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A chain of Josephson junctions shunted by Ohmic resistors undergoes phase transitions at zero tem-
perature that result from the interplay between quantum fluctuations induced by charging effects and the
dissipation. The quantum-mechanical partition function expressed in terms of phase slips in space-time
can be mapped onto that of a two-dimensional Coulomb gas. Due to the dissipation the interaction is
anisotropic. Despite the simplicity of the model, there is no general agreement about the phase diagram
and the response functions. We have performed Monte Carlo simulations to determine the zero-
temperature phase boundaries. We find four phases with the absence or presence of global or local or-
der, in all combinations. We discuss the response functions in the different phases and find interesting

transport properties.

I. INTRODUCTION AND SUMMARY

Experiments on two-dimensional (2D) superconducting
granular films! and lithographically manufactured arrays
of Josephson junctions’ have initiated substantial
theoretical effort to investigate the low-temperature prop-
erties of dissipative junction arrays. The interplay be-
tween quantum fluctuations, induced by charging effects,
and the dissipation in these systems can lead to rich phase
diagrams. The dissipation may be due to quasiparticle
tunneling or to ohmic shunts.>* Arrays with both types
of dissipation have been studied by various tech-
niques,”~ '* although, because of its simplicity, the majori-
ty of the theoretical papers concentrated on ohmic dissi-
pation. The strength of the ohmic dissipation is charac-
terized by the ratio a =R, /R of the quantum resistance
Ryp=h /4e?=6.45 kQ and shunt resistance Rg. Regular
arrays of Josephson junctions, depending on the dimen-
sionality and temperature, undergo phase transitions to
long-range order or a Kosterlitz-Thouless-Berezinkii
(KTB) transition. But in addition, because of the dissipa-
tion, there exists a T =0 transition to local order.®° The
critical strength of the dissipation is a=1/z or 2/z, in the
limit of large or small ratios of the Josephson energy E;,
and scale of the charging energy E, respectively. Here z
is the coordination number of the lattice.

The T =0 transitions can also be studied in a linear
chain of Josephson junctions.!°~ 2 If the charging energy
is due to the nearest-neighbor capacitance only, the junc-
tions effectively decouple,”®’ and one is left with the
single-junction problem discussed in Ref. 15. More in-
teresting is the case where the charging energy arises as a
result of a self-capacitance (capacitance to infinity or
ground) or where both capacitances matter.!! With the
Villain transformation'®'? or by instanton tech-
niques!! —both require not too small values of the ratio
E;/E-—the quantum-mechanical partition function of
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the chain of Josephson junctions can be mapped onto that
of a 2D Coulomb gas in space- (imaginary) time. The
phase slips of the phase difference of the superconducting
order parameters across the junctions correspond to the
charges of the Coulomb gas. In the limit of vanishing dis-
sipation, the charges have an isotropic logarithmic in-
teraction in space-time.16 As a result, a KTB transition
occurs from a disordered to a dipole phase at a critical
value of the ratio between E; and E.. The dissipation
caused by an ohmic shunt gives rise to an additional,
strongly anisotropic interaction between the charges in
time direction. This induces further phase transitions.
For small Josephson energy at 7 =0, a phase transition
occurs at a=1 between a disordered phase (¢ <1) and a
phase with local, but no global order (a>1).1° For large
Josephson energy a phase transition occurs at a¢=1.'"1?
In a previous publication!? we identified the last transi-
tion as a transition between a dipole and a gquadrupole
phase, since in the latter the charges in space-time are ar-
ranged in quadrupoles.

The phase diagrams obtained in Refs. 10-12 differ in
important aspects. Also, the transport properties of the
different phases are still debated. Panyukov and Zai-
kin®!? claimed that only the phase with large Josephson
energy and strong dissipation can be called superconduct-
ing. This is in conflict with the results of Bradley and
Doniach'® and Zwerger,'” who found a phase transition
to a superconducting state for zero or weak dissipation.
Another interesting claim was made by Zwerger:'© He
states that the phase with only local order, i.e., for small
Josephson energy and a > 1, has a vanishing resistance,
but no Meissner effect.

It is the purpose of this paper to resolve the remaining
questions about the zero-temperature phase diagram and
the transport properties of the different phases. We con-
sider a chain of Josephson junctions with self-capacitance
only, which are shunted by ohmic resistors. In Sec. II we
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define the model and the mapping of its partition function
onto that of a 2D Coulomb gas in space-time. The
analytical predictions for the phase diagram are reviewed
in Sec. III. In order to check these predictions, we per-
formed Monte Carlo simulations of this Coulomb gas,
which we present in Sec. IV. In Sec. V we discuss the
response functions in all phases.

To set the stage and label the different phases, we
display the phase diagram following from our simulations
in Fig. 1. We find conclusive evidence for four different
phases.

() For small Josephson energy (as compared to the
charging energy) and weak dissipation, the chain is in a
disordered or plasma phase, with an infinite dielectric con-
stant.

(II) For large Josephson energy and weak dissipation,
the chain is in a dipole or dielectric phase. This phase is
characterized by global order and a finite dielectric con-
stant. Locally, however, there remains some disorder,
which is expressed by the fact that the phase difference at
each junction changes as a function of time.

(ITI) For large Josephson energy and strong dissipa-
tion, the chain is in a quadrupole phase, again character-
ized by global order and a finite dielectric constant. But
in this phase there exists also local order: The phase
difference at each junction remains localized in time. We
will see that we can distinguish another crossover within
this phase, dividing it further into regions (IIla) and (ITIb)
with different response functions.

