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A superconducting interferometer composed of two parallel arrays of series connected Josephson
junctions (a simplified model of a high-T, granular superconductor) is considered. The interferometer
is supplied by dc current J from an external source and is linked by an externally applied magnetic
flux ®.. We consider the associated problems of finding the stationary values of the current in
function of ®. and stationary values of flux in function of J. It is shown that both problems
have identical solutions, which can be obtained by finding the extrema of a properly defined energy
function G relative to the conditions given by the set of differential equations dJ = 0, d®. = 0, and
one of the two conditions found to be complementary, either the fluxoid conservation relationship or
the definition of the induced flux ®; in terms of currents J; and J> through the arrays (J = Ji1 + J2).
The dc Josephson equations and the other of the two “magnetic” constraints are then derived
as necessary conditions for the existence of energy extremum, i.e., it suffices that these relations
are satisfied only locally at the extremum, a result which can be useful in the investigation of
nonequilibrium processes. The stationary values, G('?'), of G are found to depend only on ¢; and
¢2(¢1), the superconducting phase differences across the weakest junction in each array. Functions
G'™ are labeled by different possible phase states {m) of the system, generated by the numerable
set of possible mappings of ¢; and ¢2 into the phase differences across the other junctions of the
system. By allowing the Josephson equations to be satisfied globally, and not only at the extremum,
an analytical expression for the second order derivative of G'™ is obtained. Energy considerations
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confirm generally unstable and hysteretic behavior of systems containing series junctions.

I. INTRODUCTION

The problem of maximizing dc current J through a
parallel arrangement of two series arrays of Josephson
junctions linked by an externally applied magnetic flux
P, was solved in Ref. 1. Previously such systems received
no attention, presumably because no applications could
be envisaged for them. However, the advent of high-T,
materials with the well documented (c.f. Ref. 2) exis-
tence of intrinsic Josephson junctions has changed the
situation. It can be reasonably supposed that some of
the intrinsic junctions form series arrays® and that some
of these arrays are connected in parallel. Therefore, the
analysis of such systems ceases to be a purely academic
exercise and gains in practical significance.

The maximal, or critical, current Jy,.x as a function
of &, was found in Ref. 1 to be dependent on the phase
states (m) of the system. Roughly, a phase state deter-
mines how the superconducting phase difference across
the weakest junction in a series array is being mapped,
via the Josephson equations, into phase differences across
the other junctions of this array. Specifically, it deter-
mines whether the cosine of any particular junction phase
is positive or negative. Physical significance of the phase
states relies on the existence of phase gaps separating the
states of individual junctions. The gaps cannot be en-
tered without exceeding the critical current of the weak-
est junction in the array. In a system containing N junc-
tions in two arrays one must take into account 2(N — 2)
different permutations of the cosine signs (the weakest
junctions in each array are disregarded in this respect)
and examine 2(N — 2) different stationary distributions
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J{™(&®,). Critical current of the system is then defined
as |Jmax(®Pe)| = max |J(ﬁ“)((1>e)’, i.e., the envelope of all
J™(3,) |

Some aspects of the above analysis are unsatisactory.
It says nothing about the stability of the solutions. The
definition of critical current implies that if the system in
state (/) is supplied by a current J = J,‘,,’Z,‘,l(@e), and if
a critical current J,‘n'l,‘,')(@e) > J,‘,,';‘,’((@e) is available then
an increase of J changes the state to (m’). However, the
existence of phase gaps and associated energy barriers!
must give certain rigidity in the adherence to the already
occupied phase state. It can be supposed that the system
in the outlined situation behaves unstably, as it has a
choice between going into a resistive state and making
the transition (m) — (m').

While on the grounds of static theory dynamic behav-
ior of the system cannot be determined, useful hints could
be gained by the knowledge of internal energy associated
with each phase state. The aim of this paper is to provide
this sort of information.

