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A self-consistent theory is formulated for the dynamics of a hole moving in a d-dimensional,
quantum-mechanical background of spins at arbitrary temperatures. The contribution of loops in the
path of a hole, which are always important in dimensions d > 1, is given particular attention. We first
show that the Green function, thermodynamics, and dynamical conductivity can be determined exactly
in the limit d — 0. On the basis of this solution, we construct an approximation scheme for the dynam-
ics of a hole in dimensions d < «, where loops are summed self-consistently to all orders. The resulting
theory satisfies the spectral and f-sum rules and yields the exact solution for the ferromagnetic back-
ground in any dimension d. Three types of spin backgrounds are explicitly discussed: ferromagnetic,
Néel, and random. In the Néel case the retraceable-path approximation by Brinkman and Rice for the
Green function is found to be correct up to order 1/d* for large d. Detailed calculations of the density
of states D(w) and the conductivity o(w) of the hole are presented for d =3 and «. A characteristic
dependence on the particular type of spin background is found, which is especially pronounced in the

case of o(w).

I. INTRODUCTION

The discovery of high-temperature superconductivity'
has greatly intensified the interest in the properties of
strongly correlated tight-binding electrons near the Mott
metal-insulator transition.? In the simplest case such a
situation is expected to be describable by the Hubbard
model® at almost half-filling and large U. For low doping
(deviation from half-filling), this can then be mapped*
onto a model of mobile holes in a background of antifer-
romagnetically coupled spins, the so-called ¢-J model.’

To leading order in the hole density 8 hole-hole corre-
lations can be neglected and it is sufficient to study the
motion of a single hole in a spin background—still a
genuine many- particle problem. Clearly, this step is val-
id only as long as the holes keep sufficiently apart (i.e., no
hole-hole binding or phase separation). The question un-
der which circumstances this may happen is being stud-
ied intensivelyﬁ‘8 at present, but shall not be addressed
here. It should be borne in mind that the very derivation
of the ¢-J model from a strongly interacting fermionic lat-
tice model is valid only to leading order in 8. Calcula-
tions of hole-hole correlations within the #-J model
should therefore be accompanied by an assessment of the
influence of corrections of order 8 to the model itself.

The investigation of the motion of a single hole in a
spin system was pioneered by Brinkman and Rice.’ They
considered several configurations of the spin background
(ferromagnetically ordered, Néel ordered, random) and
studied the corresponding density of hole states and dc
conductivity.  Their calculation was based on
Nagaoka’s'® expansion of expectation values in terms of
background-conserving hole paths, i.e., paths where the
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initial and final spin configurations are the same. Sum-
ming up the subclass of all paths with no closed loops
(“retraceable paths”), Brinkman and Rice’ obtained an
approximation which turned out to be particularly accu-
rate for the single-particle Green function of a hole (e.g.,
the density of states) in a Néel-ordered background and is
exact in d=1. Here a “loop” refers to an excursion of
the hole away from the retraceable path into the back-
ground. Later, the retraceable path (or Brinkman-Rice)
approximation was used to calculate many other quanti-
ties; i.e., Rice and Zhang!! evaluated the dynamical con-
ductivity, while Oguri and Maekawa'? studied the electri-
cal resistivity, thermal conductivity, thermopower, and
specific heat.

Recently, several authors'3~ !5 improved the theory of
the hole dynamics by taking into account spin fluctua-
tions, which were neglected in the work of Brinkman and
Rice.” These are particularly important in low-
dimensional (d=2) systems, e.g., those relevant for high-
T, superconductivity. Simultaneously, there has been a
number of numerical studies of the problem in d=1,2 di-
mensions, 1 !° providing an independent check for the
theoretical ideas.

In the present work we do not treat the quantum spin
fluctuations, but rather concentrate on another correc-
tion to the Brinkman-Rice approximation, which is im-
portant in any dimension d >1: the contribution of
loops. The retraceable-path approximation does not dis-
tinguish between different spin backgrounds since paths
without loops naturally conserve any initial spin
configuration and therefore always contribute. However,
while in an antiferromagnetic environment background-
conserving paths with loops are rare (and thus not overly
important), they do become important whenever there
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are clusters of aligned spins. In particular, in a ferromag-
netically ordered spin background, any hole path leaves
the background unchanged and it is this maximum free-
dom in the motion which leads to Nagaoka’s theorem, '
stating that the kinetic energy of a hole becomes minimal
in a ferromagnetic configuration. By contrast, if paths
with loops are neglected, the kinetic energy is the same
for any spin configuration. Some authors'>?° have incor-
porated four-step loops (plaquettes) to improve the
Brinkman-Rice approximation and thus managed to dis-
cuss the Hall effect and magnetoresistance—two effects
where the configuration dependence is crucial. However,
to describe correctly the ferromagnetic limit, it is clearly
necessary to include loops of arbitrary length. While the
ferromagnetic background itself is actually easy to han-
dle, it is a nontrivial task to construct a self-consistent
approximation scheme which treats general spin
configurations in a unified scheme and which, at the same
time, fulfills exact sum rules and also treats the ferromag-
netic case correctly.