(IV) For small Josephson energy and strong dissipa-
tion, the chain is in a phase with only local order. The
phase difference at each junction is localized, but there
exists no global order and the dielectric constant is
infinite.

Our main conclusions concerning the response func-
tions are listed in Table I. We determine the transport
properties of the system in two different experimental
configurations. The first is a chain forming a ring of cir-
cumference N, (approaching infinity) which encloses a
time-dependent flux. We calculate the average current in
the chain and, from that, the conductance. The second
configuration is an infinite chain with a current imposed
to flow through a finite part of length L, of the chain.
We calculate the average voltage across this finite part
and, from that, an impedance. This configuration was
suggested in Ref. 13. In both configurations we distin-
guish vanishing w <<1/N,,1/L, and finite frequencies
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FIG. 1. Phase diagram of the resistively shunted chain of
Josephson junctions with self-capacitance, following from the
Monte Carlo simulations for the anisotropic Coulomb gas of its
phase slips in space-time. The strength of the dissipation is
characterized by the ratio a=Rg/Rg, with Ry the quantum
resistance and Ry the shunt resistance. The parameter
J=vV'E,;/8E. controls the strength of the quantum fluctua-
tions, with E; the Josephson energy and E-=e?/2C the scale of
the charging energy. The simulations indicated by the open
symbols were obtained with an artificial reduction of the activi-
ty of the phase slips, and the dotted line is the theoretical pre-
diction for the phase transition for small J. The dashed line
represents the crossover in the self-energy found to fourth order
in the activity of the phase slips. “Global order” is to be under-
stood in the KTB sense (algebraic decay of correlation func-
tions).

1/N,,1/L, <<w << 1, where the frequency o is scaled in
units of the Josephson plasma frequency.

For the case 1/N, << <<1 in the first configuration,
we encounter three different results. In the disordered
phase (I), the conductance equals that of a classical RC
chain, with R =Ry and C the capacitance to ground; the
Josephson channel is blocked. In the dipole (II) and
quadrupole (ITI) phases, the Josephson channel is opened,
and the conductance equals that of a classical LC chain
with L =8/4e’E,. Here E, is the Josephson energy and
8 (= 1) a constant depending on the exact location in the
phase diagram. In the phase (IV) with only local order,
we find a nontrivial frequency dependence of the conduc-
tance which is neither that of an RC nor that of an LC
chain. For the case w <<1/N,, we find infinite conduc-
tance in phases (II), (III), and (IV) and a finite conduc-
tance equal to 1/N, R in phase (I). The infinite conduc-
tance in phases (II) and (III) is associated with a finite

TABLE I. Response functions in the different phases and for the two different configurations (see the text). By JC chain we mean
the response of a chain with the Josephson channel opened. We distinguish two frequency ranges 1/N,,L, <<w<<1 or
w<<1/N,,L,. From the latter results we determine whether a finite superfluid density n; is present. The asterisk in the last column
indicates that this result was obtained in an indirect way (see the text).

Configuration 1:

flux through ring (length Ny)

Configuration 2: open section (length L)

Phase 1/N, < <w< <1 w< <1/N, 1/L, < <w< <1 w< <1/L, n
(D RC chain o=1/N,Rg RC chain Z=L Ry

(ID RC chain (R <Ry) 0
(ITIa) JC chain o= finite JC chain

(IIIb) Z=0 finite
(Iv) anomalous anomalous 0
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superfluid density n,. However, in phase (IV), the phase
with only local order, the superfluid density vanishes. A
comment on semantics: A chain of junctions cannot ex-
pell a magnetic field. Hence, strictly speaking, there ex-
ists no Meissner effect. Nevertheless, a finite or vanishing
superfluid density has been denoted as presence or ab-
sence of a “Meissner effect.”!°

The results for the impedance in the second
configuration for finite frequencies, 1/L, <<w <<1, agree
with the results in the first configuration (impedance
equals the inverse of the conductance) with one exception:
In the dipole phase (II), the impedance is that of an RC
chain, but with R <Rg. In the case w <<1/L,, we now
find resistive behavior in the disordered (I) and dipole (IT)
phases, with R =L _R;. In the quadrupole (III) and local-
ly ordered phase (IV), the resistance vanishes. If, follow-
ing Ref. 13, we invert the impedance obtained in the
second configuration to get the conductance and then
infer the superfluid density by multiplying this conduc-
tance with ®, we find that this “superfluid density” is
finite only in region (IIIb). We have to stress, however,
that this result contradicts the result obtained in the
direct determination of ng in the first configuration.

We see that the response functions differ in the two
configurations. This explains the apparent disagreement
between the results of Zwerger'® and those of Panyukov
and Zaikin.>!® Comparing the phase diagram with those
of Refs. 10-13, we find further qualitative and quantita-
tive differences. An elaborate discussion will follow in
Sec. V.

II. MODEL

We study a chain of superconducting islands with
Josephson coupling energy E; and with self-capacitance
(capacitance to ground) C, leading to a charging energy
scale E.=e%/2C. The dissipation is caused by a shunt
resistance Rg across each junction. The action of this
system reads (we put #i=1)

f OBd T

+ [lar [lar atr—r)

do; ’

dr

1
16E,

—E; cosV, @;(7)

Ale]=3 |

X[qu),-(T)—‘qu),-(T')]z] , (1)

J

_ _J
Z—% fD(p(k,w)exp w2

Here we define the reduced coupling constants

J=V'E;/8E. , A=a/Q2u]), (5

and we have scaled the frequency ® in units of the
Josephson plasma frequency V/8E;E.. The sum in the
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where ¢;(7) is the phase of the superconducting order pa-
rameter in the island i/ at (imaginary) time 7, 3 is the in-
verse temperature, and V, @;(1)=¢; (7)—¢@;(7) is the
lattice derivative. The Fourier transform of the dissipa-
tive kernel is

alw)=—2 o, a=—2 2)
41 ’ Rg '’

with Ry =h /4e? the quantum of resistance. The associ-
ated partition function can be expressed as a path integral

Z= [[IDgi(m)exp(— A[p]) . 3)

The variables ¢,(7) are defined on the interval [ — o, o ]
and satisfy the boundary conditions ¢;(8)=¢;(0), per-
taining to systems with ohmic dissipation, where the
charges can take any continuous value, and states with
phases differing by multiples of 21 are distinguishable.!”