In Sec. II we discuss briefly the previous results, view-
ing them from a different perspective with particular em-
phasis put on the initial assumptions. This section serves
as a starting point for the development of a more general
theory, using a less restrictive and slightly modified set
of assumptions, presented in Sec. III. The main result
of Sec. III is that the stationary currents J{™)(®,) cor-
respond to the stationary values G{™)(®,) of a properly
defined energy function G. The means to discern be-
tween stable and metastable values of G(ﬁ‘)(d)e) are also
provided. Conclusions are presented in Sec. IV.
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II. STATIONARY CURRENTS
A. Fundamental relations

We recall that the considered system is a supercon-
ducting interferometer composed of two parallel arrays
of series connected Josephson junctions. The arrays can
also comprise series (lumped) inductances. The inter-
ferometer is supplied by dc current J from an external
source and is linked by an externally applied magnetic
flux ®.. A particular realization of such a system, used
in numerical examples throughout this paper, is shown
in Fig. 1.

The system is best described in terms of supercon-
ducting phase differences ¢,; across the junctions, where
n = 1,2 refers to the array and ¢ = 1,2,..., N, to the
junction in this array. ¢,; obey two fundamental rela-
tions. The first of these is the set of Josephson equations

Jn=1Insingn;, n=1,2, i=1,2,...,N,, (1)

where J,, is the current through an array and I,; is the
critical current of a junction in this array. The second is
the fluxoid conservation relationship

& = (1/27)(01 — 0 + 270), (2)

where @ is the total flux linking the circuit, expressed in
units of flux quantum ®, (®, = 2.07 x 107! Wb), o,
denotes the sum of all phases in a given array and ¢ is an
integer. The phase variables ¢,,; are related to J directly
by Eq. (1) and Kirchhoff’s law

J=J1+ Jo. (3)

Establishing the relationship between ¢,; and &, re-
quires some care. Let us define first the induced flux ®;
as the sum of fluxes produced by J; and J; in series in-
ductances Ly and L, respectively. Since J; and Js are in
the same direction, their contributions to the flux linking
the loop must oppose each other, and we can assume

®; = ~J1Ly + JaLo, (4)

where L; and L, are in units of Henry/®,.

The relationship between ¢,; and ®, can be now ob-
tained by expressing the total flux ® in Eq. (2) as the
sum of &, and ®;. However, the signs of o, in Eq. (2)
(determined by the orientation of the fluxoid integration
path with respect to J,,) and the arbitrarily chosen signs
of J, in Eq. (4) must be made consistent. At this stage
we cannot be certain what is the correct form and we will
write

=0, 1 ;. (5)

This issue will be settled in Sec. III. Meanwhile we note
only that in Ref. 1, following other references (c.f. Refs.
4 and 5), the + sign was assumed.

An important consequence of Egs. (1) — (4) is that the
phases ¢,,; determine not only the currents in the system
and the total flux ® but also — what seems to be less
generally recognized — the external flux ®.. Conversely,
it can be shown that specifying J and ®. determines,
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Jy J2
B = 0.5 Bz = 0.5
Ly = 0.8 Iy = 0.85
I = 0.95
I, = 0.9

FIG. 1. Schematic representation of a (2+2)-junction in-
terferometer. The junctions are marked by crosses and the
indicated values of parameters are used in the numerical ex-
ample discussed in the text. The arrow in the center indicates
the direction of fluxoid integration path.

albeit, in general, not uniquely, the ¢,; variables. This
can be considered as a manifestation of the more gen-
eral rule that current and magnetic field in a Josephson
Junction, if specified together with the superconducting
phase difference, must be self-consistent.® Therefore, in
order to keep the applied flux constant and equal to .,
while the system is described in terms of ¢,;, we must
impose formally the constraint

@, = (1/27)(01 — 02) £ (L1J1 — L2J2) + g = const.
(6)

In further considerations of this section, Eq. (6) will

effectively replace Egs. (2), (4), and (5).

