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Vortices and the Couette Sow of helium II
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The critical Reynolds number at which the Couette flow of helium II becomes unstable is calculated at
different temperatures from a linear stability analysis of the Hall-Vinen-Bekeravich-Khalatnikov equa-
tions. The results are in good agreement with a recent experiment of Swanson and Donnelly. The spa-
tial structure of the flow at the onset is investigated and it is found to be very different from classical
Taylor vortex flow.

Our concern is the stability of the Couette flow of heli-
um II. Although this Aow has been considered an impor-
tant problem in fluid mechanics' since the pioneering
work of Chandrasekhar and Donnelly in 1957, progress
has been slower than in classical Taylor-Couette flow, the
reasons being the lack of direct Aow visualization and the
difficulties in understanding the governing equations of
helium at temperatures below the lambda transition
T&=2. 172 K. While Taylor vortices can be studied on
the solid ground of the Navier-Stokes equation, much less
is known about the Hall-Vinen-Bekeravich-Khalatnikov
(HVBK) equations ' which have been proposed to de-
scribe the motions of helium II. The HVBK equations,
presented in modern form by Hills and Roberts, general-
ize Landau s two-Auid model to situations in which quan-
tized vortex lines are present in the flow and the macro-
scopic superfluid velocity v' has VXv'%0. The HVBK
model adds two important physica1 ingredients to
Landau's. The first is the mutual friction force which
couples normal-Auid and superfluid components via the
vortex lines. It is a quantity which depends on tempera-
ture because it arises from the collisions between the
cores of the superfluid vortices and the thermal excita-
tions which make up the normal Auid. The second in-
gredient is the vortex tension which causes vortex waves.
Its relevance to the stability of the Aow was recognized in
1963 by Mamaladze and Matinyan, who studied the
problem at temperature T =0. Since the relative
normal-fluid and superfluid fractions are strong functions
of temperature, it is clear that T is an important factor in

determining the stability. The temperature also adds an
extra variable to the parameter space of the classical
Taylor-Couette problem and makes more difficult the
comparison of the data available from different experi-
ments.

A first attempt to use the HVBK equations to compute
the stability at finite T and compare it with an experi-
ment was carried out by Snyder in 1974 with a negative
result. In 1987 Barenghi and Jones corrected
Mamaladze and Matinyan's theory at T=O and in a sub-
sequent paper, ' in 1988, they extended their work to
finite T to analyze the results of the experiments of Don-
nelly" (1959) and of Wolf et al. ' (1981). In these experi-
ments two different methods were used. Donnelly detect-

ed the torque which is induced on the outer stationary
cylinder by the rotating inner cylinder. A break in the
relation between the Reynolds number of the inner
cylinder and the torque at the single temperature T=2. 1

K was found to be in promising agreement with the
HVBK model. Wolf et al. used second sound, which
seems the ideal technique because it probes the vortex
lines directly. Unfortunately, analysis of their results
showed a disagreement of more than one order of magni-
tude with Donnelly's. This discrepancy has been resolved
very recently by Swanson and Donnelly, ' who performed
a series of careful second-sound measurements at temper-
atures which include the region just below T&. They
found that the critical Reynolds number approaches the
known value for the onset of classical Taylor vortex Aow
as T~T&. This is a definite test because at T=T& heli-
um II becomes helium I, which is a classical Navier-
Stokes Auid. Very probably Wolf et al. , who detected a
number of successive transitions at increasing Reynolds
number, missed the first bifurcation which destabilizes
Couette flow.

The calculations presen'. ed in this article are motivated
by Swanson and Donnelly's recent work. We want to set-
tle the question of the quantitative agreement between
the HVBK model and the experimental data at different
values of temperature. Until now the evidence in favor of
the HVBK model is based on a point at a single tempera-
ture in Donnelly's old 1959 experiment. Knowing the
difficulty of Aow visualization in helium II, we also want
to explore the spatial configuration of the flow and corn-
pare it with its classical counterpart.

Let us consider two concentric cylinders of inner ra-
dius R, , outer radius R ~, radius ratio g =R, /R ~, and
height h. The gap between the cylinders has width
6=R 2 R ] and is filled with helium II at temperature T.
We assume that the inner cylinder rotates at constant an-
gular velocity 0 while the outer cylinder is stationary.
At slow enough velocity helium is in a vortex-free state.
Vortices appear' at the critical velocity

II*=[( I —g )I /g m.5 ]In(25/hara&&),

where I is the quantum of circulation and ao is the vor-

tex core radius parameter. At 0, & 0* helium is in the
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Couette state. Using cylindrical coordinates (r, p, z ), the
normal-fluid and superfluid velocities v" and v' are
v"=v'=(0, V, O) with V= Ar+B/r, A = —R &0/
(R z

