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Normal-state optical conductivity of YBazCu3Q6+„
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The optical conductivity in the normal state of YBa2Cu306+ is calculated within the framework of
the memory-function formalism. We assume that the carriers are constrained to the Cu02 planes and
are scattered by spin fluctuations of the Cu spins. First, the calculation is done using the phenomenolog-
ical form of the spin susceptibility proposed in the antiferromagnetic-Fermi-liquid theory. In a second
step, we choose two different forms of the spin susceptibility to improve the high-frequency dependence
of the optical conductivity. It is found that fitting the experimental data requires more than one form of
the spin susceptibility. It is also found that the relaxation rate varies roughly linearly with the frequency
and that the mass enhancement is weakly frequency dependent.

I. INTRODUCTION

Understanding the physical properties of the cuprate
superconductor s has remained a challenge to many
condensed-matter theorists. Although a broad range of
models and theories have been proposed' to date by many
workers, none has successfully explained all available ex-
perimental data in either the normal state or the super-
conducting state. In the absence of a clear microscopic
theory explaining the data, it is instructive to resort to
phenomenological models to fit the experimental results
with the hope of setting directions for more elaborate mi-
croscopic models.

Among the various proposed phenomenological ap-
proaches, the nearly-antiferromagnetic-Fermi-liquid
theory proposed by Millis, Monien, and Pines (MMP)
seems to explain well the normal-state NMR data of
different cuprate superconductors. MMP argue that the
various measurements in the normal state are consistent
with a one-component system (i.e., one spin degree of
freedom per Cu02 unit) of disordered but antiferromag-
netically correlated spins, with the interpretation the spin
system being the spin excitations of an antiferromagneti-
cally correlated Fermi liquid. The two key assumptions
in this approach are that the imaginary part of the spins
susceptibility y"(q, co~0)-co at all q, where the momen-
tum q is measured from the zone corner (m/a, tr/a), and
that the antiferromagnetic correlations have relaxational
dynamics.

In this paper we calculate the optical conductivity in
the normal state of YBa2Cu306+„(x =0.63, 1) using
three different models. The calculation is done using the
memory-function formalism, which is well suited, since it
permits one to define an effective frequency-dependent re-
laxation rate and mass enhancement making the compar-
ison to experiment easy. A similar approach has been
taken recently by Moriya and Takahashi. We assume
that the carriers are relaxed by scattering off the spin
fluctuations of the nearly-antiferromagnetic Fermi liquid.
In the first model, we use exactly the picture put forward

by MMP using their suggested form of the spin suscepti-
bility. One drawback of this model is that it has been
devised for NMR calculations, which are done at very
small frequencies. Therefore, using exactly the same fre-
quency dependence of y(q, co) when co is large may not be
a good approximation. It is also clear that such a form of
the susceptibility does not reproduce the experimental
data on Raman scattering, which are characterized by a
roughly constant behavior for relatively large frequen-
cies. The second model we propose is an attempt to in-
clude this important feature. In it we still keep the same
characteristic spin-fluctuation energy cosF as in MMP.
The purpose of the third model is to relax this condition
by taking a more generalized characteristic spin-
fluctuation energy cosF, which is wave-vector dependent.

The experimental study of the optical properties in the
normal state of YBa2Cu307 crystal has shown a number
of anomalous features. Working with a single-domain
crystal, Schlesinger et al. found that the normal-state
optical conductivity drops much more slowly with the
frequency co than the ordinary Drude form. They were
able to describe their data in terms of a scattering rate
A/~'-k~T+Aco at low frequency, where T is the tem-
perature. In parallel to this, they found that the
frequency-dependent effective mass changes from about 3
(in units of the bare mass) at very low frequencies to
about 1 at frequencies of the order of 2000 cm '. Oren-
stein et al. made a systematic study of the optical prop-
erties of YBa2Cu306+ -based insulators and supercon-
ductors. They identified free carriers and interband con-
tributions of o.(co). These authors found that in metallic
crystals the optical conductivity appears to contain at
least two components, a narrow peak centered at co=0
and a broad component that extends to -2 eV. The
width of the narrow peak varies with temperature as
-2k~T. They identified the narrow peak with part of
the free-carrier component. They also concluded that
there is an additional contribution to o. from free carriers
in the frequency range of about co=0 but below 1 eV.
The frequency dependence of the free carriers they ex-
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tract is not Drude-like and cannot be described by a sin-
gle Lorentzian peak centered at co=0. They argued that
the complicated frequency dependence of o. suggests that
the free carriers interact significantly with some other ex-
citations. They reported a mass enhancement of the or-
der of 2—3. The overall physical picture they presented is
as follows. At low frequency the translational motion of
the quasiparticles is broadened by its weak coupling to
low-energy excitations. At frequencies above 50 meV
there is a second contribution to cr, which accounts for
the majority of the spectral weight but cannot be ex-
plained by invoking inelastic scattering from a spectrum
of dispersionless oscillators. Gao et al. performed a
study of far-infrared transmission and reflection of orient-
ed YBa2Cu307 & thin films. They argued that their re-
sults show a Drude response and mid-infrared absorption
in the frequency range below 350 cm '. By fitting
transmission data, they found the Drude relaxation rate
to be linear in temperature, while the plasma frequency
remains essentially constant. Their results show that the
rnid-infrared absorption is nearly temperature indepen-
dent in both normal and superconducting states.