B. Solutions

Equations (1) are clearly redundant and the number
of independent variables ¢,; can be reduced to two. Let
us order the indices ni so that I,; < I,; for i < j
and let us assume I;; < I»;. The indices nl will be
further abbreviated to n in anticipation of the special
role the weakest junction in each array is going to play.
We introduce also the notation a = I /Is, api = In/In;.
Then Egs. (1) for n = 1,2 and 7 > 2 are rewritten as

oni = @) = (1) ol +mpm, 022, (7)

where m,,; is an integer and gpsg) denotes the principal

branch of arcsin(an;sin,), e, —7/2 < <p53) < w/2.
Observe that for a,; < 1, the ranges of goff?) and <p(n’?+1)
are separated by a phase gap.

The system is now completely described by the phase
differences ¢, and @2 across the weakest junction in each
array and by the “state vector” (m) = (m;,my) with
Ni + Ny — 2 components (Mm)p; = myn;. Moreover, the
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remaining two equations (1) and Eq. (3) relate ¢; and
2 to each other. Choosing ¢;, the phase of the weakest
junction of the system, as the independent variable, we
find that stationary currents must satisfy

iJ_ = % + %50’2 =0.

d(pl apl 6<P2 extr

By using Eq. (1) and differentiating also Eq. (6) (ob-
serve that from this instant we are no longer referring to
any particular value of ®.) ¢4 can be eliminated. Af-
ter taking into account Eq. (7), the necessary condition
for the existence of a current extremum at a phase point

(1, ¢2) is obtained in this manner,!

() _ 1 ()
P = o (=), @
where

N, .
. L —1)mnig,,
ﬂ(rzn)(ﬂon) ==8, + Z#a—‘r

2
n

i=2 y/1 —a2;sin’ p,
and B, = 27L,1,.

It is evident from the outlined procedure that Eq. (8)
can be equally well considered as the necessary condition
for the existence of external flux extremum at the same
phase point. ~

Equation (8) must be solved numerically for <p(;")((pl)

[or v(fn) (¢2)], the locus of the stationary points (1, ¢2),
which is dependent on the state vector () assigned to
the system. It is impractical, if not impossible, to solve
this equation only for some predetermined value of ®, or
J.

In general, the solution does not exist for an arbitrary
value of ¢, or p3. This can be easily shown in the case
of a two-junction interferometer. Then /3(,'," - 48, and
designating @ = +f; + af, it is seen that Eq. (8) is
represented by a straight line in z = (cosp;)™? and y =
(cosp2)™! coordinates

z+ay+a=0,

everywhere except inside the region bound by the lines
|z] = 1 and |y| = 1. The importance of the parameter a
in the analysis of a two-junction interferometer was first
realized by Fulton, Dunkleberger, and Dynes.” Intersec-
tion points of the solution line with the region boundaries
define the forbidden ranges of ¢; and ¢, which are void
only for a = 1 and b1 = B2 = 0. In the general case
of nonlinear ,8(,7‘ } the straight solution line is replaced
by a curve, but the overall picture remains the same, as
is demonstrated in Fig. 2 for the particular case of the
system shown in Fig. 1.

From the_above observations it can be deduced that
the plots <p(£")(<p1) form on the (1, p2) plane closed, pe-
riodically spaced loops (in direct analogy to fluxon vor-
tices), separated by regions where stationary solutions
cannot exist. The existence of such loops or phase vor-
tices was recognized in the two-junction case by Tsang
and Van Duzer.® As a consequence, the plots of J (™) (®,)
form also closed contours (of width > ®,), repeated every
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®,, as dictated by the fluxoid conservation.® The gaps in
these contours, found in Ref. 1, were due to an imper-
fect algorithm which failed in regions where the slope ¢/,
approached infinity.

The appearance of forbidden gaps in the ranges of sta-
tionary phases cps,m) is not related to the gaps in ¢,;, in-
troduced by Eq. (7). The latter, however, must become
wider in the stationary case as a result of the former.

Another important property of Eq. (8) is its invariancy
under a transformation, which changes simultaneously
the sign of B; 2 and the signs of all cos ¢p;, including
cos¢yn. It means that changing the sign in Eq. (5) is
equivalent to the inversion of ®. [as a consequence of
the transformation imposed on the range and domain of

go(f')(gol)] and a change in state designation. The latter
property might be expressed as

(#)s = (A — 1), (9)

where the subscripts refer to the sign in Eq. (5).