The approximation we present in this paper is con-
structed by taking the limit of high dimensions d —
(Ref. 21) as a guide, since in this case the hole dynamics
can be determined exactly. For the Néel-ordered back-
ground, one can then show that the single-particle Green
function obtained by the Brinkman-Rice approximation’
is correct up to order 1/d 4 Furthermore, for a hole in a
general d-dimensional spin background, we construct an
approximation scheme for the Green function and the
dynamical conductivity which has the following proper-
ties.

(i) It becomes exact for any spin background in d = .

(i) It yields the exact result for the ferromagnetic back-
ground in any dimension.

(iii) The Green function has the correct analytic prop-
erties; i.e., the spectral function is never negative and the
spectral sum rule is always satisfied.

(iv) The conductivity has the correct analytic proper-
ties; i.e., its real part is never negative, and the f-sum rule
is satisfied.

The paper is structured as follows. In Sec. II we
present a precise statement of the problem; in particular,
we specify several types of spin backgrounds relevant for
a t-J model. Section III is devoted to the calculation
of the Green function of a hole in various spin
configurations. After reviewing Nagaoka’s path formal-
ism and the retraceable-path approximation, we identify
the paths contributing in d = . We then calculate the
exact Green function for a hole in a Néel and random
background (including the ferromagnetic configuration as
a limiting case) and discuss the properties of the corre-
sponding spectral functions and self-energies. These re-
sults are used to construct a conserving approximation
for finite dimensions d and are then applied to the case
d=3. In Sec. IV the thermodynamics of the hole prob-
lem is derived from the Green function and the low-
temperature behavior of the specific heat is investigated.
The dynamical conductivity is calculated and discussed
in Sec. V, following the logical lines of Sec. III. A critical
summary including an outline of possible extensions of
this work closes the presentation.
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II. DILUTE HOLES IN A +-J MODEL

For strong repulsion (U >>t) and low doping (8 << 1),
the Hubbard model® may be transformed* into the so-
called #-J model,

H,=H,+H,, (1a)

H=—t3 S(1—n,_ )l c;,(1=nj_,), (1b)
(ij) o

H;=J 3 S;'S;, (1c)
(ij)

which is expected to describe the low-temperature prop-
erties of strongly interacting tight-binding electrons near
a Mott metal-insulator transition.>> Here CIU (ci0)
creates (annihilates) electrons with spin ¢ on a lattice site
i, n; ,=¢; ,C;, is the corresponding number operator,
and §; is the spin operator on site i. The underlying Hil-
bert space is restricted to non-doubly-occupied sites. The
kinetic term H, describes restricted hopping of electrons
to next-neighbor sites (amplitude —¢), while H; describes
an antiferromagnetic (J >0) Heisenberg exchange in-
teraction between next-neighbor spins.

To leading order in an expansion in powers of the hole
density §, the correlations between holes play no role. In
this case it is sufficient to study the motion of a single
hole in a background of spins. The structure of the spin
background strongly depends on the 7-J model parame-
ters, lattice structure, and temperature. We consider
only hypercubic lattices in d dimensions. Following
Brinkman and Rice,® we will discuss the following three
types of spin backgrounds.

(i) Ferromagnetic background (F): As pointed out by
Nagaoka, !° the F background minimizes the kinetic ener-
gy H, of a single hole (as compared to other back-
grounds); it is, however, destabilized by H,, hole-hole
correlations, and the spin entropy (at 7' >0). Hence, if at
all,> % the ferromagnetic background is relevant only
for J <<&t at low temperatures, where & must also be
small enough to render the hole-hole correlations unim-
portant.