—R, ), and B=R &R 20/(R z
—R

&
). The vortex lines

are aligned along the z axis with areal density n =2~ A
~
/I

and distance b =n ' from each other. It is the stability
of this Couette state which we investigate. We make use
of the governing incompressible HVBK equations'

(r)!Bi)v"+(v" V)v"= —Vo „+v„V v"+(p /p)F,

(8/Bt )v'+ (v' V)v'= —Vcr, +v, ra'X curlro '

—(p„ /p)F,
T.v"=0 and V.v'=0,

where
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F= ,'Bro'—X[ro X(v"—v' —v, curlru')]

+ ,' B'r—o'X ( v" v'c—urlro ')

is the mutual friction force, v, =(I /4n. )ln(b/ao) is the
vortex tension, p„and p, are the normal-fluid and
superfluid densities, p=p„+p, is the helium density, g„
is the viscosity of the normal fluid and v„=g„/p„ its ki-
nematic viscosity, o.„and 0., are efficient pressures,
r0'=curlv' is the superfluid vorticity and ro'=co'/~ro'~
The values of the temperature-dependent parameters 8,
8', ao, v„, p, p„and p„are discussed in the review by
Barenghi, Donnelly, and Vinen. The boundary condi-
tions are that v„"=v„'= v,"=0at r =R, and R2, v+ =OR
at r =R, and v" =0 at r =Rz.

We make the usual simplifying assumption that the
cylinders have infinite length and investigate the effects of
small perturbations of the Couette flow solution having
the form exp(ik'z+imp+pt ). We can make the simpli-
fying assumption m =0 because we know from our previ-
ous investigation' that at least for T just below Tz the
most unstable perturbations are axisymmetric, as in the
classical Taylor-Couette case. We linearize the HVBK
equations around the Couette flow solution and derive
four ordinary differential equations in r for v„", v", v„', and
v', which we solve at given geometry, temperature, Rey-
nolds number N aQR, 5/ „vdandimensionless axial
wave number k =k'5 to determine the eigenvalue p. If
Re(p)) 0 then Couette liow is unstable. The method of
solution has already been described it suffices to say
that it is based on a spectral collocation method, in which
the perturbations are expanded over Chebyshev polyno-
mials and the resulting linear system is solved by an
NAG routine. Typically we truncate the expansions after
16 polynomials.

Figure 1 compares Swanson and Donnelly's results at
different temperatures with our calculation of the critical
Reynolds numbers N~, , at the same radius ratio
g=0.97628 and gap 5=0.0472 cm used in the experi-
ment. The general qualitative agreement is good: If the
temperature is lowered below T&, XR, , first rises, then
drops again at lower T. The low-temperature behavior is
as expected: The superfluid fraction increases rapidly at
decreasing T (it changes from 0% at Tz to 42% at T=2

FIG. 1. Critical Reynolds numbers N&, , as a function of re-
duced temperature 1n~p[(Tg T}/Tg] ~ Error bars: data of
Swanson and Donnelly; circles: present calculation; dotted line:
classical value Xz, , =267.87 in the limit T~T&. The crosses
denote the Reynolds numbers XR, at which vortices appear in

the gap.

K) and there is evidence that for a pure superflow

N&, , =0. The high-temperature result that helium II is
more stable than helium I is remarkable; in this tempera-
ture region the theoretical values are inside the experi-
mental error bars and we stress that there are no adjust-
able parameters in the theory. This is the strictest quan-
titative test that the HVBK model has ever been subject-
ed to, and the result confirms past work on the values of
mutual friction and vortex core parameters.

To understand the discrepancy between theory and ex-
periment in the low-temperature region, we study how
the critical dimensionless wave number k, changes with
temperature. At T = Tz, in the classical Taylor-Couette
limit, the curve of the marginal states, defined by
Na, (p) =0, is like a parabola in the N~, vs k plane which
has a minimum at k =k, =3.13: The Taylor vortex low
which onsets at Na, (k =k, )=Nt~, has dimensionless

wavelength A,, =2m/k, =2 and Taylor vortices consist of
pairs of almost square cells. If the temperature is
lowered, the curve of the marginal states moves to the
left, its minimum k, decreases, as shown in Fig. 2, and
the cells become greatly elongated in the axial direction.
Around T-2.07 K the curve of the marginal states has
moved so much to the left that its minimum is at k =0,
the critical Reynolds number is Na, , =Na, (k =0) and
the flow is unstable to perturbations of infinitively long
wavelength. Since no apparatus can have infinite
cylinders, we conclude that at low temperatures our ap-
proximation which assumes the exp(ikz) dependence be-
comes invalid and end effects must be taken into account.