III. EQUILIBRIUM STATES

A. Analytical results

Let us clarify the results of the preceding section. It is
evident that in the search for stationary values of the cur-
rent at fixed external flux, i.e., looking for the solution of
the problem dJ =0, ®. = const, we have found also sta-
tionary values of external flux at fixed current, i.e., solved
the problem J = const, d®. = 0. There is nothing sur-
prising in this observation and it has nothing to do with
physics. It is a matter of simple verification that if z¢, yo
is a stationary point of f(z,y) subject to the constraint
H(z,y,A) = h(z,y)— XA = 0, where ) is a parameter, and
if the corresponding stationary value is f(zo,y0) = &,
then zo,yo is also a stationary point of h(z,y) rela-
tive to the condition F(z,y,£) = f(z,y) — € = 0 and
h(zo,y0) = A. If the method of implicit differentiation,
the same which was used in Sec. II B, is employed to solve
the problems involving f and h, the link between them
is established by the relation y' = —f;/f, = —hy/hy. Tt
follows that whether the goal is to find a single stationary
value of f or h at some specified value of the parameter
appearing in the constraint or to obtain the locus of these
values, the solution is determined by the set of first-order
differential equations

df =0, dh =0.

Keeping in mind the above remarks, we will abandon
now the asumptions made in the preceding section and
consider a more general problem of minimizing the inter-
nal energy of the system under constraints given by

dJ =0, do.=0. (10)

This problem may be seen as equivalent to the search for
the equilibrium distribution of a given current J into J;
and J2 with external flux as a parameter. We assume ini-
tially that all phases ¢,; are independent. The currents
J,, will then depend on all of these variables



2322

In = In(P11, -, PIN, P21, - - -5 P2N, ),

and similarly ®,, with the reservation that Eq. (10), in
general, allows the elimination of one of the ¢,;. Since it
is not really important at this stage which phase is made
dependent, we will denote it by ¢*.

A rather straightforward generalization of expressions
valid for less complicated systems (c.f. Refs. 1, 9, and
10), leads to the conclusion that the Gibbs free energy of
the system (current source included), scaled by the factor
®,/27, is given (in the same units as before) by

G=) Ii(l—cospn)— Y Jaon+(x/L)®%,  (11)

where L = Ly + Ls.

The first term on the right-hand side of Eq. (11) is the
potential energy of the Josephson junctions, the second
is the total energy drawn from the current source in the
process of increasing the phase across each junction from
0 to ®n;, and the third is the magnetic energy stored in
the system (and in the external field).

Equation (11) in the special case Ny = N = 1 must
give the Gibbs energy of a two-junction interferometer.
Let us observe in this context that the magnetic energy
term ®? is sometimes replaced by ®Z (c.f. Ref. 9). The
current source is then required to balance the magnetic
energy stored in the system, even if the current drawn
from the source is J = 0. It can be easily verified that
such substitution leads to equilibrium conditions, which
have no physical meaning. Obviously, ®? can appear in
the expression for free energy of the system, with the
source term dropped.* Correct form of the Gibbs energy
for a two-junction interferometer was derived by Klein
and Mukherjee.}?

The extrema of G relative to the condition Eq. (10)
will occur among those points at which all first order
derivatives of G are zero. We must have, therefore,

Gikj =Y (Ini Sin @i = Jn) Pnivks

ni

— > Tnikipni + (27 L)@y,

ni

=0, (12)

extr

Iél
0Pk; +

3?;:‘ -g—;%}. Since Eq. (12) must occur for all kj, it is clearly

seen that the Josephson equations, Egs. (1), constitute
a necessary condition for the existence of the energy ex-
tremum. It suffices now that these equations are satisfied
locally at the extremum.

