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Temperature dependence of the magnetization of superlattices
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A Heisenberg model is solved for the coupling of two-dimensional ferromagnetic layers separated by
nonmagnetic spacer layers in a superlattice configuration. The cases of noncoupling, and ferromagnetic
and anti-ferromagnetic interlayer couplings, are solved for the temperature dependence of the magneti-
zation at low temperature; the results yield linear, T' and T' power laws, respectively. Experimental

0

realization of the coupling cases was then sought. Three sputtered Fe/Cr superlattices with 10 A Fe lay-
0

ers and Cr-layer thicknesses of 100, 20, and 10 A were chosen to span the three cases, respectively.
Superconducting-quantum-interference-device magnetometry yields linear and T' ' behavior for the first

two cases. Mossbauer spectroscopy in zero field indicates an approximately T' behavior for the antifer-
romagnetically coupled sample. The results are discussed and related to recent magnetotransport work.

I. INTRODUCTION

Recently great effort has been devoted to investigate
the magnetic coupling of ferromagnetic films across non-
magnetic spacer layers. In particular, the discovery of
antiferromagnetic (AF) coupling in Fe/Cr/Fe sandwich
structures' and the associated giant magnetoresistance in
Fe/Cr superlattices has stimulated both experimental
and theoretical interest in the search for new materials
and the quest to unravel the underlying mechanisms. A
number of systems, such as Co/Ru, Fe/Cu, Fe/Mo,
Co/Cu, Ni/Ag, etc. , have been found to exhibit similar
behavior to the Fe/Cr system, and it is accepted that the
interlayer coupling plays a crucial role in determining the
magnetic and electronic-transport properties of this new-

ly emerging class of materials. In order to understand
better the effect of the interlayer coupling on the magnet-
ic properties, we present an investigation of the tempera-
ture dependence of the magnetization M(T) in
magnetic-nonmagnetic superlattices. A specific motiva-
tion to examine M( T) for Fe/Cr superlattices is that in a
recent experimental study of the T dependence of the
resistivity of this system by Mattson et al. ,

' a T behav-
ior was found for the drop in magnetoresistance from its
low-T limiting value, and was attributed to the thermal
population of magnons. The question is whether the
gross magnon spectrum, as monitored by M(T), behaves
similarly to the interfacial magnons that presumably
dominate the T dependence of the transport properties.

Although the magnetization of thin films" ' and at
the surface of semi-infinite solids' has been treated
theoretically rather extensively over the years, the mag-
netization of coupled layers is a relatively unexplored
field until recently. Qiu and Walker' used a Heisenberg
model to treat the case of ferromagnetic layers coupled
ferromagnetically, and found that the T Bloch law

persists at low T with a weakened spin-wave stiffness con-
stant. Similar conclusions pertain to the surface of semi-
infinite ferromagnets. ' Also, Singh et al. ' used a Hub-
bard model to derive spin-wave expressions for AF layers
that are weakly coupled together antiferromagnetically,
and found a T behavior at low T that can cross over to a
two-dimensional (2D) [T lnT j expression on warming as
the thermal energy exceeds the interlayer-coupling
strength. They compared their results to experimental
M( T ) data for AF oxide insulators that can be doped to
become high-temperature superconductors.

In the present work we construct a Heisenberg model
to calculate M(T) for ferromagnetic-nonmagnetic super-
lattices, and treat both ferromagnetic and AF interlayer-
coupling cases in Sec. II. We then present
superconducting-quantum-interference-device (SQUID)
magnetometry and Mossbauer measurements for Fe/Cr
superlattices and compare experiment to our theoretical
results in Sec. III. We discuss the relationship of our
findings to the magnetotransport behavior in Sec. IV, and
summarize our findings in Sec. V.

