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Thermodynamic properties of the two-dimensional spin- —Heisenberg antiferromagnet
2

at finite temperature: A finite-cluster-expansion approach
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We have calculated the series for the internal energy and the specific heat of a two-dimensional

spin-z Heisenberg antiferromagnet at finite temperature on a square lattice using a finite-cluster-
expansion method. The series are analyzed using a variant of Pade approximants. Our analysis
agrees very well with the Monte Carlo simulation result for the internal energy per spin at T ) 0.3J
and the specific heat at T ) 0.4J.

Recently, Narayanan and Singhi have calculated the
thermal properties of spin-2 and spin-1 antiferromagnetic
Heisenberg spin chains by an expansion in finite lattice.
For one-dimensional spin chains the series shows excel-
lent convergence for T ) 0.25J for s =

&
and T ) 0.35J

for s = 1. At lower temperature, they also estimated the
correlation length ( and obtained good estimates for (
down to T = 0.06J for s =

z and T = 0.02J for s = 1.
In this paper, we present a finite-cluster-expansion calcu-
lation of the series for the internal energy and the specific
heat of two-dimensional (2D) spin-2 Heisenberg antifer-
romagnets at finite temperature on a square lattice. Un-
like the one-dimensional case, our series is divergent at
the low-temperature regime. Using a variant of the Pade
approximant, ~ 4 we obtained very good agreement with
the Monte Carlo simulation. s

The thermodynamic properties, such as internal en-

ergy E, of an infinite system can be obtained by finite-
cluster expansion. The basic idea is to obtain a system-
atic expansion of the internal energy E in powers of the
coupling constants. The physical basis for this expansion
is that we want to collect all terms which include n-spin
effects as our nth-order term. This is easily done via the
cumulant. The cumulant of a n-spin configuration I' is
defined recursively as

E(r)=) E( (2)

and we refer to E and E', respectively, as the "bare"
and "cumulant" values of E. In this definition, we sum
over all subsets p which are contained in I', excluding I'

itself. If I' consists of a single bond connecting a pair
of nearest-neighbor spins, then it has no subsets and for
this case we have that the bare and cumulant values of I'

are the same. If I' contains n bonds, then it has (2" —1)
different subsets p. However, it is only necessary to sum
over subsets which are connected, since E'(p) vanishes
if p is not connected. Once we have constructed all the
cumulant values of E, we may write

The internal energy for a given spin configuration (bare
value of E) is defined as

) E; exp( —PE;)
TrH exp( —PH)
Tr exP( —PH) ) exp( —PE.)

(4)

where H is the Hamiltonian given by

with positive coupling constant J.
Thus we diagonalize the Hamiltonian, find all the

eigenvalues, and use Eq. (4) to calculate the bare value

of E for a given n-spin configuration. Notice that two

topological equivalent configurations give the same value

E. Hence we only need to generate the topological in-
equivalent configurations. Once the configurations are
generated we calculate the bare value of E and then use
an embedding program to calculate the cumulant. The
specific heat can be defined and calculated in a similar
fashion. Comparing with the high-temperature series ex-

pansion method, s this calculation is simpler and more
straightforward. But the quantity of interest has to be
computed at each temperature.

We have calculated the internal energy E(T) and the
specific heat C„(T) at temperatures ranging from 0.01J
to 2.00J on a square lattice up to 11 spins. In Tables
I and II, the series coefficients for E(T) and C„(T) are
listed for selected temperatures. As shown in Figs. 1 and

2, the series (dash-dotted line) agrees with the simulation

(triangles) very well at high temperature. At tempera-
tures down to T = 0.7J for E(T) and T = 0.8J for C„(T)
the series starts to deviate from the expected value. This

where now we sum p over all sets equal to or included
in I'. Denoting E„ the contribution of all n-spin config-
urations, we express the internal energy as a sum over
cumulants corresponding to an ever increasing number
of spins:

) Ec
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TABLE I. The series for E(T) at selected temperatures. TABLE II. The series for C„(T) at selected temperatures.