Assuming that Eq. (5) is still valid, ie.,, ® = &, + ®;,
Eq. (12) on substitution of Egs. (1) will take the form

Gigj| = (—01+ 02)J1kj £ (27/L)®P;ip; = 0, (13)

where 'kj stands for the involved derivative

extr

where we have used Eq. (10), in particular the relation
Jukj + Jark; = 0. Incidentally, it is seen from Eq. (13)
that if the constraint d®, = 0 is replaced, seemingly in
the spirit of fluxoid conservation, by d® = 0, then the
corresponding relative extremum occurs only at ® = 0.
To proceed further we need to define @ as a function of
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©ni, either explicitly as ®(p,;) or implicitly as ®(Jq, J3).
In the first case we have to use the fluxoid conservation
relationship Eq. (2), while in the second it is proper to
use the induced flux definition Eq. (4). In both cases
we will be able to settle the ambiguity in Eq. (5). Let
us asume that the fluxoid relationship Eq. (2) is global
(differentiable). Equation (13) yields then

(o1 — 02) [=J1kj £ (1/L)Pirkj] = 0.

Clearly, the extremum is either coincident with the min-
imum of the parabolic magnetic energy term

P x (61 —02) =0,
or it is a local extremum, which requires

(1/27)(o1 — 02)k;

=32®yp; = LJ1kj = (L1J1 — LaJa)n;.

It is seen immediately that if the lower, minus sign is as-
sumed in the above equation, then — as a consequence of
the global fluxoid relationship — the differential form of
Eq. (4) will be established as a condition for the existence
of energy extremum. We note also the trivial conditions
Jur; = 0 and Jag; = 0, corresponding to current ex-
pulsion from one of the parallel interferometer arms, i.e.,
to a situation in which magnetic interaction vanishes (at
least within the scope of the present theory).

The complementary character of Eqs. (2) and (4) can
be further demonstrated by assuming that it is Eq. (4)
which has global character. We have then from Eq. (13)

(=01 + Uz)Jl’kj + (27T/L)(I>(—L1J11kj + LQJZ’I;]')

=(~o1+o2F27®)J1 4 = 0,

i.e., we obtain Eq. (2) for ¢ = 0, again on condition
that the lower sign in Eq. (5) is assumed.!! Clearly, the
consistency of theory relies on persistent application of
this sign.

To conclude, using a less restrictive set of assumptions
we have arrived at the same set of fundamental rela-
tions, which in the preceding section were shown to deter-
mine the stationary values of current and external flux.
The solutions of the previous analysis have thus gained a
deeper significance as energy extremals. Among the pos-
sible applications of these results is the investigation of
nonequilibrium processes by the use of multidimensional
plots of

G(Soll)'- ')‘PQN;)Jl)JZ)@e)@i)

on which the locus of stationary values can be also drawn.
For instance, one can easily construct the contour maps
of constant energy in the phase space, analogous to the
maps for two-junction interferometers.®°

Judicious “globalization” of the constraints, identified
here as local, can be also very useful. Let us assume that
the Josephson equations, Eq. (1) and fluxoid, Eq. (2),
are global, while the induced flux definition, Eq. (4), is
satisfied only at the energy extremum. This corresponds

5 PIN, P21 - -
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to a situation in which the superconducting phases adjust
immediately to the instantaneous values of Jy, Jo, and
® but these values lag behind the changes in ®,. Under
these assumptions it is possible!? to calculate the second
derivative G" () of G/™) with respect to 1, simply by
differentiating Eq. (13). After some manipulations we
arrive at the result

LG" () N
e (ﬂf tan 3 — a’nj tan Sogm)) (™), (14)
where
2 2
2_N" % N~ %
n Z cos? pp; Z 1—a2;sin’p,’

and ®(™ denotes the flux calculated from Egs. (2), (7),
and (8). By plotting the sign of this expression along
with Jiax(®.) it is possible to indicate the course of the
critical current over energy minima, maxima, and inflec-
tion points.

B. Numerical example

Since neither Eq. (8) nor Eq. (14) can be solved an-
alytically, further discussion will be limited to the nu-
merical analysis of the already considered example, i.e.,
the (2+2)-junction interferometer, shown schematically
in Fig. 1, where the values of the relevant parameters are
also indicated. The (2+2) configuration is the simplest
(a state vector with only two components), next to the
(2+1) one,? for which the theory of two-junction interfer-
ometers ceases to apply. Such configuration was already
examined in Ref. 1, but here we have spread more widely
the critical currents I,,;, getting a more pronounced effect
of “spurious modulation” of Jiax.