In Sec. II we briefly introduce the memory-function ap-
proach, and display results for the effective relaxation
rate, mass enhancement, and optical conductivity in
terms of the spin susceptibility y(q, co ). We discuss in
Sec. III the three different models we consider. In Sec.
IV we discuss our results and compare them to experi-
ment and to other theoretical calculations. Finally, in
Sec. V we give our conclusion.

Hp —g Epcp~cp
P, cl

(2)

2 2
. e COp

o (co) = i —C (to)+i
CO 47TCO

(4)

where to =4m.e n/m is the plasmon frequency. The
correlation function is given by

C(cp)= —i f e' '([J„(t),J„])dt, (&)

where the current reads

~~k
Jx X ~k ckncke

1c,o x

The memory function is introduced by the following
equation:

where E~
= (p —pF ) /2m, and c ~ (c~ ) is the carrier-

creation (annihilation) operator. HsF is the Hamiltonian
characterizing the scattering of the carriers by the spin
fluctuations, and is given by

HsF = g g Jkk S s~~ ck~c
k, k' o, o'

where Jz&. is the interaction matrix element, which we
take to be constant J&j,.=J, S is the spin of the intermedi-
ate boson, while s is the spin of the carriers.

In linear-response theory, the dynamical conductivity
is related to the current-current correlation function
C(co) by

II. MEMORY FUNCTION APPROACH
M(to) = itpC—(to)/[Cp C(tp—)], (7)

The calculation of dynamical conductivity using the
memory-function approach has been set on firm ground
by Gotze and Wolfle. We shall closely follow their ap-
proach. We assume that we have a cylindrical Fermi sur-
face in three dimensions or equivalently a circular Fermi
surface in two dimensions. We neglect the contributions
of impurities and phonons to the resistivity considering
only the contribution of spin fluctuations. We also
neglect contributions from interband processes and as-
sume a one-band picture for the free carriers. Although
the importance of interband contributions to the optical
conductivity has been stressed in Ref. 7, we believe that
the neglect of these processes is not a major drawback,
since we are interested in looking at the importance of
spin fluctuations and not the identification of all the pro-
cesses that might be of some importance. The Hamiltoni-
an of the system reads

H =Hp+HsF

Hp represents the free-band Hamiltonian of the carriers

The memory function M (co) is given by

4m K(to) K(0)—
COp lN

where K (co) is the function

K(tp)=i f dt e' '([J,(t),J„]),
0

with

(10)

J„=i[J„,HsF] .

A straightforward calculation of K (co) gives

where Cp is the static limit of C(to). Equation (7), can be
inverted to give

C(co)=CpM(co)/[ itp+M(tp—)] .

The function M(to) is well behaved for tp~0. The
dynamical conductivity o (cp) is given by

1 4m
[M(co) iso] . —

0'(CO)

K(co)=Kp g q„f dzy"(q, z) g [n(ek+q —Ek) —n (z)][f(ek) —f (uk+ )],
q

Z +CI CZ+q CO

where n is the Bose function, f is the Fermi function, and Kp is a constant. g"(q,z) is the imaginary part of the spin
susceptibility, which will be introduced phenomenologica11y in the next section. The imaginary part of the correlation
function K (co) reads
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ImE(co)=Ko g q„f dz y"(q, z)F(q, co z—)[n (z) —n (z —co)],
q

where

F(q, co)=77+6(e„—E„+ —ca)[f (E„+ )
—f (E„)] .

k

In the following we will make the low-frequency approximation

F(q, co) =Foes .