II. DESCRIPTION OF THE THEORETICAL
CALCULATION

A. Heisenberg model

Consider a ferromagnetic-nonmagnetic superlattice
with the film parallel to the xy plane. If the ferromagnet-
ic layer is thin enough to behave like a 2D system, we can
approximately model each individual ferromagnetic layer
by a 2D square lattice of lattice constant a. Then we can
map the ferromagnetic component of the superlattice
onto a 3D cubic lattice in which each plane parallel to
the xy plane corresponds to a ferromagnetic layer in the
superlattice. The lattice constant b along the z axis,
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then, corresponds to the spacing between two adjacent
ferromagnetic layers. In this work, we will only consider
Heisenberg-type nearest-neighbor interactions. Suppose
that each lattice site 1 =(1,1,1, ) is assigned a spin S(1).
Then, the nearest-neighbor interaction is introduced as
follows: The interaction is Jo between nearest neighbors
with the same lz value, and it is +J, (or —J, ) between
nearest neighbors with different lz values. In this way, Jo
is the ferromagnetic exchange interaction of the fer-
romagnetic film, and Ji (or —J& ) is the ferromagnetic (or
AF) interlayer coupling between the ferromagnetic films.
From the above description, we see that our model is
only valid for a superlattice with the ferromagnetic film
thin enough to behave two-dimensionally. In the follow-

ing, we will apply spin-wave theory to calculate M( T ) for
both AF and ferromagnetic interlayer-coupling cases.

B. Antiferromagnetic coupling case

In this case, the Hamiltonian of the system is

H= —Jog QS(/II'/, ) S(/II+5, /, )

1z I ll, 5

+J, + [S(/„/,
i
) S(l, —l, /„)

1"1ll

+ (1 /l)'S(/ +1,/ii)

Here
/~~

=(/„, /~, 0}, and 5 is the nearest-neighbor vector
in the xy plane. The first term in the Hamiltonian
represents a simple sum within the 2D layers, while the
second term represents the interlayer coupling between
adjacent layers. In this paper, we will assume that the
easy magnetization axis is perpendicular to the plane of
the film, i.e., along the z axis. This assumption is not cru-
cial, however, and our results can be easily extended to
the in-plane easy-axis case. At T=O K, all spins on each
ferromagnetic sheet are aligned in the same direction (ei-
ther along +z or —z), while the spins on adjacent fer-
romagnetic sheets are aligned oppositely due to the AF
interlayer coupling. Thus, we can divide the lattice into
two sublattices: (1„,1,1,=nb ) E A, if n is an odd integer;
and (l„,l, l, =nb)EB, if n is even; where all spins on
sublattice A are along +z and all spins on sublattice 8
are along —z. For k~T «J, , the change of the z corn-

ponent of the spin AS, due to the thermal excitations is
much smaller than S itself, so that we can apply the
Holstein-Primakoff transformation' within each sublat-
tice A and 8. The resulting Harniltonian in k space is

H= y [coo(k~~)+4SJ, ][a (k)a(k)+b (k)b(k)]
k

+4SJ, g cos(k, b ) [a (k)b (k)+a (k)b t(k)]
k

+c.c.

and

[a(k),a (k'}]=[b(k),b (k'}]=5(k, k'),

[a(k),b(k')]=[a(k), b (k')]=0 .

If we define

co(k) =Q[aio(k)+4SJ, ] —[4SJ, cos(k, b )]

it is easy to show that the following transformation:
1/2

coo(k
ii

) +4SJ, +
2co(k) 2

a(k) =a(k)

coo(kii ) +4SJ,
+b (k)

coo(kii)+4SJi
P(k)=a (k)

1

2

' 1/2
1

2
' 1/2

1/2
coo(kii)+4SJ,

2'(k) 2

also satisfies the boson commutation relations:

[a(k),a (k')]=[P(k),P (k')]=5(k, k'),

[a(k),P(k')]=[a(k),P (k')]=0

and diagonalizes the Hamiltonian, such that

H= +co(k)[a (k)a(k)+P (k)P(k)]+ED .
k

Thus, Eo is the zero-point energy and co(k) is the spin-

wave energy of the system. Therefore, we can obtain the
thermal average of the following products:

(k) (k) &,= &P (k)P(k) &

& a(k)a(k) & r =
& P(k)P(k) & r

=-& (k)P(k)&, =& (k)P'(k)&, =0.
Then by transforming a(k},P(k) into a(k },b(k), we get

&a (k)a(k) &z. = &b (k)b(k) &r

coo(kii)+4SJ,
co(k }

1

co(k)/kB T
e

2$
S,(l)= —S+ f d &b (k)b(k)&r for /EB .