A small E; expansion in the integral in (3) yields a
description in terms of a gas of positive and negative
“charges” at each junction, which represent Cooper pair
tunneling events. For large separations in space-time be-
tween these charges, their interaction becomes diagonal
in the junction number and logarithmic in time, with
strength proportional to 2/a. This implies that, at zero
temperature, a phase transition occurs at =1, between a
phase where Cooper pairs are delocalized (a>1) to a
phase where they are localized (a < 1).%%12

Further transitions are found in the limit of large and
moderate values of E;. In this case the action (3) can be
made tractable by using the Villain transformation for the
Josephson term.!®!? For this the time is discretized in
slices A7, and at each space-time lattice point (dual lattice
points in space) an integer valued field n (j,7) is intro-
duced with the result that the action becomes quadratic
in ¢. Here j denotes the junction j between islands j and
j +1, and for simplicity we continue to use 7 to denote
the discrete times. The natural choice for the time slices
is A7=1/1/8E,E, which leads to a symmetric descrip-
tion in space-time in the absence of dissipation.'® In
Fourier language the partition function now assumes the
form

[2(1— cosw)+Alw|2(1— cosk)]|@lk,w)|>+|[1— explik)]@(k,w)—2mn (k,w)|*

4)

action of (4) is over wave vectors k and frequencies w
from the first Brillouin zone |k|, |w| <#. Both are in-
teger multiples of 27 /N, and 27/N,, where N, is the
number of islands and N the number of time slices, re-
spectively, and N=N,N,. We have taken periodic
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boundary conditions in space: @;_o=¢,;- v, The in-
tegration over the phases ¢ in (4) is straightforward and
yields a spin-wave contribution Zgy,. The partition func-
tion can now be expressed in terms of the integer field
n(j,7) only. For this it is convenient to introduce a new
integer field p (j,7) by

pUT=EVn(j,r)=n(j,7+A7r)—n(j,7), (6)
which represents the “phase slips” at junction j. Hence

2

N > lp(k,0)|*Gylk,0) | . )

k,w

Z=Zsy D exp |—
{p}

The Green function Gy(k,w) in this expression is given
by

J o'+ Ak ol
0® k2+Ak?|o|+0? ]

in which we write for short k? and w? for 2(1— cosk ) and
2(1— cosw). Also, || is understood to be periodic. The
details at the boundary of the Brillouin zone, which de-
pend on the choice of the time cutoff A7, do not matter in
the following. For large enough distances in space-time,
the interaction (8) can be approximated by

Golk,w)= (8)

J alo| _
k’+o?  270?

The partition function (7) describes a Coulomb gas of in-
teger charges, which for the large distances in space-time
have an isotropic logarithmic interaction, with prefactor
2mJ, and a strongly anisotropic logarithmic interaction in
the time direction (between charges at the same junction),
with prefactor 2a. The pole of the propagator (8) at
k =w=0 implies overall charge neutrality. The pole at
©=0 implies charge neutrality in time of the phase slips
at each junction. In principle, the integer field p (j,7) can
take all integer values, but we can restrict ourselves to
p=0,%1, since higher values are exponentially
suppressed.

The derivation by means of the Villain transformation,
used here, can easily be reformulated in terms of the in-
stanton picture used by Korshunov.!!

Golk, )~

Gik,o)+ G (kw). (9

III. ANALYTICAL RESULTS

A convenient theoretical framework for the discussion
of the phase diagram of the above model is the sine-
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FIG. 2. Phase diagram of the same system as in Fig. 1 as ob-
tained in Ref. 11.

Gordon field theory.!® This theory yields a systematic ex-
pansion of the Green function G (k,w), describing the
effective interaction between two charges, including all
the screening effects of the other charges. The expansion
parameter is the activity y,, which controls the fluctua-
tions of the charges. This approach was followed in both
Refs. 11 and 12. In Fig. 2 we display the phase diagram
found in Ref. 11. The action for the creation of one pair
of charges with opposite sign with unit separation in the
time direction defines the activity

Vo= exp{2m[Gy(j =0,7=1)—Gy(j =0,7=0)]} .  (10)

Here_and in the following we have scaled 7 in units of
1/V/ 8E 7Ec. The effective Green function G (k,w) is re-
lated to the bare G,(k,w) by Dyson’s equation

G Uk,0)=Gy ' (ko)—2(k,w) . (11)

The self-consistent contribution to the self-energy to first
order in y is

3,=—8m?y, exp[ —27*G(j =0,7=0)] . (12)

This contribution allows us already to find a rough
division between ordered and disordered phases. From
Egs. (11) and (12) we find a transition line (line AF in Fig.
2)

mJ=2"2a . (13)

Above this line in a J-a plot, 2, vanishes, which implies
order, and below =, has a finite value, implying disor-
der.”? Additional features show up if the self-energy is
evz}IIuated self-consistently to second order in the activi-
ty:

3y(k,0)=—87p} > [1—cos(kj +ewr)] exp{47*[G (j,7)— G (j =0,7=0)]} . (14)

bT

In analogy to G, in Eq. (9), we split the effective interaction G and similarly 2,(k,w) into an isotropic and an anisotrop-

ic part. Hence,
3,(k,0)=31+3+35"

with

(15)

Si(k,0)=—87%] 3 [1— cos(kj +or)] exp{4m[G(j,7)— G =0,7=0)]} ,

bt
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SMw)=—87] S [1— cos(wr)]exp{4m*[G (j =0,7)—G (j =0,7=0)]} , (16)

T

S1(w)=87%55 3, [1— cos(wr)]exp{4m’[G!(j =0,7)—G'(j =0,7=0)]} .