The real part of M(co) takes the form

477 ImE(co)M'co =
ca

2
P

that is

(14)

(15)

(16)

M'(co) = Q FoKo QJ—dz y"(q+Q, z)(co —z)[n (z) —n (z —co)] .
P q

oo

(17)

The imaginary part of M(co) is obtained as III. SPIN SUSCEPTIBILITIES

1 477 m*(co)
cr(co) c02 m

P

1
ltd

7*(co)
(19)

Using Eqs. (9) and (19) we identify

M"(co)=—Pf dv
1 ~ M'(v)
7T —oo V CO

where P is the Cauchy principal value.
To facilitate the comparison with experimental data we

define an effective relaxation rate 1/7'(co ) and an
effective-mass enhancement m'(co}/m, by writing the
conductivity as

In this section we introduce the three spin susceptibili-
ties that will be used in Eq. (17}to calculate the memory
function.

A. Antiferromagnetic paramagnon model (model A)

yg( &)
g(q+O, co) = I+g q iso/co—s~

(23)

The first model we consider is that used by MMP to
analyze the NMR experimental data. The spin-spin
correlation function near the antiferrornagnetic wave vec-
tor Q=(77/a, 77/a) is assumed to take the form

and

m '(co) M "(ca)
7

m

1 =M'(co)
7'(~)

M "(co)
CO

(20)

(21)

where y&( T) is the static spin susceptibility at the antifer-
romagnetic wave vector Q, g is the antiferromagnetic
correlation length, and A'cosF is a typical energy scale for
the antiferromagnetic paramagnons that describe the AF
spin dynamics. This latter is related to the energy scale
of the spin dynamics of the noninteracting system I by

1

7(CO)

m *(a)) 1

m 7~(~)
(22)

We find it useful to define another relaxation time 7(co) by 2
I a 1

COsF
=

&p
(24)

Using Eqs. (20}—(22), we obtain the zero-frequency result:

1 =M'(0),
~(0)

so that the dc resistivity reads

p( T)= = M'(0) .
CO 7(7) Q7P P

We remark that M'(0) is finite as opposed to M"(0),
which vanishes identically. This fact is due to the causal-
ity property of the response function. The zero-
frequency mass enhancement is then given by

m*(0) c) „( )~
m Boo

yg( ~)= r xo
~~sF 1+v P/2m

(25)

where yo is the measured static susceptibility. From the
best fits to data on YBa2Cu307, MMP extract the values
P=m and I =0.4 eV. They also find ms&- T. For
YBa2Cu30663 +o is strongly temperature dependent, '"
while Monien, Pines, and Takigawa find that I is weakly
temperature dependent. We use their results to predict
the frequency dependence of the optical conductivity for
YBa2Cu306 63 The imaginary part of the spin suscepti-
bility is given by

In Eq. (24) a is the lattice constant and p is a parameter
that MMP determine by fitting the experimental results.

y&( T) is related to cos~ by
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X"(q+Q, ~)=Xg( T)
CO /CO SF

2

(]+$2 2)2+
COsF

(26) ~SF ~SF(q) — (1+/ q ) .
&13 7 (29)

For small frequencies we have

X"- Xg /l 1+A')'
COsF

and for high frequencies we have y"-y&(cosF/co).
It is clear that if one assumes the same susceptibility

when calculating the Raman scattering intensity divided
by the Bose factor, one runs into diSculty, since the in-
tensity is -y" and experimentally the intensity is seen to
be a flat function of the frequency shift for high frequen-
cy (&2 eV), whereas at small frequencies we obtain the
right behavior. Consequently, one expects that the opti-
cal conductivity obtained in this case will be close to the
experimental result for very low frequencies only.

B. Model B

In view of the above comments, we consider an im-
proved version of MMP's susceptibility by putting into it
more frequency dt."pendence but still preserving the linear
behavior at small frequencies. We choose to replace the
term co/cos„ in the expression of g(q+Q, co) by the func-
tion tanh(co/cosF). It is clear that for co smaller than cosF
we will obtain the same qualitative behavior as in the
paramagnon case. But for co )cosF we have

For q =0 (at the antiferromagnetic wave vector) we ob-
tain

I a
cosF(0) = — — =cosF,

p
(30)

but for q =
~Q ~

=2m /a, we have

cosF( Q) =2' 1+I 1 a

P 2m'
(31)

At T= 100 K, we have g-3a so that cosF(Q) =2I .
It should be remarked that for both cases B and C the

sum rules are exhausted by choosing an appropriate
high-frequency cutoff co . It is expected that the
differences between the results of the three models will be
mostly noticeable at relatively high frequencies. We
point out that cases B and C possess features of both the
antiferromagnetic-Fermi-liquid theory and the marginal-
Fermi-liquid theory: in the former case at low frequen-
cies, but in the latter case at both low and high frequen-
cies. One can equally consider the proposed forms of
y(q, co ) as spin susceptibilities or charge polarizabilities or
both at the same time.