(2m )

Here &
.

& r stands for the thermal average, and coo(k~~)

is the 2D ferromagnetic spin-wave energy:

coo(kt~) =4SJO[2—cos(k a )
—cos(k~a ) ] .

The a(k), at(k) and b(k)bt(k) pairs are the k-dependent
magnon annihilation and creation operators within the A
and 8 sublattices. They satisfy the boson commutation
relations:

a bS,(/) =S— f d k & a (k)a(k) & z. for 1 E 3,
(2~)

coo(kii)+4SJ+ 2'(k)
1

2
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For kB T «J„only spin waves with k„a « 1 and

ky Q « 1 can be excited, so that

(do(k(i ) =2SJO [(k„a ) + (k~a ) ] =2SJok isa

and

k, T
4S,(T)= 2 f d(k, b) ln(1 —e

16SJom

kBT
2 f dgln(1 —e

8SJom

—4SJ( i sin(k b)i/ks T

—4SJ) sing/ke T

In the strong (J, »ke T ) and weak (J, « ks T) coupling
limits, we get the following T dependence:

kBT
bS, (T)= f dg g —e

8SJ

kBT kBT
3 8SJ 8SJ,

kBT
&S,(T)= —

2 f dgln(4SJ( sing/ksT)
8SJ07T

kBT kBT
ln

Thus, a T dependence of the sublattice magnetization is
expected at low T (Ji »ksT), and a quasi-T linear
dependence is expected at high T (J, « ke T ). As
J, ~0, all the ferromagnetic sheets are decoupled; so the
divergence of the integral rejects the Mermin-Wagner
theorem that there is no finite-temperature ordering in an
isotropic 2D Heisenberg lattice. ' We do not include
magnetic anisotropy in our calculation. As has been
shown previously, surface anisotropy permits the fer-
romagnetic 2D Heisenberg lattice to have a finite Curie
temperature, ' and introduces an energy gap in the spin-
wave spectrum. The gap permits the integral of AS, (T}
to converge, and yields a quasilinear T dependence for
the magnetization. '

C. Ferromagnetic coupling case

In this case, our model is an anisotropic 3D ferromag-
netic lattice. The Hamiltonian of the superlattice is

H = —J() g g S(I ii, I, ).S(1
i~~

+5, I, )

I III, 5

—J, y [S(l„lii).S(l, —l, lii)
Iz 1

+S(l„lii ).S(l, + 1, Ill ) ]

where the last term is T independent and represents the
zero-point quantum spin fluctuation. In the present
work, we are on1y interested in the T-dependent part, so
we can drop the second term and obtain

&S,( T) =S IS—,(l ) I

a b
d k

(do( kii ) +4SJ,
(2m. ) (d(k ) ro(k)/kn T

k TB n —8SJI sin (g/2)/k~ T
d ln 1 —e

3SJ()n.

In the strong (J, »kJ) T) and weak (J, «kJ) T) coupling
limits, we get the following T dependences

kBT
bS, (T)= f dg g —e

8SJom
1/2

kBT
Ji »kb) T

8S~J,
kBT

8Sm Jo

kBT
2 f dgin[8SJ) sin (g/2)/k Te]

8SJ,m'
bS, (T}==—

kBT kBT
ln kBT

8Sm.J0, 2SJ i

In the low-T region (Ji »ke T), we get a T' Bloch law

behavior, as expected, since the system is just a 3D fer-
romagnetic lattice. In the high Treg-ion (J, «ks T), all

ferromagnetic layers are decoupled, so we again get the
quasilinear T dependence.