We draw attention to Eq. (9), which is needed to pre-
serve the continuity with the results of Ref. 1, and we
keep the subscript “—” in the designation of state vec-
tors as a reminder that total flux ® is defined here as
$ = &, — ®;. However, it must be emphasized that Eq.
(9) without the accompanying translation of ¢; and 3
is valid only for the current states J{™) and not for en-
ergy states G{™). The latter are obviously not periodic
because of the linear term }_0,J, in Eq. (11).

The inverse cosine plots of Fig. 2 contain several im-
portant pieces of information about the stationary prop-
erties of the system, which need only to be put into more
comprehensive language. Let us remark first that the
loops (vortices) of the stationary phase points (,ogjﬁ) (1)
must by definition form on the ¢;, ¢, plane a square lat-
tice with lattice constant of 2x. It suffices to consider
only a “unit cell” of this lattice with lattice points at +m
and in the center of the resulting square. From the lowest
plot in Fig. 2 it is seen that the states with even state
vector components my,; occupy the single centered posi-
tion in the cell. The middle plot shows that states with
mixed parity my,; occupy the four corner sites. (Two
series junctions in the investigated system signify that
two mixed parity states, represented, e.g., by (0,—1)_

= (Rk+1)m

s £
1 R
| g
' :
—104— r T T ——————
-10 5 0 10
-1
(cos ¢1)
FIG. 2. Plots of inverse cosines of stationary phases for

the system shown in Fig. 1, calculated for negative sign of ®;
in Eq. (5). The lowest plot represents all phase states with
Mni even, middle one — the states with mixed parity of mn;,
and the upper plot — the states with my,; odd. Dashed lines
are to guide the eye only.

and (—1,0)- should be considered, but for the assumed
values of the system parameters their plots are nearly
identical and only one is shown.) Finally, from the up-
per plot it can be read that states with odd m,; occupy
all five sites in the cell. The centered phase vortex is
quite small, as indicated by the short central branch of
the relevant plot.

The above observations are very helpful in setting up
the ranges of ¢; and ¢35 for computation and in the in-
terpretation of the results. Each phase vortex in a given
state produces an identical (modulo ®,) current pat-
tern J{™)(®,) and, as its unique signature, a distinctive
branch of the energy function G{™)(®.). Note that mov-
ing from one phase vortex to another in the same state in-
volves always a discontinuity in at least one phase ¢,. It
can be also shown that only one state representing a given
parity of my,; need be considered, the effect of changing
the representative being equivalent to the change in ¢,
and ¢, ranges. Accordingly, we have chosen for further
discussion only the states with m,; = 0,—1 in the four
possible permutations.

In Fig. 3 we show stationary currents and energies for
the (0,0)_ and (—1,—1)_ states. In order to fit both
J{™) and G{™) on the same plot so that the correlations
between the two could be seen, only negative values of
the current less than I,i, = Io—I; (normalized to Imax =
I+ 1,) are drawn. Full current plots can be visualized by
taking into account their point symmetry with respect to
the coordinate origin: J(™)(®,) = —J{(™)(-®,). It was
found that the same scale could be used for currents and
energies by plotting not directly G{™) | as determined by
Eq. (11), but rather (L/7)G{™ with G{™ normalized
also to Imax. The reference level of energy was set equal
to G{%:9(0). The sign of the second-order derivative of
energy with respect to ¢;, calculated from Eq. (14), is
indicated by the linewidth used for plotting: thick lines
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APPLIED FLUX (units of &)
FIG. 3. Stationary energy function (L/W)G(ﬁl) (upper
part of the drawing) and stationary current J) (lower part
of the drawing) in function of externally applied magnetic
flux ®, for (M) = (0,0)_ (solid lines) and (m) = (—1,—1)—
(dashed lines) for the system shown in Fig. 1. Both G and
J™) are normalized to Imax = I1 + I2; only negative values
of the current are shown. Thick lines are used to draw stable
solution branches corresponding to local minima of energy.

correspond to positive sign or local minimum of energy,
thin lines — to negative sign or local maximum of energy.
The branches drawn with thick lines are supposedly sta-
ble and will be referred to by this term.