We introduced a new “‘effective’ activity y, by

Fo=yoexp[ —27°G *(j =0,7=0)] .

(17)

For a > | and large J, we will see below that G 4(j =0,7=0) is infinite, so that y, vanishes. Then the only contribution

to 2, is 25!, which in leading order in ® becomes

SMw)= —8772y(2)w2f1°°d7'72 exp{47*[G (j =0,7)—G(j =0,7=0)]} . (18)

If we replace in this expression G by G, it diverges at the
line 7J =3 —a (line CDEG in Fig. 2). Analogously to the
KTB  transition,’ however, one finds by
renormalization-group procedures that the phase transi-
tion takes place slightly above this line.'!

For large J and a > %, Korshunov!! evaluated also a
fourth-order contribution to the self-energy:

S ko)< —yiklol”, (19)

with ¥y =2 for a>  and y =4a—1 for a < 3. This is line
ID in Fig. 2. A self-energy of this form can only exist
self-consistently if a > %,“ hence indicating that a phase
transition will occur at a=1.

Below the transition line mJ =3—a+0(y3), the iso-
tropic interaction is screened, and for @ > 1 we write 3
as

2{‘(w)=—16fr2y(2)|w|2“*1fidx(l—cosx)xza , (20)

with x =|w7|. The integral in Eq. (20) converges in the
limit w—0, and so =;(w)x —ydlo|” for small w, with
y=2a—1. Evaluating G by Eq. (11), one indeed finds
that the isotropic part of the interaction G Tis screened by
a self-energy of this form. One can further check that in
this region the first-order contribution X, given by Eq.
(12), vanishes. If a becomes smaller than 1, however, one
self-consistently finds a finite 2,, which screens both iso-
tropic and anisotropic parts of the interaction. This is
the transition line DE in Fig. 2.

Of course, the above only applies if G 4(j =0,7=0) is
self-consistently found to be infinite, which is the case for
a>1 and large J, as we will show now. If it is finite,
meaning that the anisotropic part of the interaction is
screened, the contributions =4 and 3;'" in Eq. (15) come
into play. Now the contribution =/ is the dominant one
because when G, is inserted into Egs. (16) this contribu-
tion diverges at wJ =2, whereas the anisotropic contribu-
tions diverge only at 7J =3. To leading order in k and o,
we can write 31=—(c,k*+c,0?), with constants
¢y,¢, >0, which depend on the exact location in the
phase diagram and need not to be specified here. Howev-
er, a term —c,k? in the self-energy will screen the aniso-
tropic part of the interaction. For G4(j =0,7=0) we
now find, from Eq. (11),

[

GA(j =O,T=O)=——2g—21n(2ac1). 21
s

Together with Egs. (17) and (21), we then find

1/(1-2a)
Jo<yo *

fora<i, (22)

independent of J, whereas y, vanishes for a> 1. This
transition (line HBC in Fig. 2) occurs for large values of
J, where the first-order contribution to the self-energy X,
vanishes.

For a< Korshunov!' concluded that the Coulomb
gas is equivalent to an isotropic Coulomb gas with activi-
ty yo,- Consequently, he predicted a KTB transition to
occur at wJ =2 in the limit of vanishing activity, in-
dependent of a (line 4B in Fig. 2).

Korshunov!! also included in his model a mutual ca-
pacitance between the grains. The main effect of this is a
reduction of the activity of the charges; the large-distance
behavior of the interactions, which determines the criti-
cal properties, is unchanged.

The interpretation of the phase transitions found above
is the following. For a < the situation is qualitatively
the same as in the isotropic Coulomb gas. For large J we
have a dielectric phase where the charges are ordered in
dipoles. For small J we have a disordered or plasma
phase where the charges are free. In the dipole phase we
have global order in the phases, but no local order: The
phase difference across the junctions is delocalized in
time. At a=1 and large J, we have a transition from a
dipole to a quadrupole phase.'> The origin of this transi-
tion is the anisotropic interaction: Considering two di-
poles with the same space coordinates but with separa-
tion in time large compared to the sizes of the dipoles, we
see that the isotropic part of their interaction is screened,
but the anisotropic logarithmic interaction is doubled
and gets a prefactor 4a. Consequently, a binding of di-
poles into quadrupoles occurs at a=1. In the quadru-
pole phase we have global as well as local order. For
I <a<1,if Jis decreased, the quadrupoles unbind direct-
ly into free charges. For a>1 with decreasing J, the
quadrupoles unbind into dipoles oriented in the 7 direc-
tion, a phase in which the isotropic interaction is
screened, and the junctions behave independently. In this
phase global order is destroyed, but we still have local or-

1
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der. Of course, it has to be realized that the use of the
Villian transformation casts doubt on the results obtained
for too small J.