III. EXPERIMENTAL RESULTS

A. Sample preparation

The Fe/Cr superlattice were grown on NaC1 substrates
in a Microscience Researcher 101 growth chamber using
dc magnetron sputtering from two Ion Tech diode guns.
The base pressure of the chamber was 2 X 10 Torr and
the argon pressure during the sputtering was 3 mTorr.
The deposition rates for Fe and Cr were 1.0 A/s and 1.8
0
A/s, respectively. The use of NaC1 as substrate enables
the complete removal of the film from the substrate for
magnetic measurement purposes. Three superlat tices
were fabricated with the Fe thickness fixed at 10 A and
the Cr thickness set at 10, 20, and 100 A. The total num-

ber of bilayers in each superlattice is denoted in the sub-

script of the following formulas for the three samples:

At T=O K, all spins are aligned in the same direction, so
it is not necessary to divide the lattice into sublattices. In
this case it is easy to show that for kBT «Jo, the
Holstein-Primakoff transformation in k space will direct-

ly diagonolize the Hamiltonian and yield the following
spin-wave spectrum:

co(k) =4SJO[2 —cos(k a ) —cos(k~a )

+4SJ, [1—cos(k, b)] .

For kB T « Jo, only spin waves with k a «1 and

k, a « 1 can be excited so that

(d(k) =2SJok isa +4SJ, [1—cos(k, b ) ]

and

kBT
bS, (T)= — f d(k, b)

16SJam

—4SJ)[)—co (k,sb)]/keT
Xln 1 —e
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[Fe(10 A)/Cr(10 A)],oo, [Fe(10 A)/Cr(20 A)]so, and

[Fe(10A)/Cr(100 A) ]2&.

Low-angle x-ray diffraction was performed to charac-
terize the layering of the superlattice structure. The
diffraction peaks are due to the constructive interference
from the bilayer periodicity within the superlattice. Only
two diffraction peaks were observed. The absence of
high-order diffraction peaks indicates that the Fe/Cr in-
terface is relatively rougher than that of some other sys-
tems, such as Fe/Mo in which up to seventh-order peaks
were observed in the low-angle x-ray-diffraction data.
Nevertheless, the presence of the first- and second-order
diffraction peaks reveals that we do get a layered struc-
ture of a similar quality as in our Fe/Cr superlattices
grown on sapphire that were used in magnetoresisitivity
studies.

-2

(a)

(b)

0
H(kG)

0
H(kG)

B. Magnetic properties

From previous work, ' the 10-, 20-, and 100-A
thicknesses of Cr should produce the AF-coupling
(AFC), ferromagnetic-coupling (FC), and noncoupling
(NC) cases, respectively, between the Fe layers separated
by the Cr spacer layers. For convenience we will denote
the three superlattices by AFC, FC, and NC, respective-
ly.

The magnetization measurements were taken using a
Quantum Designs rf SQUID magnetometer. The sam-
ples were prepared by peeling off the film from the NaC1
substrate in water and cutting the films into -3X4-mm
shapes. Hysteresis loops for the three films were mea-
sured at 200 K by applying the magnetic field parallel to
the film plane. The results are plotted in Fig. 1. The low
saturation field and the rectangular-type shape of the hys-
teresis loops for the FC and NC samples indicate that the
easy magnetization axes are in plane. Since the thickness
of Fe in the AFC sample is the same as that of the FC
and NC samples, the easy axes of the AFC sample should
also be in plane. The high saturation field and low rem-
nant magnetization of the AFC sample, compared with
the FC and NFC samples, demonstrate that the sample is
indeed AF. From the hysteresis loop of the other two
samples, we are unable to distinguish between ferromag-
netic coupling and noncoupling. But, as shown in the fol-
lowing, measurements on M(T) will clearly distinguish
between the two cases.