The (0,0)_ plots in Fig. 3 were calculated by allowing
1 and @3 to take values from the same interval [—3, 37],
i.e., by taking into account nine phase vortices arranged
in a square. However, the corner vortices to which cor-
respond currents peaking at &, = £3®, have very high
energies and were omitted from the plots. Currents and
energies corresponding to the odd (—1,—1)_ state were
calculated by running ¢; and ¢2 over all five vortices of
the unit cell, i.e., by taking the values of these variables
from the interval [—27 + 6,27 — 8], where 6 is the half
width of the small centered vortex. The contribution of
this vortex is clearly seen in Fig. 3 at ®, = 0.

A characteristic feature shown in Fig. 3 is the for-
mation of closed energy loops corresponding to vor-
tices, which produce current patterns at identical flux
ranges. This effect is particularly well demonstrated for
the (0,0)_ state, but can be seen also at the central part
of the (—1,—1)_ plots. It is also interesting to note that
the lowest energy levels of (0,0)_ and (—1,—1)_ states
are nearly degenerate.

However, the most important conclusion, which can
be drawn from Fig. 3, is that the intersection of sta-
tionary currents, independently of their state affiliation,
in general does not occur at the same ®. values as the
intersection of corresponding energies.

The limits set for ¢; and 2 in Fig. 3 provide that
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vortices of the two states represented there overlap, ie.,
both phases can change continuously with ®., on condi-
tion that the system changes its state at the appropriate
moments. Such continuous phase evolution with applied
flux is equivalent to the continuity of stationary currents
and leads, after taking into account the other possible
phase states, to the critical current of the system defined
as the envelope |Jmax(®.)| = max |J{™)(®,)|, which was
considered in Ref. 1. With the present set of analytical
tools we can also consider the system behavior from the
point of view of energy continuity and minimization.
The data needed to investigate the system from this
point of view are presented in Fig. 4. We have repro-
duced there from Fig. 3, using the same conventions,
the low-energy branches of the (0,0)_ state centered at
®, = +P,. In addition, we have plotted currents and
energies corresponding to (—1,0)_, (—1,—1)_, lowest
energy (0,0)- and (0,—1)_, the relevant curves being
marked a-a, b-b (dashed), c-c and d-d, respectively. In
order to not clutter the figure with too many details, the
latter plots are limited to @, range from approx. —0.59,
to 0.5®,. This range suffices to visualize the critical
current envelope, which being ®, periodic can be easily
imagined also at the adjoining ®. ranges, and encom-
passes the lowest energy levels of the relevant states. We
have omitted also the contribution from the small cen-
tered vortex of the (—1,—1)_ state. Comparison with
Fig. 3 shows that this contribution, both in current and
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FIG. 4. Possible evolution of critical current and poten-

tial energy in function of applied flux ® for the system shown
in Fig. 1. Curves marked {0,0)_ are reproduced from Fig.
3. The system at ®. = +P, is assumed to be in this state
and in the intermediate range has a choice between the states
(-1, 0)_ (curves marked a-a), (—1, —1)_ (dashed curves b-b),
central branch of (0,0)— (curves c-c), and (0, —1)— (curves
d-d). Stable solutions are drawn with thick lines. Solid verti-
cal lines indicate enforced transitions at a phase vortex limit,
dashed lines mark equal energy transitions from an unstable
to stable state. Arrows indicate the direction of flux changes.
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in energy, is hardly distinguishable from the d-o0-a com-
posite curves.

Before more detailed discussion let us make two hypo-
thetical rules, which will govern the system’s evolution
in varying external flux.

(1) When two states have equal stationary energies,
the system makes a transition to the state with minimal
energy (stable). If both states are stable, the transition
is to the state with negative energy slope with respect to
flux change.