(ii) Neel background (N): For T,5t <<J and 6 << 1, the
spins order antiferromagnetically, at least in d 23 (in
lower dimensions there are at least strong antiferromag-
netic correlations in this case). In high dimensions the
spin fluctuations become weak (they disappear in d = )
and the antiferromagnetically ordered state may be ap-
proximated by a Néel state.?’ In addition, we will re-
strict our discussion to the case J <<t, thus neglecting the
excitation energy of the spins which are overturned by
the moving hole.% !

(iii) Random background (R): If T >>6t,J, all spin
configurations appear with equal probability in a thermo-
dynamic ensemble (note that for a single hole $—0 in the
thermodynamic limit and hence T >>&¢ for any T >0).
We will treat a generalization of this case, where the
average density of spins o, p,, may be different from
P o> as would be the case in the presence of a homo-
genous magnetic field. The ferromagnetic background (i)
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is thereby included as a special case, i.e., |p, —p_,|—1.

For each of the background types (F,N,R), we will cal-
culate and discuss the Green function for a hole inserted
into the undoped spin system (Sec. III), the thermo-
dynamics of one-hole states (Sec. IV), and finally, the
dynamical conductivity of a hole moving in this back-
ground (Sec. V).

III. GREEN FUNCTION AND DENSITY OF STATES

In this section we calculate the Green function for a
hole inserted into a spin background of types F, N, and
R, respectively:

Gz2)=3 GX;(2), (2a)
X oy={ct L .. 2
Gii(2) <C""z—HC”">X . (2b)

Here H=H, [Eq. (Ib)] and - - - )4, with XE{F,N,R},
denotes the background average, i.e.,

(o )p=(F|---|F), (3a)
IFY=1Ici,l0), (3b)

for the ferromagnetic background (|0) is the vacuum),

(- )y=(N|---IN), (4a)
IN)= [EACL] [_HBcL]Im , (4b)

for the Néel background ( 4 and B are the two sublattices
of the hypercubic lattice), and

("')R=2w3<s|"'|s>, (5)

for the random background (we set #=1); w; is a normal-
ized (3,w,=1) distribution of spin configurations s such
that spins on different sites are statistically independent
and the probability (or average density) for spins o is p,,.
Note that in the unpolarized case (p;=p,=1), ( -+ )p
is just the thermal average

('--)R=2(s|e_6”-"Is)/z(sle_BHls), (6)

since H|s ) =0 in our case (all spin configurations there-
fore contribute with equal weight w,). For p,¥#p_,,
however, ( - -+ ) corresponds to a thermal average in
the presence of a magnetic field. The Green function
determines the density of states D*(w) via

DX(w)=%ImGX(w—iO+), )
where G*(z)=G{¥(z) is the local Green function (which is
independent of i in all cases F, N, and R). For these three
backgrounds the hole Green function is translationally
invariant; the Fourier transform of Gi"j’ (z) will be denoted
by G*(k,z), and we define the spectral function pX(k,w)
via

pX(k,a))=%ImGX(k,w—i0+) , (8)

2239
and the self-energy =X(k,z) by
1
GXkz)=3 ——5 > 9)
; z +€k—20X(k,Z)
where g,= —2t(cosk,;+ - -- +cosk,) is the dispersion

relation corresponding to H, on a hypercubic lattice,
with the lattice constant set equal to unity; the choice of
the plus sign for g, in (9) will become clear below.

A. Nagaoka paths and retraceable-path approximation
Using the identity

1
z—H

0

H/z)", (10

Z n=0

Nagaoka!® derived an expansion of the local Green func-
tion Gj(z) for a hole inserted into an arbitrary, fixed spin

configuration |s ),
s — + 1
Gi(z2)= 3 (s Cio s g Cio |S)> (11)
s ja— 1 1 - s n
Gi=_+1 3 An(—t/2", (12)

g
in powers of ¢ /z. He found
2

where A4, is the number of distinct n-step paths of a hole
in the spin background s which start and end on site i and
which restore the original spin configuration after the last
step. Note that the final configuration is required to be
equal to the original one only up to a permutation of
equal spins. However, since paths contributing to 4§, on
a hypercubic lattice involve only permutations with even
parity, all paths sum up with positive sign. Minus signs
may appear for other lattices (think, for example, of a
hole moving around a triangle on a triangular lattice).

A straightforward generalization of (12) to the nonlo-
cal part of the Green function G3;(z) reads

1 1 &
ij(z)=;8ij+;"§1 A, (—t/2)", (13)
where Ajj, is the number of n-step paths from j to i
which leave s invariant; here paths with odd » (contribut-
ing if i and j are separated by an odd number of next-
neighbor steps on the lattice) involve odd permutations
and therefore contribute negatively.