M( T ) of the FC and NC samples was measured by sa-
turating the specimen at 4 kG. This magnetic field will
open an energy gap in the spin-wave spectrum of magni-
tude of only -pH=8X10 ' erg, which is equivalent to
a thermal energy of =0.6 K. Thus, the application of
the magnetic field has negligible effect on M(T) in the T
range studied. The M(T) results for the FC and NC
samples are plotted in Fig. 2. It can be seen that the NC
sample shows a linear T dependence of M, while the FC
sample shows a T dependence. The solid lines in Fig.
3 are fitted to T" power laws with n =0.98 and n =1.50
correspondingly. In order to see the power law more
clearly, double-logarithmic [hM /M(0) ]= [1—M(T)/M(0)] vs T plots for the two samples are
shown in Fig. 3. The straight lines in the log-log plots

0

-40
I

-20 0
H(kG)

20 40

Hysteresis loops of the (a) noncoupling (NC), (b)
ferromagnetic-coupling (FC), and (c) antiferromagnetic-
coupling (AFC) samples.

demonstrate the power-law behavior of M( T ), and the
slopes give the values of the exponents of 0.98=1.0 and
1.50= —,', as anticipated from the theoretical derivations
in Sec. II. The parameters of the fittings are listed in
Table I. The T and T dependences of the experimental
results indicate that our theoretical model is quite ap-
propriate for the ferromagnetic coupling and noncou-
pling cases.

The verification of the T dependence for the AF cou-
pling case requires zero-field measurements. Unfor-
tunately, the SQUID technique is not capable of that.

1.00-

0.96

0.92
0

I I I I I I I I I

50 100 150 200 250
T(K)

FIG. 2. Temperature dependence of the magnetization of the
NC, FC, and AFC samples, which show T, T' and T power
laws, correspondingly. The NC and FC samples were measured
by SQUID magnetometer and the AFC sample was measured

by Mossbauer spectroscopy.
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FIG. 3. Log-Log plot of hM(T) vs T. The straight lines
show the power-law behaviors and the slopes give the tempera-
ture exponents.
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Application of a small field should maintain the AF
structure and provide a nonzero magnetic component
M cos0 that represents the projection of the two canted
sublattices onto the direction of the applied field, but we
found that the temperature dependence of M cosO de-
pends on the magnetization history and is not a well-
understood quantity. Instead, we employed transmission
Mossbauer spectroscopy, which offers a zero-field alter-
native measurement technique. It is generally acknowl-
edged that the Mossbauer hyperfine field has the same T
dependence as the magnetization. In fact, the Mossbauer
technique has been used quite frequently to study M(T)
of ferromagnetic thin films. '

Typical Mossbauer spectra for the AF sample are
shown in Fig. 4. First, notice that the intensity ratio of
the inner, rniddle, and outer peaks is roughly 1:4:3,indi-
cating that the magnetization of the film is perpendicular
to the incident y-ray direction. Since the film is also per-
pendicular to the incident y-ray direction, the intensity
ratio indicates that the magnetization is in plane, which
is consistent with the SQUID magnetometry results.
Second, the relatively broad linewidth implies a mul-
ticomponent spectrum. We use three components to fit
the spectrum. The results are depicted by the solid lines
in Fig. 4 and the fitted parameters for the 14-K spectrum
are listed in Table II. The hyperfine-field data for the
first component has the smallest error of the three com-
ponents, so we use it to study the temperature depen-
dence. The result is plotted in Figs. 2 and 3. The fitted
parameters are listed in Table I. We see that M( T ) of the
AF sample has a T' behavior, close to the T law pre-
dicted by our model. By assuming that S=

—,
' and that Jo

TABLE I. Magnetization fitted to M(T)/M(0)=1 —bT" for
the three samples which correspond to the noncoupling (NC),
ferromagnetic-coupling (FC), and antiferromagnetic-coupling
(AFC) cases.