IV. MONTE CARLO RESULTS

In order to check the various predictions of the theory,
we performed a Monte Carlo simulation for a Coulomb
gas with interaction given by Eq. (8). Periodic boundary
conditions in space and time were assumed (implying an
Ewald summation), and so the system actually corre-
sponds to a ring-shaped chain. The size of the system in
the time direction is proportional to the inverse tempera-
ture of the model. In our program we employed many of
the ideas of Saito and Miiller-Krumbhaar,?® who per-
formed a Monte Carlo simulation on the isotropic 2D
Coulomb gas. In particular, we used an enhanced rate of
creation and annihilation of charges, as compared to the
Metropolis rate, to speed up the simulation. The
diffusion of charges was performed according to the
Metropolis prescription. However, there exists an impor-
tant difference to the isotropic case, namely, the charge
creation and annihilation and charge diffusion have to be
consistent with the neutrality condition in time at each
junction. The different processes of creation-annihilation
and diffusion which we allowed in our simulations are de-
picted schematically in Fig. 3. In one cycle of the pro-
gram, each of these processes is attempted consecutively.
Every 1000 cycles the charge configuration is recorded,
from which we calculate the charge-charge correlation
function {p(j,7)p(j’,7')), the most important quantity
extracted from the simulations.

As in the isotropic case, the KTB transition for small
manifests itself in the behavior of the dielectric constant.
For large J the Coulomb gas is in a dipole phase, with
finite constant, whereas for small J we have a disordered
phase, with infinite dielectric constant. The dielectric
constant at finite wave vector and frequency €(k,w) is re-
lated to the charge-charge correlation function by

€ Uk,w)=1—41Gy(k,0){|p(k,0)*) /N . 23)

In Fig. 4 we display results for the inverse dielectric
constant € (k =0,w) of our Coulomb gas at a=0, for

time

4
creation-annihilation diffusion

a b c
0 0 o 0 0 0 0 * 0 0 -0 0 o+
0o 0 0%0 - 0 0o - 0 0o 0 o0 0 0 -
0 0 0% o0 + 0 0o + 0 0 +—%0 0 +%0
0 0 o0 0 0 0 0o 0 0 0 0 0 0 - 0
» space

FIG. 3. Different processes of creation and annihilation and
diffusion used in the program. Each of these processes is at-
tempted once during a cycle.
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FIG. 4. Inverse dielectric constant vs frequency w at k =0
and a=0 for a 128X256 system in space-time, averaged over
2000 configurations. The KTB transition occurs between
7J=1.9 and 2.0.

different values of J and for a system size of 128 X256 in
space-time (a system size of 2"X2™ allows use of the sim-
plest fast-Fourier-transform algorithm). The estimated
decorrelation time for the simulation with #J =2 and
a=0 was a few thousand cycles. The scatter of the data
is a reliable measure of the statistical uncertainty. The
behavior of € ! is comparable to that found in Ref. 20.
At the transition, dipoles unbind into free charges. This
occurs at a value of 7wJ between 1.9 and 2.0, which is
about 20% lower than the transition found for the isotro-
pic case [mJ=2.32 (Ref. 20)]. The reason for this
difference is the charge neutrality condition at each junc-
tion, which restricts the allowed configurations consider-
ably, even in a large system, and favors the ordered state.
In the neighborhood of the transition, the density of
charges is very low, 1%, and so the condition that a
charge on a junction should have a partner with opposite
sign on the same junction is quite stringent (this is the
reason why we choose the size in the time direction
preferably larger than that in the space direction).
Indeed, the transition was observed to shift upward with
increasing size in the time direction. However, we could
not perform a reliable finite-size analysis of this effect.

For finite a but still small, 0<a<%, the transition is
found to have qualitatively the same character, but it
shifts to lower J.

The formation of quadrupoles should be signaled by a
change in the charge-charge correlation function
{p(j,7)p(j,7')) in time at a particular junction j. In Fig.
5 we plot, again for the 128 X256 system, for wJ=1.5
and different a, the function

RNY)
Sty=41p0)) 24)
27N _|o]

In the limit w—0 this quantity can be interpreted as a
“local resistance” of one junction (see the next section).
A clear transition is seen at a value of a, which appears
to be exactly 1, in agreement with the analytical predic-
tion.

For 1 <a<1 the transition to the disordered phase
when J is decreased changes character. It is now a transi-
tion from a quadrupole phase to a phase with free
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FIG. 5. Function S(w) [Eq. (26)] at 7J=1.5 for a 128 X256
system, averaged over 4000 configurations. In the limit ©—0,
this function can be interpreted as a “local resistance.” The
phase transition from a dipole phase to a quadrupole phase
occurs at @ =1

charges. This transition can be found either by monitor-
ing the function S (w) [Eq. (24)] or the dielectric constant
[Eq. (23)]. The location of the transition is now virtually
independent of the size in the time direction. When mov-
ing to larger a, we could gradually decrease the size in
the space direction from 128 to 16—keeping the size in
time direction 256—in order to avoid exceedingly long
simulation times (the charge density increases exponen-
tially with decreasing J).

Beyond a=1 the transition should again change char-
acter according to the analytical predictions. We do not
clearly see this change in character (see also below), but
can still follow the location of the transition line as a
function of J. As it stands, we are not able to resolve
with our simulation a clear transition from the disordered
phase to a phase with only local order as a function of «
at =1 and small J. The reason for this is the extremely
high charge density in this region. However, according
to the theoretical prediction, the transition should be in-
dependent of the activity y,. Hence we artificially de-
creased the activity y,, hoping that the location of the
transition is unaltered. Physically, this corresponds to in-
cluding in the model a mutual capacitance between the is-
lands.!! In Fig. 6 we display results for the function S(w)
of simulations for a 256X 1024 system with a 400 times
reduced activity, showing that a transition occurs be-
tween ¢ =0.9 and 1.1.