The Green function for a hole in a ferromagnetic back-
ground G ,’j (z) is now easily evaluated. In a ferromagnetic
background any hole path leaves the spin configuration
invariant; i.e., the hole behaves like a free particle on an
empty lattice, except for the fact that paths with an odd
number of steps have a negative phase factor. Looking at
(13), one realizes that this extra minus sign corresponds
to simply letting r— —t. Since the free-particle Green
function is

GOk, z)=—1— (14)
Z_Ek

one finds, for the ferromagnetic case,
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GFlk,z)=—— . (15)
z+ Ek
In real space this means i
GH(2=(—1)"1G}(2), (16)

where (—1)' " Jis +1 (—1) if i and j are separated by an
even (odd) number of lattice steps. In particular, the den-
sity of states of the hole corresponds to that for a free
particle:

Dfw)=D%w) . 17)

For a general spin background (in particular, for the N
and R backgrounds), the contribution of paths can no
longer be calculated exactly to all orders n. In this situa-
tion Brinkman and Rice’® evaluated the local Green func-
tion by summing all paths without loops (retraceable-
path approximation). Naturally, these special paths are
background restoring for any spin configuration; i.e., the
results of this approximation do not depend on the spin
background at all. Comparison with the results of a mo-
ment expansion of the density of states’ shows that the
retraceable-path approximation is particularly accurate
for the single-particle Green function of a hole moving in
the Néel background. In fact, in this case the contribu-
tions of loops are strongly suppressed by the requirement
of background conservation. The leading correction
enters at order (¢/z)'? since on the smallest loop (a pla-
quette) a hole must circulate 3 times to restore the origi-
nal Néel spin configuration.® The retraceable-path ap-
proximation is exact a Bethe lattice, where loops are a
priori absent.

For backgrounds other than Néel, on a hypercubic lat-
tice in d > 1, the retraceable-path approximation is less
satisfactory. For example, it does not take into account
the fact that ferromagnetic clusters favor hole motion
(thus leading to Nagaoka’s theorem!®) and cannot de-
scribe the Hall effect and magnetioresistance, since it
does not  distinguish  between  different spin
configurations. Loops become important whenever the
spins on a loop on the lattice may be aligned (as in the
case of F and R backgrounds); in this case it is sufficient
for the hole to circulate through the loop once to restore
the spin configuration on the loop.

Our aim in the following is to construct a self-
consistent approximation for the Green function where
loops are included to all orders and the ferromagnetic
case is treated exactly.

B. Limit of high lattice dimensions

The limit of high lattice dimensions d — o, introduced
only recently to models of correlated fermions,?! has
helped to clarify the validity of several well-known ap-
proximations and to construct new ones.?® As will be
shown below, the dynamics of a hole in a F, N, or R
background can be calculated exactly in d =« and the
resulting theory can be directly extended to finite dimen-
sions, where it provides an approximation with several at-
tractive features (correct sum rules, correct analytic be-
havior, correct ferromagnetic limit). To keep the average

FIG. 1. Typical path of a hole contributing to G§(z) in
d = ; the hole starts and ends on site i. Lines connect next
neighbors on a d-dimensional lattice.

kinetic energy finite in d — o, one must scale the hop-
ping amplitude ¢ as?!

Vs t* fixed , (18)
where Z is the number of nearest neighbors (Z =2d on a
hypercubic lattice). The density of states of a free parti-
cle moving on an empty lattice in d — © becomes a
Gaussian distribution with finite width:

0, )= —w?/2*?

DY w) t*\/27re . (19)
The scaling (18) will be employed throughout this paper.
We start by considering the paths contributing to the lo-
cal Green function Gf(z) for an arbitrary spin
configuration s. In d = the only relevant paths are ful-
ly two-particle-reducible clusters of loops (“loop trees”),
as indicated in Fig. 1, in which a hole moves along a loop
only once. By counting the number of possible embed-
dings of various path topologies on the lattice, it is easy
to see that paths with loops on which a hole walks
around more than once or with multiply connected loops
(as, for example, in Fig. 2) are suppressed by some integer
power of 1/d with respect to the loop tree (for a more de-
tailed discussion, see Ref. 27).