(2) When the evolution leads beyond a phase vortex
limit, the system makes a transition to a state of lower
energy.

Let us assume now that at &, = —®, the system is in
stable (0,0)_ state, as shown in Fig. 4, and that ®. is
increased. The system will stay in the initial state until
the phase vortex limit is reached. Application of rule (2)
produces then an enforced transition indicated by solid
vertical lines on the energy and current plots, and a sud-
den jump in the current value. For argument’s sake we
may assume that the transition will be to the state with
the lowest energy, i.e., (—1,0)_ (curves a-a). This state
will be occupied up to ®, = 0, where a transition to the
{0, —1)_ state (curves d-d) will take place by rule (1). Fi-
nally, with applied flux still increasing, the point of equal
energy with the next stable branch of (0,0)_ state will
be reached and a transition to this state made, produc-
ing another sudden jump in the current, as indicated by
the dashed vertical line. In this manner we will find the
system at ®, = @, back in the (0,0)_ state.

If the applied flux is now decreased to —®,, a similar
process will take place, again starting from an “end-of-
line” transition marked by solid vertical lines at posi-
tive flux values. Clearly a hysteretical loop of current
and energy values will be completed between fluxes cor-
responding to the dashed and solid lines. Similar loops
will appear at negative flux values. The picture which
emerges from this discussion is that of the system ex-
hibiting mostly currents from below the envelope and
only sporadically arriving at the envelope.

Now, our rules are only plausible and cannot be con-
sidered as strict. The response of the system to external
flux changes must be determined by its dynamic proper-
ties. So far, we have carefully abstained from referring
to the above-described changes in stationary currents as
changes in the critical current of the system. This follows
from the conviction that in static theory the current can
be always increased, at the expense of potential energy,
to the envelope value without driving the system normal.
However, the experiments of Fulton, Dunkleberger, and
Dynes” on highly inductive two-junction interferometers
have put into evidence the phenomenon of multiple criti-
cal currents and have shown that in dynamical situations

the equilibrium currents below the envelope can take on
the role of critical currents.

Figure 4 demonstrates that such behavior is highly
probable for interferometers containing series junctions.
The envelope alone shows the effect of “spurious” or “sec-
ondary” modulations. The combination of this effect and
that of hysteretic multiple critical currents was possibly
observed in some high-T, dc superconducting quantum
interference device measurements.'® The same combina-
tion might be also responsible for the rather poor fit of
experimental and theoretical data in experiments on mi-
crowave emission from high-T, thin-films,'* where only
parallel arrays of junctions were used in the theoretical
interpretation. Let us also observe that the energy levels
in the neighborhood of ®, = 0 provide a set of of two en-
ergy wells required by the two-level fluctuator model of
random telegraph noise observed in high-T thin films.'®

IV. CONCLUSIONS

In conclusion, we have shown that superconducting in-
terferometers exhibit critical currents, which correspond
to the local extrema of the potential energy of the system
constituted by the interferometer and its current source,
and we have provided the analytical tools which, sup-
plemented by numerical methods, can be used not only
to evaluate these currents but also to find whether the
corresponding energy extremum is a minimum or a max-
imum.

The generally unstable and hysteretic behavior of in-
terferometers containing series junctions, already pre-
dicted from the analysis of stationary currents,! is con-
firmed by energy considerations. Therefore, the presence
of intrinsic series junctions in high-7,. superconductors
can be the cause of some of the instabilities observed in
these materials. However, the theory presented here is
based on a very simplicistic model of Josephson junction
and it still needs a more definitive experimental verifica-
tion carried out on classical tunnel junctions.

Finally, let us draw attention to the fact that the the-
ory presented here is composed from the point of view
of the weakest junction in the system and it describes,
in a manner of speaking, what can be done to the sys-
tem without driving this junction into the resistive state.
In the time-dependent theory a junction in the resistive
state can still have ac Josephson properties. Allowing
some of the junctions to enter this state might open in-
teresting theoretical and practical possibilities.
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