1
X(q+Q) =X,(T)

1 —i+( q
(27) IV. RESULTS AND DISCUSSION

This form, therefore, does comply with the experimental
results of Raman scattering. It is to be remarked that
this model is very close to the marginal-Fermi-liquid
model with the added feature of q dependence.

In this model the characteristic spin-fluctuation energy
is kept the same as in the paramagnon model and is,
roughly speaking, —T. The other parameters are also
kept the same.

In this section we use the different susceptibilities pro-
posed in the preceding section to calculate the memory
function M(co). To make our model calculation closer to
reality we choose a cutoff for the sum over q in Eq. (17)
such that the area of the Fermi sea is equal to the mag-
netic Brillouin zone, which leads to a cutoff q~ = 2&m. /a.

The final results can be cast in the following form for
all cases:

C. Model C M'(co) =gyo( T)T I—T co

co T (32)

The two previous models can be improved in many
directions. We choose, however, to consider the follow-
ing physically motivated improvement. We would like
the model susceptibility to allow for the fact that the spin
fluctuations play a major role only in the region around
the antiferromagnetic wave vector Q. One way to simu-
late this is to make the characteristic spin-fluctuation en-
ergy dependent on the wave vector. To accomplish this
goal we write the spin susceptibility in the following
form:

and

2 COM"(co) =—gyo( T)L
T (33)

L( ) y
du I(u)

u —v u
(34)

where g is a quantity to be obtained from comparison to
experimental data. The function L (v) is given by

yg( T)
x(q+Q ~)=

1+( q 1 i tanh(co/cosF)—

where

(28) while the function I(u) takes a form specific to each sus-
ceptibility. In the case of the paramagnon model I(u)
reads
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I(u) =2nu [$(z/2m ) —$(z„/2')]+u [A(z, u) —A(z„, u )]

Ox X +OQ
tan

e —1 z
X +OQ—tan

Zp

+ y f" dx
o =+1

where 1 (x) is the gamma function, and

where z =cosF/T, and z„=z(1+r),with r =4I /cosF&P. The functions P and A are given, respectively, by

P(x) =lnI (x)+x —(x —
—,
' )lnx —in&2m. ,

(35)

(36)

A(x, u) = tan ' ———ln 1+Q X ) Q X Q

2Q x 2 X
(37)

In the model B case, I(u) is given by

l(u)=u f dx(1 x)t(x—u)+2u f dx + g f dx t(x+cru),
0 0 x

1 0
(38)

where the function t (x) is defined as

t (x) =tan ' tanh — —tan
1 X

tanh1+r z
(39)

Finally, in model C, I ( u ) reads

I(u)=u'f dx(1 x)f(xu)+2—u f dx + g f ™dx„ f(x+Ou),
0 e' —1 +& 0 e —1

w here f is defined as

T2(x) 1f (x)= dt
riIX} 2t'+1 ln[t +(1+t')'"]

with

(41)

T (x)=sinh —,T2(x)=sinhX

z(1+r) (42)

The zero-frequency result for the relaxation rate is

—=gyo( T)TW ( T),1

7

where for the paramagnon case, W( T) is given by

(43)

W(T)=2 f dx
xe'

&
x

tan ——tan(e"—1) z(1+r) (44)

For the model 8 case we have

x
W(T) =2f dx tan ' tanh ——tan

(e —1) Z

1 xtanh-1+r z
(4&)

Xt)(x)=—, t2(x) =
Z z(1+r)

The resistivity then takes the form

p(T)= gyo(T)TW(T) .
COp

while in the model C case we obtain

xe '2' ' 1 tanht
W( T}=2 dx dt

( —1) '1'"' t 1+tanh t
where

(46)

(47)

A. YBa~Cu307

In this subsection we compare our results to two sets of
experimental data on two different YBa2Cu307 samples
obtained by Schlesinger et al. and Orenstein et al. .
The values of g that we obtained in the two cases are
slightly different due to sample-dependence effects. (See
Fig. 1.} First we start with the results of Ref. 7.