The question of whether or not a hole path restores the
spin configuration is easily settled for loop trees. The
spin configuration is restored if and only if all spins in a
given loop are equal except for the site where the hole
enters the loop, in which case the spin direction is unim-
portant. An example for such a spin configuration is
shown in Fig. 3.

The paths contributing to the nonlocal part of the
Green function Gjj(z) in d = e are chains (from j to i)
decorated by loop trees, as shown in Fig. 4. One-
particle-irreducible insertions as those in Fig. 5 are
suppressed by some integer power of 1/d. Therefore,

[0 ]

(a) (b)

FIG. 2. (a) Loop on which a hole must walk around more
than once; (b) multiply connected loop. Both paths contribute
to order 1/d2.
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FIG. 3. Spin configuration for which the indicated path is
background restoring.

when the hole has traveled from j to i, the spin
configuration is restored if and only if all spins on the
chain are aligned (apart from the above condition for the
loops, of course).

At this stage it is already quite clear that the hole dy-
namics can be calculated exactly in d = o. We now turn
to the explicit summation of all paths contributing in the
case of the Néel and random background in this limit.

C. Néel background

As discussed above, in d = only loop trees with
loops on which a hole circulates around once contribute
to the local Green function for a hole. On the other
hand, a hole moving around a loop only once destroys the
Néel configuration. Hence, for a Néel background in
d = 0, loops do not contribute at all and the retraceable-
path approximation is exact in this case. Furthermore,
the nonlocal part of the Green function is zero for a Néel
background in d = « since a Néel configuration contains
no chains of aligned spins. Taking the limit d — o in the
result of the retraceable-path summation® for the local
(i.e., diagonal) Green function, one obtains

¥4
2t *2

Gil(z)= [1—(1—4r*2/z})'72]5;; . (20)
This is the exact Green function for a single hole moving
in a Néel spin background in d = . The corresponding
density of states is

1

DMw)=
27t *?

(4t*2—*)1?, || <2t* . (21)

Note that DY has a semielliptic shape, i.e., has sharp

FIG. 4. Typical hole path contributing to Gjj(z) in d = o;
the hole enters at site j and leaves at site i.
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S

FIG. 5. One-particle-irreducible insertion, yielding an extra
factor 1/d as compared to a single line.

band edges (at +2¢*) with a square-root singularity. This
is quite different from the density of states of a hole in a
ferromagnetic background in d = « [Eq. (17)], which has
exponential tails extending to @w— % 0. It should be not-
ed that (21) corresponds to the density of states of a hole
on a Bethe lattice with an infinite number of nearest
neighbors.

The spectral function p"(k,w) is k independent here,
since G{}' (z) is diagonal. In particular, there is no quasi-
particle peak. Clearly, the Green function Gi]}' (z) [Eq.
(20)] is analytic in the upper and lower complex z plane,
DMw) being positive and its integral being 1, as it
should.?

We close this subsection by pointing out that for the
Neéel state the corrections to the retraceable-path approx-
imation enter only at order 1/d* in a 1/d expansion.
These corrections are due to plaquettes which, as already
mentioned in Sec. III A, a hole must walk around 3 times
to restore the Néel configuration. Hence there are
3X4=12 hopping steps required, each of them carrying
an amplitude ¢ =t* /(2d)!/?, while the number of embed-
dings of the plaquette on a d-dimensional lattice is pro-
portional to d (d —1). This makes the contribution of the
plaquette of order d2/d'*?=1/d".

D. Random background

In the random case every path contributes to the
Green function; i.e., for each hole path there are (many)
spin configurations which are restored after the last step.
We now sum up all these contributions exactly ind = «.

We first calculate the local Green function G®(z) in the
random ensemble [Eq. (5)] for general p;,p,. Ind = it
is sufficient to sum up all the loop trees. To this end we
group paths with the same topology into classes which
we call graphs. The contribution of a path to G is given
by the probability for restoring the (random) spin
configuration, which, for loop trees, is just the probability
for finding the spins within each loop to be aligned (ex-
cept for the site where the hole enters the loop; see Sec.
IITB). This probability, p,, is clearly the same for
different paths with the same graph. To obtain the con-
tribution of a graph g, it is therefore sufficient to multiply
Pg by the number of embeddings m, of the graph on the
lattice (where different vertices of the graph have to occu-
py different lattice sites). For loop trees in d — o, myg is
just the product of the number of embeddings of each
loop on the tree. The factor (—¢/z)" in (12) is treated by
associating a factor —t/z with each line of a graph.
Thus the local random Green function becomes

Ry 1
G*(z2) z+z§'vg(2)’ (22)

where the sum extends over all loop tree graphs g, and v,,
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FIG. 6. S®in terms of dressed vertices CX.

y

the “value” of a graph g, is given by
myp,(—t/z)", (23)

with n as the number of lines in g. To sum up all graphs,
we introduce a quantity S®, defined by

GR(2)=—1 = ) (24)
z[1—=S%(2)]
Expanding this in a geometric series in S&, a comparison
with (22) shows that S® is given by the sum over all
graphs for which the hole returns to the starting point
only once.?