2
3

5
6
7
8
9

10
11

T =0.4J
—1.1048

1.4400
—2.3467

3.5502
—5.4946

8.5064
—13.2098

20.4933
—31.8311

49.4763

T =0.6J
—0.7766

0.5893
—0.6691

0.6352
—0.6276

0.6073
—0.6029

0.5950
—0.5944

0.5954

T = 0.8J
—0.5756

0.2649
—0.2302

0.1469
—0.1055

0.0704
—0.0513

0.0361
—0.0269

0.0198

T =1.OJ

—0.4507
0.1350

—0 ~ 0979
0.0444

—0.0257
0.0127

—0.0076
0.0041

—0.0026
0.0015

2
3
4
5
6
7
8
9

10
11

T =0.4J
1.9819

—6.3357
14.9839

—31.6241
63.0166

—119.6771
219.5214

—392.9839
691.4413

—1200.3792

T=06J
1.2826

—2.5428
3.9465

—5.1091
6.2476

—7.3139
8.4012

—9.4527
10.5329

—11.6407

T =0.8J
0.7768

—0.9727
1.0985

—0.9712
0.8349

—0.6739
0.5537

—0.4430
0.3607

—0.2917

T =1.0J
0.4988

—0.4167
0.3737

—0.2404
0.1615

—0.0973
0.0642

—0.0397
0.0264

—0.0170

should be compared with the high-temperature series
where a direct estimate gives good result at temperature
down to T = J for E(T) and T = 1.2J for C„(T). At the
low-temperature regime our series is divergent similar to
the high-temperature series. In order to extrapolate to
the low-temperature limit, we make an auxiliary func-
tion:

and

M

+M(z) = ).f *"

So the internal energy E can be obtained by letting z = 1,
i.e. , E = E(z)l~ q. Equation (6) can also be evaluated
using Pade approximants as follows: we take the deriva-
tive of E(z) with respect to z and then make a Pade
approximant7 of dE(z)/dz,

dE(z) GN
dx FM

where

After integrating dE(z)/dz we obtain

E(z)l =i = 'G~(z)
p FMz (10)

Using the series coeKcients obtained by our finite-
cluster-expansion method, we can easily compute Eq.
(10) at given temperatures. In Figs. 1 and 2, we plot
the quantities E(T) and C„(T) versus temperature T/J.
For comparison, we also plot the Monte Carlo simulation
resultss and the direct estimates from Eq. (6). We see
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FIG. 1. The internal energy E(T) vs temperature T/ J Here the triangle is th. e data of Makivi and Ding, the dash-dotted
line is the direct estimate of the high-temperature series, and the solid line is from our analysis.



2284 JIAN WANG 45

0.50 I I
I

I
I

s s I
I

I I

0.25—

0.00
0.0 0.5 1.0 1.5

I I I I I I I I I I I I I I I

2.0

FIG. 2. The specific heat C„(T) vs temperature T/ J. Symbols are as in Fig. 1.

that the agreement between our result and that of Monte
Carlo simulation is excellent for internal energy at tem-
peratures as low as T = 0.3J. For C„(T) the agreement
is good at temperatures down to T = 0.4J.

The internal energy and the specific heat of 2D spin-
1 Heisenberg antiferromagnets is also calculated up to
eight spins on the square lattice. Due to the shortness of
the series, the Pade method which we used to analyze the
spin-- series does not work as well. At present it is very

2
hard to extend the series for the spin-1 case because even
for the eight-spin configuration we have to diagonalize a
1200 by 1200 matrix and there are about 50 eight-spin
configurations. Since at low temperature the thermody-
namic properties are dominated by the first few eigen-
values, one may calculate the thermodynamic properties

such as internal energy using only the first few eigenval-
ues to speed up the calculation and hence to improve the
low-temperature behavior of the series.

In summary, we have calculated the internal energy
and the specific heat of 2D spin-& Heisenberg anti-
ferromagnet on a square lattice using a finite-cluster-
expansion method. A variant of the Pade approximant
is employed to analyze the series, and our results agree
very well with those of the Monte Carlo simulation.
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