The two quantities we need to determine g are the
resistivity due to the spin fiuctuation psF(T, ~

and the
effective plasmon frequency co*. The latter is related to
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FIG. 1. Temperature dependence of the relaxation rate for
models (A), (B), and (C) using either the set of g, (S) or go (0) for
YBa2Cu 307.

the bare plasmon frequency co~ =co&m /m *(0). For
YBa2Cu307, Orenstein et al. gave co*=1.5 eV. The
spin-fluctuation part of the resistivity ps„ is determined as

PSF(T. )=P(T. ) P

where p( T,
~

is the measured resistivity at T= T„and p; ~
is the residual resistivity at T =0 due to impurity scatter-
ing. From Ref. 7 we have p; =10pQ cm and p(T, ) =50
pQcm. We thus obtain ps„(T, )=40 pQcm (we assume
that the only relevant scattering mechanism is the spin-
fluctuation one). We obtain the following values of g:

where co~ is in units of eV, ps„( T, ) in units of pQ cm, and

T, in K. For the sample of Ref. 7, we obtain no=0. 52.
In Fig. 2 we display the frequency dependence of the

~R'~~ii~w. tc brafiau, ra&~s oht~iecd for the moke]sM 8 .
and C using the respective g, 's. The experimental result
of Ref. 6 falls very close to the paramagnon result for
T= 100 K. The two other models (B and C) give results
in qualitative agreement with Eq. (48). We should men-
tion that our results for the paramagnon case differ from
those of Ref. 4: we do not find any crossing between
curves at different temperatures, while they did.

In Fig. 3, we plot the effective-mass enhancement as a
function of frequency for the three models as well as the
result of Ref. 6. Although there is a qualitative agree-
ment between our results and the experimental data, we
are unable to produce a quantitative fit as in the relaxa-
tion rate case, Nevertheless, we predict that the mass
enhancement in the case of YBa2Cu307 material should
decrease with increasing temperature.

In Figs. 4 and 5, we display the equivalent of Figs. 2
and 3 but for the quantity g determined by using the re-
sults of Ref. 7. The difference between the two cases is of
a quantitative nature and not a qualitative one. In Fig. 6,
we compare the optical conductivity at T=200 K we ob-
tain for the three models with the result of Ref. 7. We
see that at low frequencies (co(20 meV) the results of
both models A and 8 fit the experimental data. At much
higher frequencies, the model C result is closer to experi-
mental data than the others. Although we do not display
it, we find that the heights of o'(co)/co& as a function of
frequency for the three models appear to be —1/T and
the widths at half maximum height appear to be -2T,
which is in accordance with the results of Orenstein
et al.

I SO — YBO2Cu307

~ Experiment (T = IOOK)

l40

go =0.58, paramagnon,

go =0.45, model 8,
go=0. 33, model C,

(49) l 20

In the case of the results of Ref. 6, to determine g, we
use the empirical formula given in that reference, i.e.,

o
E

=a, (vrks T+fia) ),

where a, =0.6. We find

g, =0.87, paramagnon,

g, =0.67, model B,
g, =0.47, model C .

(50)

(51)

60

40

20

The coefficient a can be related to co' and ps„(T, ) in the
following way:

I

50
I I

IOO
m (mev)

I

150 200

(co~ ) psF(T, )+=1.64
&7'

(52)

FIG. 2. Frequency dependence of the effective relaxation rate
at T=100 and 200 K, compared to the experimental data of
Ref. 6 for YBa2Cu307.
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FIG. 3 ~ Frequency dependence of the mass enhancement at
T= 100 and 200 K, compared to the experimental data of Ref. 6
for YBa2Cu307.

As stated earlier, our results in the paramagnon case
are comparable to those of Ref. 4, since the two models
rely on the same physics. We should mention also that
our results are in agreement with those obtained by Ru-
valds and Virosztek" using the Fermi-surface nesting ap-
proach with the small difference that the mass enhance-

I 20

FIG. 5. Same as Fig. 3 but using go instead of g, .

ment they obtain seems to be a little bigger than what the
experiment suggests.

B. YBa&Cu306 63

In the case of YBa2Cu30663 material with T, =60 K,
we are not aware of any experimental data on its optical

I ONE

0.9

IOO

0.8

0.7

80
3 0
b b05

0.4

0.3

40 0.2

O. I

0
I

50
I

IOO
~ (mev)

I

I 50

FIG. 4. Same as Fig. 2 but using go instead of g, .