Because of the simple topology of the loop trees, S®
can be written as a sum over loops with dressed vertices
CRX, as indicated in Fig. 6. The dressed vertex CX is given
by the bare vertex plus all possible S® insertions, as
shown in Fig. 7. Using the rules for the calculation of the
graph values v,, one obtains, from Figs. 6 and 7, respec-

tively,
=3 3 u,[CE1" /2, (25)
g n=2
CR(2)=p, 3 [SK2)]'=—20— (26)
= 1-8%z)
Here u, is the number of self-avoiding return paths on

the lattice. For a hypercubic lattice in d dimensions,
u,=2d, uy;=0, u,=2d(2d —2), etc. Note that the
neglect of loops, i.e., setting u, =0 for n >3 in (25), is
equivalent to the retraceable-path approximation and
hence leads to the result GR=G?, i.e., to the Néel state,
with GV given by (20). Defining a generating function for
the numbers u, via

ME)=1+ ¥ u,t", 27
n=2
Eq. (25) can be written as

SR(2) M(CR(2)t/2)—1 08)
zZ)= .
§ CR(z)

Eliminating CX and S* from (24), (26), and (28), one ob-
tains a single equation for G *:

Sp Mp,tGR)=1+p,p (zGR—1) . (29)

Clearly, M (&) is not an elementary function. However,

cR=.+V+ +.. = D

FIG. 7. C®in terms of SX.

we can relate it to the (already known) function
0
6H(2)=6%)= [ae 21 | (30
z—¢

by taking the limit p; —1 (i.e.,, p;, —0) in (29); using
M(£)=14+0(&) for small &, this yields M(:G°)=2zG°
and, consequently,

§)=§GEI(§/z) , 31)

where G, =(G°% ! is the inverse function of G° [Eq.
(30)]. Inserting M [Eq. (31)] into (29), we obtain our final
result for GR(z):

pipy [2GR=1-GR 3 G° | (p,GR)|+1=0. (32

In particular, for the unpolarized random background
(py=p, =1), this can be simplified to

GR=2G% | % + 3 (33)

2 2GR

Note that (32) determines the exact local Green function
of a hole in a random spin background in d — .

As to the nonlocal part of GS-(Z), we must sum all self-
avoiding chains extending from j to i, which may be
dressed by arbitrary loop trees (see Sec. III B). The local
decorations can again be collected into a dressed vertex
CR(2). In this way G<R~(z) can be written as

G{}(z)=i ,J+ 3> 2 uf[CR (1 /27, (34)
z g qg=1

where uf; is the number of self-avoiding paths connecting
j to i by g steps on the lattice. The minus sign appearing
in front of 7 in (13) has been compensated by the sign as-
sociated with the permutations of fermions. Inserting
CR(z)=p_,zG®R(z) and using GO( ) to construct a gen-
erating function for the u?J, one obtains, after Fourier
transformation,

GR(k,z)= 3 GR(k,2), (35a)

1
G° (p,GR(2)+¢g,

GR(k,z)= (35b)

Comparison with (9) yields the self-energy, which turns
out to be independent of k:

3R=—2-G° ,(p,GR(2)) . (36)
For p; =p, =1 one may use (33) to simplify (36) to
3
sRz)=2 - : (37)
Y72 26R0