The phase diagram resulting from our simulations is
depicted in Fig. 1. For a> 1 the theoretical transition
line following from the scaling relations (19) lies slightly
above the transition line found from the simulations. Ac-
cording to Korshunov,!! the KTB transition should
occur at mJ =2 for a =1 and at 7J=1+0(y}) fora= 1
with a discontinuity at ¢=1. In our simulations we do
not see any indication for a vertical part at a=1 of the
transition between quadrupole and disordered phase, al-
though we have checked this for different system sizes.

We have to stress that Fig. 1 is not the phase diagram
of the original model [Eq. (1)], because of the use of the
approximate Villain transformation, valid only for
E; 2 8E.. In the actual model, the horizontal transitions
will be shifted (upward, because the Villain transforma-
tion overestimates the actual Josephson potential). In

FIG. 6. Function S(w) at wJ =0.3 and 400 times reduced ac-
tivity for a 256X1024 lattice. Average over 5600
configurations. The phase transition from a disordered phase to
a phase with only local order occurs at a=1.

particular, we cannot exclude the possibility that the
phase with only local order extends to a= «. The verti-
cal transitions, however, result from the dissipative in-
teraction, which is taken into account exactly. It is
reassuring that the transition at a=1 matches the one
found in the small-J limit.»!> We further mention that
phase diagrams similar to Fig. 1 were found in 2D and
3D dissipative arrays of Josephson junctions.’

We also investigated the various theoretical predictions
for the self-energy in the different regions of the phase di-
agram. The self-energy is related to the charge-charge
correlation function by

—47*(p(k,0)*) /N
1—472Gy(k,0){|p (k,0)|*) /N

S(k,0)= (25)

In Fig. 7 we plot results for = in the three different or-
dered regions. In the dipole phase we indeed find a self-
energy of the form —(c,k>+c,0*) for small k and o,
where ¢, and ¢, are positive constants depending on the
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FIG. 7. Self-energy following from simulations in the three
different ordered regions of the phase diagram. For the result in
the dipole region (a =0, wJ =2.1), we plot both w and k depen-
dence: 2(k =0,0) and Z(k,w=2mw/N,) (we cannot put ®=0
because of the pole in the interaction at @ =0). For the results
in the quadrupole region, we plot only 2(k =0,w). In the di-
pole and quadrupole phases, the results agree with a quadratic
dependence. For the simulation in the phase with only local or-
der (@=1.1, mJ=0.3), we find a power-law dependence |o|?,
with ¥y =1.6. For clarity we shifted each data set one decade to
the right of the previous one.
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FIG. 8. Difference between the self-energy 3(k =0,w) and
3(k =m,) in the quadrupole phase. The results are consistent
with a power-law dependence |o|?, with y =4a—1for + <a <2
and y=2 for a>% (drawn lines). For clarity we shifted each
data set one decade to the right of the previous one.

precise values of J and a. On approaching the line a=1,
¢, decreases and vanishes at a=+. In the quadrupole
phase, the self-energy is of the form —co? for kK =0. In
the phase with only local order, we find, for the simula-
tion performed at #J=0.3, a=1.1 and for reduced ac-
tivity, a self-energy of the form —c|w|? at k =0 with
y=~1.6, whereas the theoretical prediction is y=1.2.
The reason for the difference remains unclear, but the ex-
ponent is definitely smaller than 2, which means that we
are dealing with a different phase. In order to investigate
the prediction (19) for the contribution to the self-energy
of fourth order in y,, we calculated the self-energy at
k = in the quadrupole phase for different values of a.
We subtracted from this the self-energy at k =0, thereby
revealing the tiny y 3 contribution. The results are plotted
in Fig. 8. Within the rather large error, this contribution
indeed has an o dependence in agreement with Eq. (19).

Concluding this section, we can say that we have prov-
en by our Monte Carlo simulations the existence of the
four phases which were predicted analytically. However,
we find differences in the locations of the phase boun-
daries, the most important being the absence of a vertical
part in the transition line between dipole (I) and disor-
dered (I1) phases, which was predicted by Korshunov.'!
On the other hand, his analytic expressions for the self-
energy in the different phases turn out to be quite accu-
rate.

V. RESPONSE FUNCTIONS

In Sec. III we reviewed the analytical predictions for
the phase diagram and behavior of the self-energy in the
different parts of the phase diagram. In Sec. IV we
verified these predictions by Monte Carlo simulations.
The self-energy and charge-charge correlation are related
by Eq. (25), which, when inverted, reads

N S(k,0)
47 1—Golk,0)2(k,0)

(lplk,w)|?)=— (26)

From (26) we can calculate every two-point correlation
function of the system, in particular the correlation func-
tions governing the linear response to an applied voltage,
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magnetic field, or current.

We will consider two experimental configurations to
measure the transport properties. The first one is a ring-
shaped chain of circumference N, (assumed to approach
infinity) to which we apply a flux ®(z). This is equivalent
to applying a voltage V=®. We will calculate the
current in linear response and, from that, the conduc-
tance of the system. The second configuration is an
infinite chain, with a current 7(¢) imposed to flow
through an open finite section of length L,. We will cal-
culate the voltage across this finite section and derive
from that an expression for the impedance.

