the influence of these quasi-
particle spin fluctuations from the oxygen T, ' relaxation
because its form factor suppresses the q = (vr, n ) collective
antiferromagnetic fluctuations [see Figs. 13(b) and 14(b)].
Nevertheless, it appears that it will be important to un-

ACKNOWLEDGMENTS

We want to thank Barrett et al. and Takigawa et al.
for allowing us to use their data and discussing their mea-
surements with us. We thank N. E. Bickers for useful
discussions and numerical checks. We also acknowledge
helpful discussions with J. R. Schrieffer, D. Pines, H.
Monien, and A. J. Millis. Partial support for this work
was provided by the Electrical Power Research Institute.
Numerical computations were performed at the San
Diego Supercomputer Center.

'For a review of the experimental NMR results on high-
temperature superconductors please see the following articles
and the references therein: R. E. Walstedt and W. W. War-
ren, Jr., Science 248, 1082 (1990);C. H. Pennington and C. P.
Slichter, in Physical Properties ofHigh Temperature Supercon
ductors II, edited by D. M. Ginsberg (World Scientific, Singa-

pore, 1990).
F. Mila and T. M. Rice, Physica (Amsterdam) 157C, 561

(1989).
N. Bulut, D. Hone, D. J. Scalapino, and N. E. Bickers, Phys.

Rev. B 41, 1797 (1990);Phys. Rev. Lett: 64, 2723 (1990).
4A. J. Millis, H. Monien, and D. Pines, Phys. Rev. B 42, 167

(1990).
5T. Moriya, Y. Takahashi, and K. Ueda, J. Phys. Soc. Jpn. (to

be published).
6H. Kohno and K. Yamada (unpublished).
NMR experiments for T( T, have also been analyzed by H.

Monien and D. Pines, Phys. Rev. B 41, 6297 {1990).
~D. J. Scalapino, in High Temperature Superconductivity

Proceedings, edited by K. S. Bedell, D. Coffey, D. E. Meltzer,
and J. R. Schrieffer (Addison-Wesley, New York, 1990), p.
314.

L. C. Hebel and C. P. Slichter, Phys. Rev. 113, 1504 (1959).
'OS. E. Barrett, J. A. Martindale, D. J. Durand, C. H. Pen-

nington, C. P. Slichter, T. A. Friedmann, J. P. Rice, and D.
M. Ginsberg, Phys. Rev. Lett. 66, 108 (1991).

' M. Takigawa, J. L. Smith, and W. L. Hults (unpublished).
' P. C. Hammel, M. Takigawa, R. H. Heffner, Z. Fisk, and K.

C. Ott, Phys. Rev. Lett. 63, 1992 (1989).
Y. Kuroda and C. M. Varma (unpublished).
L. Coffey, Phys. Rev. Lett. 64C, 1071 (1990).

'5K. Yosida, Phys. Rev. 110,769 (1958).
M. Takigawa, P. C. Hammel, R. H. Heffner, and Z. Fisk,
Phys. Rev. B 39, 7371 (1989).

' M. Takigawa, P. C. Hammel, R. H. Heffner, Z. Fisk, K. C.
Ott, and J. D. Thompson, Physica (Amsterdam) 162-164C,
853 (1989).

' S. E. Barrett, D. J. Durand, C. H. Pennington, C. P. Slichter,
T. A. Friedmann, J. P. Rice, and D. M.Ginsberg, Phys. Rev.
B 41, 6283 (1990).

'9Throughout this work we have set (n ) =0.86.
Here we give rates appropriate to a nominal spin- —' system.

'In order to get the right magnitude of the anisotropy of the

Cu(2) relaxation, (T, '),b/(T, ')„at T=T„we need to use

a„,-0.40 and b-0.25. However, with these values of the

hyperfine couplings {T, ' ),b/( T&
' ), has temperature depen-

dence above T, and it increases by about 20% as Tis lowered

from 0.20t to 0. 10t in the normal state.
Since 7 '{T, ) =2I ( T, ) =5T„ this broadening is more than

twice that estimated from transport experiments, see, for ex-

ample, R. T. Collins, Z. Schlesinger, F. Holtzberg, P. Chan-

dari, and C. Field, Phys. Rev. B 39, 6571 (1989).
L. Krusin-Elbaum et al. , Phys. Rev. Lett. 62, 217 (1989); D.
R. Harshman et al. , Phys. Rev. B 39, 851 (1989).

24J. R. Schrieffer (private communication).