Properties of the solution G® in d= « : The exact hole
Green function G® in d = « is obtained by inserting the
free local propagator G° for an infinite-dimensional lat-
tice [given by (19) and (30)] into the equations for GX.
The resulting density of states D®(w) for p;=p, =1 is
shown in Fig. 8, where DF=D% and D¥ are also included
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0.4
~~~~~~~~ Ferromagnetic
Random
- - - Néel
0.3 d = o
=
=
302 |
(m]
0.1 r
1
00 e - L 1 U J I —1 L R
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FIG. 8. Exact density of states D ®(w) for a hole in a random
background (p;=p, =%) in d = o. Also shown are the exact
results for Df(w) [=D%w)] and D¥(w) for a ferromagnetic and
Neéel background, respectively.

for comparison. Here and in all following figures, the en-
ergy scale is t*=1v"2dt. The center of DX is obviously
broadened relative to D% DX has exponential tails ex-
tending to * oo, which, however, fall off more rapidly
than those of DY, i.e.,

DRw)xe 21" || >>1* . (38)

The states in the tails (for ®— — o0, say) correspond to
low-energy hole states due to large ferromagnetic clus-
ters. In a random configuration the probability for the
formation of such clusters decays exponentially with its
size. Consequently, D®(w) is suppressed exponentially
with respect to D% ) for 0— .

In Fig. 9, 3%(w—i0") is shown (again p;=p,=1).
Note, for comparison, that in a ferromagnetic back-
ground (all spins up, say) Ef =0, while Zf = o0, which
expresses the simple fact that there exist no down spins
and therefore one cannot create a hole by removing one.
The imaginary part of 3 is a measure for the damping
of “quasiparticle” peaks in p(k,w). Since Im3%(w
—i0")>0 for all , there are no genuine quasiparticles
in the system. However, for large |o|, p?(k, ) has sharp

peaks of exponentially small width [of order
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FIG. 9. Real and imaginary parts of the exact self-energy
32K@—i0") for the random background (p; =p;=1)ind= .
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exp(—2w?/t*?)], but their weight decays with the same
exponential factor. The asymptotic behavior of the
Green function for large || is (for p; =p, =1)

1

GRo—i0t)~————
w+e,/2—i0

lo|>>t* (39)
which has the form of the ferromagnetic Green function
GF, with the hopping amplitude being renormalized by a
factor 4. (This is the probability for finding the spin on

the site onto which the hole is hopping to be aligned with
the previous one.)

E. Self-consistent approximation for finite dimensions

In finite dimensions d the simplifications arising in the
limit d = o no longer apply, and the one-hole problem
becomes much more complicated; an exact solution for
d > 1 does not exist so far. However, on the basis of our
exact results for d =, we may construct a self-
consistent approximation for the motion of a hole in a
finite-dimensional spin background, in which loops are
included up to infinite order and sum rules are fulfilled
exactly. This approximation should only be used in
d = 3; in lower dimensions it can no longer be expected to
be reliable—besides the fact that spin fluctuations then
become crucial.

1. Neel background

Here two different approximations are possible, both of
which become exact in d =c0. First of all, one may use
the results of the retraceable-path approximation,® which
not only yields the exact result for =1 and is correct up
to order 1/d* for large dimensions in this case, but also
fulfills the spectral sum rule in any dimension. In partic-
ular, for =3 on a simple cubic lattice one finds’

172
t*. (40)

Drpa(w)zi (%t#Z_wZ)I/Z 10
T

, ol | =
3

61*2— 2

The fact that (40) is correct up to order 1/d* does not im-
ply that for d =3, where 1/d* is small, D™ is quantita-
tively close to the exact result for all w. Indeed, at the
band edges, where the density of states is small, correc-
tions become numerically arbitrarily large. Hence all
low-temperature properties of the hole depend sensitively
on the specific band-edge behavior (see Sec. V E).

An alternative approximation for finite dimensions
may be obtained from the formalism developed in Secs.
IIIC and III D. According to the discussion below (26),
diagrams with self-avoiding loops do not contribute
beyond second order for a Néel background in d = .
Hence (20) is the exact Green function in this case. In
fact, since the entire formalism leading to (20) is self-
consistent and exact in d = o, we may employ the half-
ellipse (21) as an approximation even for finite d, knowing
that, by construction, all sum rules (e.g., the spectral sum
rule for the Green function) are fulfilled exactly. The d
dependence then only enters through the scaled hopping
amplitude t*/v'2d. The approximation thus obtained
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will still be denoted by a superscript N (= Néel). Al-
though this approximation treats the sum rules exactly,
the Green function G;;(z) itself is only correct up to order
t% i.e., up to d(l/d4/5)=1/d for large d, as can be seen