Before turning to the response functions in the
different phases, it is instructive to consider the low-
frequency impedance of a classical chain with either the
Josephson channel present or absent. If the Josephson
channel is absent, we simply have an RC chain with
R =Rj. If the Josephson channel is present, we have, for
low enough frequencies QL <<Rg, an LC chain with
L =1/4e’E;. (For clarity we used Q for the real frequen-
cy, to be distinguished from the imaginary and reduced
frequency w). The impedance Z of an infinite Z,C chain
where Z can be either Rg or iQ2L (see Fig. 9) can be cal-
culated by the recursion relation

1

=Zot o5 7
Z=2ot Jac+1/z @7
from which we find
172
1 4i
=—Z, |1+ |1— : 2
VA > Z, [ Z,0C ] (28)
For low frequencies we have
V' —iR/QC for Z,=R
Z=\WWLJ/C for Z,=iQL (29)

We now discuss the two configurations.

A. Configuration 1

The effect of a time-dependent flux ®(¢) enclosed by a
circular chain of circumference N, can be included by
changing the boundary condition to @;—(7)
=@;= NX(T)’“'(D(T). Equivalently, we can shift the phases

of the islands by

_ P(7)
@ (T)—>@, (1) n2e—N , (30)

X
where the index n now runs from —}(N,—1) to
L(N,—1) (N, is assumed to be odd). We note that the
shift [Eq. (30)] with a time-dependent ®(7) breaks the
translational symmetry of the action due to the kinetic

Zo Z, Z, Z, Z,
el Rt Rl Kl el I

FIG. 9. Infinite Z,C chain.
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term. The equilibrium current I(7) through the system
can now be obtained from the thermodynamical relation

_6InZ
ddb(r) -

Combining Egs. (30) and (31), the action (1), and the Vil-
lain transformation, we obtain, in linear response,

Ho)=K(0)®(w) , (32)

(31)

I(7)

with a kernel K (w) given by
4e’E;
N,

X

K(ow)=—

1+Ma>|—4772—1JV< lp(k =0,0)|?) /&?
2
+7€;' % n?

—{Va)“ S nn{@p(@)gl—) |

(33)

in which we have also used Eq. (6). In the limit ©—0 the
kernel K(w) defines a superfluid density n,. We also ob-
tain the conductance o(£)) from it after analytic con-
tinuation to real frequencies (and also undoing the rescal-
ing of ):

a(Q)=$K(w—>—iQ/\/8E,EC) . (34)

If ® <<1/N,, the last two terms in Eq. (33), which re-
sult from the shift (30) in the kinetic term of the action,
can be neglected. Using the definition (23) of the dielec-
tric constant, we see that the first and third term between
the square brackets in Eq. (33) combine to give the in-
verse dielectric constant € !(k =0,w). From Eq. (26)
and the form of the self-energy in the different phases, we
can now evaluate the kernel K (@) in the limit ®—0. In
phases (II) and (III), we have a finite dielectric constant,
which was confirmed by the Monte Carlo simulations.
Consequently, we find a finite superfluid density in these
phases. With 2=—(c;k*+c,0?) in phase (ID),

= —(c,k?®|"+c,0?) in phase (IIla), and == —cw?
in phase (IIIb), we obtain superfluid densities
n,=4e’E;/(1+Jc,), 4e’E;/(1+Jc,), and 4e’E,/(1
+Jc) in these phases, respectively. Evaluating the con-
ductance by Eq. (34), we find 0 =1/N,Rg for Q—0 in
phase (I) and infinite conductance in phases (II)-(IV).
The striking result here is that we find no finite superfluid
density in phase (IV), but we do find an infinite conduc-
tance.

If ®>>1/N,, the last two terms in Eq. (33) are the
dominant ones. They can be evaluated further by using
the Fourier transform n (k) of the function n:

0 for k=0

(k)= { N, - (35)
" ?(—I)N"M2 otherwise .

These terms can then be rewritten as
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wazf_ﬂ dk 1 1—

Rt ]—‘C—wz(lqv(k,w)lz), (36)

where we replaced the sum over k by an integral. The
phase-phase correlation function can be expressed in
terms of the charge-charge correlation function by means
of Egs. (4) and (6):

S S
o’ +Aolk?+k?

2 k 2 /COZ
™2 1, .2
(0*+Alwlk*+k

ko)l)=2
(lpk,®)[*) i

)2<\p<k,w)|2> :

(37)

The first term in this expression is the spin-wave contri-
bution. We now see that the apparently divergent in-
tegral in Eq. (36) is actually convergent. With the help of
Eq. (26) and the expressions for the self-energy found in
the different phases, we can now evaluate expression (36).
We note that when o <<1 (but still @>>1/N,), the in-
tegrand in (36) decays at least « 1/k?, so that we may re-
place the integration boundaries by . We can then
use the method of contour integration. It is now only a
technical matter to determine the poles in the different
regions of the phase diagram and to evaluate their resi-
dues. After applying Eq. (34) to the kernel K (), we find,
for the conductance o(Q) in the different phases to lead-
ing order in Q,

(D) 2(k,0)=—c—0(Q)=1(iQC/Rg)"?,
(I 2(k,w)=—(c k*+c,0%)
—0o(Q)=1[4e’E,C/(1+Jc,)(1+Jc,)]' /%,
(Illa) =(k,0)=—(c k?|ol"+c,07)
—o(Q)=1[4e’E,;C/(1+Jc,)]'?, (38)
(IIIb) 3(k,w)= —co*—>o(Q)=1[4e’E,C/(1+Jc)]'/?,
(IV) S(k,0)=—clo|”
—0(Q)=—2e2E;(Jc) VA —iQ/V 8E;Ec0)? 7.