200

0 I

50
I

IOO

~(mev)

I

I 50 200

FIG. 6. Optical conductivity divided by its zero-frequency
value, T=200 K for the three models compared to the experi-
mental result of Ref. 7 for YBa,Cu307.
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properties. Orenstein et al. published data on T, =50 K
material. To evaluate the quantity g, in this case, we
therefore use the value ofp(T, =60 K)=240 pQ cm given
in Ref. 7, and we estimate ps„(T, ) =20 pQcm. Using the
same reference we approximate co*= 1.12 eV. One of the
striking properties of YBazCu30&+„materials is that as
soon as one moves away from x = 1 to smaller values, pp
becomes temperature dependent. Using co*= 1.12 eV
and ps„(T, ) =20 pQcm, we obtain a0=0.22 and

g =0.66, paramagnon,

g =0.42, model B,
g=0.32, model C .

80

6p
E

40

YBa2Cu306 63

In Figs. (7—10) we display our results for the T, =60 K
material. Most of the features described in the case of
the T, =90 K material remain valid, i.e., the linearity of
the effective relaxation rate as a function of frequency,
the weak frequency dependence of the mass enhance-
ment, and the decreasing of cr(0) with increasing temper-
ature. Still, there are some additional features. Two im-
portant differences are readily noticeable. Firstly, the
magnitude of the mass enhancement at 1ow frequencies
for the T, =90 K material is nearly twice that of the
T, =60 K material. Secondly, the variation with temper-
ature is just the opposite in the two cases. For the
T, =90 K material, m'/m decreases with temperature,
while for T, =60 K it increases except in the model C
case, where we still have the same behavior. In our cal-
culation, the main qualitative difference between the two
models resides in the temperature dependences of cosF
and yo(T). Most probably, the difference between cos„ for
the two cases has a minor impact on the mass enhance-
ment as opposed to go(T), since the mass enhancement is

20

'0 I

50
I I

IOO
~ (mev)

I

l50

FIG. 8. Same as Fig. 2 but for YBa&Cu306 63 using gp s.

V. CONCLUSION

In this paper we have calculated the optical conduc-
tivity in the normal state of the cuprate superconductor

directly proportional to yo(T). It would be very helpful
to verify this prediction experimentally for YBazCu306 63

by measuring on the same sample both the optical con-
ductivity (from which m*/m could be deduced as is done
in Ref. 6) and yo(T) and check whether there is any scal-
ing between the two quantities at a fixed frequency.

400—
l.7

350—

300—

250-
O
E

~w
200—

m"
m l.5

I50—
1.4

IOO—

50— l3—

p ~T I a

50 IOO

I

l50
s I

200
r(K)

250 300 50
I

Ipp
~ (meV)

I50 200

FIG. 7. Same as Fig. 1 but for YBa&Cu306 63 using gp s. FIG. 9. Same as Fig. 3 but for YBa&Cu3O6 63 using gp
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FIG. 10. Frequency dependence of the optical conductivity
at T= 100 and 200 K divided by its value at zero frequency and
T=100 K, for the three models for YBa2Cu306 63 using respec-
tive go's.

of 0(co) in a certain range of frequency. Hence, one
would like to compile a single form that interpolates be-
tween the frequency regions.

The results we obtain for YBa2Cu307 reproduce fairly
well the linear behavior of the relaxation rate experimen-
tally seen as a function of frequency, as well as the linear
behavior of the dc relaxation rate as a function of temper-
ature. We also find quite good agreement with the exper-
imentally obtained mass-enhancement of the free carriers.
The experimental data on the frequency dependence of
the optical conductivity is roughly fitted by our calcula-
tion if we use model A or model B at small frequencies
(co~ 30 meV), and model C for frequencies co~ 50 meV.
In the case of YBazCu30663 we predict that the mass
enhancement at a fixed frequency, but as a function of
temperature, scales with the uniform static susceptibility.
We also predict that the linearity of the effective relaxa-
tion rate as a function of frequency observed for
YBa2Cu307 should persist for YBa2Cu306 {)3.

This calculation can be improved in many ways. In-
stead of using a two-dimensional system one can include
some hopping effects in the third dimension to simulate
the real three-dimensional character of YBa2Cu306+„.
We have used a cylindrical Fermi surface; one could in-
stead use a more realistic one. The other direction of im-
provement might be the inclusion of phonons in the pic-
ture by allowing the free carriers to interact with them.
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