FIG. 4. The Mossbauer spectra of the AF sample at 14 and
160 K. The solid lines are results of the three-component fitting
procedure summarized in Table II.

has the bulk-Fe value, we also can estimate the
interlayer-coupling strength J, for the ferromagnetic and
AF samples. These estimates are also included in Table
I. The J, value of 1.5 rneV for the AF sample agrees very
well with the value of 1.38 meV of Barthelemy et al.

IV. DISCUSSION

The experimental data for the ferromagnetic and non-
coupled cases agree with expectations, based on the
derivations presented herein, and with previous work for
ferromagnetic films and 2D films. ' The question of in-
terest is to examine the limitations of our approach as it
is applied to the AF case. The theoretical derivation ap-
plied strictly for coupled Fe monolayers, while the mea-
sured film actually had 10-A-thick Fe layers. Therefore,
the spin-wave excitations along the normal direction of
the film are not only due to the interlayer AF coupling,
but also to the ferromagnetic exchange interaction within
each Fe layer. The intralayer ferromagnetic characteris-
tics may effectively reduce the exponent from 2 to 1.88 in
the AF film. Finally, the model does not take into ac-
count magnetic anisotropy. This might reduce the exper-
imental T range that lies within the low-T limits. But we
have no reason to believe that the predicted T behavior
would emerge any more clearly if we were to constrain
the fitting range to a smaller or lower T interval. It

TABLE II. Mossbauer hyperfine (Hi, f), isomer shift (IS) and
quadrupole splitting (QS) of the antiferromagnetically-coupled
sample at T= 14 K.

Sample b (K ') J, (meV) Component H„f (kG) IS (mm/s) QS (mm/s)

NC
FC
AFC

0.98+0.01
1.50+0.02
1.88+0.02

(2.8+0. 1)X 10-'
(2.4+0.2) X10-'
(2.3+0.2) X 10-'

1.8+0.2
1.5+0.1

351.4+0.5
311.0+ 1.5
237.5+ 1.8

0.019+0.005
0.009+0.009

—0.07+0.01

—0.007+0.005
—0.007+ 0.008

0.00+0.01
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would be instructive to examine films with thinner Fe lay-
ers, and to find complementary measurement techniques,
such as polarized neutron diffraction, to obtain the infor-
mation of interest for the AF case.

A second issue of importance concerns the relationship
of the present work to our earlier resistivity study in
which we found a T -magnetoresistivity behavior at low
T for the AF samples for Fe films even thicker than 10 A.
This suggests that the magnon spectrum is weighted
differently in the two experiments. The transport behav-
ior should have enhanced sensitivity to the interfacial
magnon. Our results, therefore, might just be an indi-
cation that the thermal excitation of interfacial magnons
occurs with a different T dependence than that of the
gross magnon spectrum. This would require further
theoretical study. From this vantage point, however, it is
interesting to observe that our 2D model yields a T
dependence of the magnetization. In Ref. 10 we observed
that the rnagnetoresistivity has a T dependence which is
attributed to the thermal population of magnons. Thus
from the present work, we can now see the direct correla-
tion between the spin-wave excitations and the tempera-
ture dependence of the magnetoresistivity.

V. SUMMARY

Theoretical calculations of M(T) were performed for
ferromagnetic-nonmagnetic superlattices for ferromag-
netic layers thin enough to behave two-dirnensionally.
Linear, T, and T dependences of the magnetization
were predicted at low T for the noncoupling,
ferromagnetic-coupling, and AF-coupling cases, respec-
tively. Sputtered Fe/Cr superlattices with component
thicknesses corresponding to these three cases were fabri-
cated and measured by means of SQUID magnetometry.
The linear and T power laws were verified for the non-
coupling and ferromagnetic-coupling samples, respective-
ly. The AF sample was measured in zero applied field by
Mossbauer spectroscopy which yielded a T' depen-
dence, close to the T law predicted from our model.
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