Here ¢, ¢, and ¢, are positive constants depending on the
precise position in the phase diagram. We see that in the
disordered phase (I) the response is that of an RC chain
with R =Rj and that in the dipole (II) and quadrupole
(ITI) phases the response is that of an LC chain with
L =5/4¢’E; and & (> 1) a constant which can be read off
from Egs. (38). In comparison with the result (29), there
is a difference of a factor of 2. This is because in Egs. (29)
the impedance to ground is determined, whereas Egs. (38)
refer to the conductance measured between the first and
last islands of the chain. In the phase with only local or-
der (IV), we find an anomalous response, which is neither
that of an RC nor that of an LC chain. We list these re-
sults in Table I.

B. Configuration 2

The second configuration is a very long chain, with a
current I(¢) imposed to flow through a finite section of
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length L, by connecting island i =0 to a current source
and extracting the current at island i =L,. The average
voltage between islands i =0 and L, defines a “local im-
pedance” Z . The current I adds a term I(@; —@g)/2e
to the Hamiltonian of the system, and the voltage opera-
tor is defined by V =¢/2e. Straightforward application

iD(t —t")=0O(t —t')([(pLX(t)—gvo(l),prx(t')—(po(t')]) .
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of linear response yields
: Ro
ZLX(Q)=}1H}) (Y —Vo)/I= 5, oD (Q+i0*), (39

where D (Q) is the time Fourier transform of the retarded
correlation function of the phase difference between is-
lands O and L,:

(40)

We evaluate this correlation function in imaginary time and then perform the analytical continuation to real time. We

then find

Ro
27N

Z, (@)=

lw[( I‘Pi=LX(w)_‘pi=0(w)|2) ]

Ro P
27N, “'N,

where ®— —iQ/V/'8E;E., and we have replaced the
summation over k by an integral.

If 1/L, <<w << 1, we can again replace the integration
boundaries in Eq. (41) by o and apply the method of
contour integration. The contribution of the cosine in
the integrand of Eq. (41) is negligible because of its rapid
oscillations. We find exactly the same response as in
configuration 1, except in the dipole phase (II), where in-
stead of the response of an LC chain we find the response
of an RC chain, but with a reduced resistance
R=[Jc,/(1+Jc,)]'?Rg for 3= —(c,k*+c,0?). Thisis
a very peculiar result. We note, however, that Jc; —0 if
J— o (c, itself also depends on J), and so in this limit
these results do not contradict each other.

In the other case w <<1/L,, we use Egs. (37), (26), and
the expressions for the self-energy in the different phases.
Remembering that k2 was an abbreviation of 2(1— cosk )
and making use of the fact that

(42)

x

f,, dk 1—cos(kL,)

—x 27 1— cosk

we find resistive behavior in the disordered phase (I) and
in the dipole phase (II), with Z=L,Rg. In phases (III)
and (IV), we find zero resistance. We could try to derive
an expression for the superfluid density in these phases,
by inverting the impedance to get the conductance, then
multiplying the conductance by i(}, i.e., the reverse of
Eq. (34), and finally taking the limit —0. Following
this procedure, we find a finite superfluid density only in
phase (IIIb). We include these results also in Table I. We
further note that, according to recent calculations of Pan-
yukov and Zaikin,'? the response of an open chain to an
applied voltage yields, in the limit of small frequencies, a
conductance which is the inverse of the resistance of an
open chain with an applied current. This suggests that

T g_’i . 2
f_727r2[1 cos(kL,) ) |p(k, o) >‘,

(41)

the difference in responses between configurations 1 and 2
arises because of the difference in the boundary condi-
tions, which are “stronger” in configuration 1 than in
configuration 2. In other words, if we fix the magnetic
flux inside the ring (configuration 1), we do not allow for
a certain type of quantum fluctuations of grain phases al-
lowed for an open chain (configuration 2). As a result,
the response functions for these two configurations differ
in the phases (II) and (I1Ia).

The main results of this paper are the phase diagram
Fig. 1 and the response functions summarized in Table 1.
We have mapped out much of the interesting parameter
range and obtained a rather complete phase diagram.
There remain small uncertainties due to the finite-size
effects inherent to our Monte Carlo simulations. The im-
portant differences with the analytical work of
Korshunov!! are the absence of a vertical part in the
transition line between quadrupole (III) and disordered
(I) phases and the finite slope of the transition line be-
tween dipole (IT) and disordered (I) phases (compare Figs.
land2).

The analysis of the response functions has yielded some
surprises. The response may depend, even qualitatively,
on the particular experiment performed. In particular,
the dipole phase (II) shows a superconducting or a resis-
tive response depending on the type of experiment. In
the second configuration, where we determine the
response to a current flowing through an open section of
length L,, the response functions for small and large fre-
quencies 1 /L, <<w <<1 or @ <<1/L, differ in phase (II).
We recover apparently contradicting results obtained by
Panyukov and Zaikin®!? or by Zwerger!® in different set-
ups or different limits. Panyukov and Zaikin considered
the boundary conditions which correspond to a d-
dimensional open system and calculated the response
functions in the limit w <<k by means of an instanton
technique. The results of their calculations and ours for a
ID open chain essentially coincide in the above-
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mentioned limit. However, they did not consider the sit-
uation of an externally fixed magnetic flux in a ring
geometry and hence did not discuss the superconducting
properties (finite superfluid density) of the phase (II). On
the other hand, Zwerger10 missed the difference between
the dipole phase (II) and the quadrupole phase (ITII). But
these phases differ dramatically in several response prop-
erties.
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