The correct way to proceed would be to solve the
HVBK equations in 0&z&h, R, &r &R2, instead of
solving for the radial dependence only. This is, however,
a difficult numerical task, and, above all, it is not clear
which boundary conditions must be enforced at z =0 and
z =h. We can somehow take the ends into account by as-
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FIG. 2. Critical dimensionless axial wave number k, as a
function of reduced temperature.

suming that half a wavelength fits in the height h =9.398
cm of Swanson and Donnelly's apparatus. This corre-
sponds to a minimum dimensionless wave number
k;„=0.016. The points for T ~ 2.07 K in Fig. 1 refer to
k;„. The qualitative behavior is correct and NR, , de-
creases with T, but it is not realistic to expect a quantita-
tive agreement. The end conditions in Swanson and
Donnelly's apparatus are ill defined and the gap at z =0
and z =h is only partially closed. Moreover the vortex
lines are probably more efficient than classical Taylor
vortices in transmitting end effects to the middle section
of the cylinders: The vortices extend from the top to the
bottom of the apparatus and they can be pinned' or slide
at the end caps depending on the roughness of the metal
surfaces. The pinning effect is likely to make the flow
more stable to overturning, and indeed the measured crit-
ical Reynolds numbers at low temperature are higher
than the theoretical values. To settle the argument one
should measure NR, , in the low-temperature region at
the same value of g and 5 but for different h and experi-
ment with end caps of different smoothness. We expect
NR, , at low T to depend on the aspect ratio h /5.

To check the consistency of our calculations we com-
pute the Reynolds number NR, =Q*R &5/v„which cor-
responds to the first appearance of vortex lines in the sys-
tem. Figure 1 shows that NR, is much smaller than

NR, „as it should be. A second check consists of verify-
ing the continuum approximation on which the HVBK
model is based. At T =2. 16 K our value of NR, , corre-
sponds to 14300 vortex lines in the gap and more than
seven rows of lines in the radial direction, which is prob-
ably enough. At T=2. 10 K there are still seven rows
and five rows at T=2.05 K. At some lower temperature
one eventually reaches NR, , ——NR, ; at that point the
HVBK model breaks down and individual vortices must
be taken into account.

We have already mentioned that a practical difference
between the study of classical Taylor-Couette flow and
helium II Couette flow is the lack of direct flow visualiza-
tion: In the low-temperature environment one has to de-
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FIG. 3. Contour plots of co„" at T=T&, (a) and of co~ at
T=2. 16 (b), T=2. 14 (c), T=2. 10 (d), and t =2.08 (e).
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FIG. 4. Plots of v„' vs r at T=2. 16 (a), T=2.10 (b), and
T=2.08 (c). r =0 and r=1 correspond, respectively, to the
inner and outer cylinder.

cide in advance what to look for, and a separate experi-
ment must be set up for this purpose. The HVBK model
can help us in gaining insight into the flow. In principle
one should solve the full nonlinear HVBK equations, but
experience of similar problems suggests that, unless
another bifurcation occurs, the solution of the linearized
equations is enough to describe the spatial configuration
of the flow, at least for NR, just above NR, , Since
second sound detects the vortex lines directly, the
superfluid vorticity co' is the quantity of major interest.
We concentrate our attention on its azimuthal com-
ponent co+ because it is zero in the Couette state. Figures
3(b)—3(e) show contour plots of co'„at NR, =N„, , for
different temperatures. It is instructive to compare co'

with the more familiar' azimuthal component of the vor-
ticity in the classical Taylor-Couette problem, which is
the same as co"„at Tz, shown in Fig. 3(a). Clearly the flow

of the superfluid component depends very much on T.
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Just below T&, co is still very similar to the classical dis-
tribution of vorticity. As the temperature is lowered the
critical wave number decreases and the vortex cells be-
come longer in the z direction. At the same time the ra-
dial structure becomes simpler. This is also evident from
plots of v„' vs r at different values of T; see Fig. 4. The ra-
dial dependence of the normal Quid on the contrary does
not depend much on T: The normal-Quid pattern simply
becomes elongated in z as T decreases. The experimental
challenge is to test these predictions by probing locally
with second sound at different locations in between the
cylinders.

We conclude that in the high-temperature region the
HVBK model predicts successfully that helium II is more
stable than helium I. The theoretical values of the criti-

cal Reynolds numbers are in good agreement with the
measurements. In the low-temperature regime the com-
parison between theory and experiment is only qualita-
tively correct: The critical wavelength diverges and end
effects, which the current theory can take only approxi-
mately into account, become significant. In this regime
NR, , should depend also on the aspect ratio h /5. Final-
ly our investigation of the How pattern reveals that the
superfiuid cells are rather different from the classical Tay-
lor vortices.
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