from the paths contributing to this approximation.
Hence it cannot be expected to be as good an approxima-
tion for the density of states (DOS) as the retraceable-
path approximation in this particular case.

2. Random background

To obtain an approximation for d < «, one may insert
the free, d-dimensional local propagator G° into the
equations for G® derived in Sec. III D, where loops are
included to all orders. Again, the hopping is scaled ac-
cording to (18). For |PT_P1|_’1r GR converges to GF;
i.e., the ferromagnetic limit is described exactly for all d.
The approximate Green function G®(k,z) is analytic in
the upper and lower complex z plane, and the spectral
denszisty pR(k,) is never negative and satisfies the exact
rule

d
f (Zﬂ];dfdwp(k,w)=l . @1

The proof is given in the Appendix.

In Fig. 10 we show the approximate density of states
D*(w) for a three-dimensional cubic lattice (p; =p, =1),
in comparison with the respective results for the Néel
(D¥) and ferromagnetic (DF=D°) background, as well
as D™ obtained from (40). Obviously, DR has the same
type of band edge as D° (square-root singularity). The
bandwidth of D® is narrower than the free bandwidth.
Actually, the exact D® is expected to have exponential
tails’ extending to the bandwidth of DY, these tails being
due to the existence of large ferromagnetic clusters in the
random ensemble (similar to Lifshitz tails* in the density
of states of disordered systems, which are caused by
states in large ordered domains). Our approximation
does not describe this detail. The approximate self-
energy 2X(w—i0%) in d=3 for p;=p, =1 is shown in
Fig. 11. Its imaginary part is small only near, or beyond,

0.4

——————— Ferromagnetic
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03

0.1

"-3.0 “20  -10 40,.‘0 10 20 30
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FIG. 10. Density of states for an unpolarized random back-
ground (solid line) in d =3 as obtained by the self-consistent ap-
proximation. The results for the Néel and ferromagnetic (=
free) cases, as well as that by the retraceable-path approxima-
tion (rpa) are also shown.
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FIG. 11. Real and imaginary parts of the self-consistently

determined self-energy 2®(w—i0") for a random background
(pr=p,=3%)ind=3.

the band edge of DR, where DR is small, too [this feature
follows directly from (37)]. Hence there are no quasipar-
ticle peaks in the spectral function p®(k,w) as shown in
Fig. 12. This is similar to the behavior found in Ref. 4.

IV. THERMODYNAMICS

The thermodynamics of single-hole states can be
directly calculated from the density of states D*(w). The
partition function Z* of a hole in a spin background X is
given by !?

Z¥=L [doDXw)e P, (42)

where L is the number of sites, B=1/kyT, is the inverse
temperature, and D¥ is the density of one-hole states in
X. Note that for X =F,N the assumption of a pure spin
configuration is justified only at temperatures which are
low with respect to some energy (coupling or external
field) stabilizing the magnetic order.

From Z* one obtains the free energy, entropy, internal
energy, and specific heat. The free energy

FX=—k,TInZX (43)
and the entropy S¥=—9F*/3T for a single hole diverge

1.2
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FIG. 12. Spectral function for a hole in an unpolarized ran-
dom background, p®(k,®), in d=3 for various k vectors.
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FIG. 13. Exact specific heat of single-hole states vs tempera-
ture in d = for various spin backgrounds: ferromagnetic
(cf), Néel order (c}), and random (c}).

logarithmically as L — oo, while the internal energy
UX=FX+TS¥ and the specific heat ¢f =9U*/dT remain
finite. The divergence of S* and F¥ is due to the diver-
gence of the number of available one-hole states for
L — . To obtain a well-defined thermodynamic limit,
one therefore has to introduce a finite hole density 5. As-
suming that holes are well separated (i.e., excluding hole-
hole binding, phase separation, etc.) and neglecting hole-
hole correlations (which is correct to leading order in §),
one can calculate the free energy and entropy per hole if
L is substituted by 8! in the expressions for a single
hole; here 8! is just the average number of sites avail-
able for each hole in an infinite system with hole density
8. The internal energy and specific heat per hole is still
given by the single-hole expansion (where L does not
enter). In d = the internal energies UF and UR go to
— oo as T—0, since the spectra of single-hole states are
not bounded from below in these cases, but have ex-
ponential tails. By contrast, for a Néel background, UV
goes to —2t*, the lower band edge of D¥, at low temper-
atures. Similarly, the specific heats ¢ and ¢ diverge for
T —0, while ¢} converges to the finite value k5. In Fig.
13 we show ¢, c® (for py=p,=1), and ¢} as functions
of Tind=oo.

In d=3 our approximation described in Sec. IIIE al-
ways yields densities of states with a square-root-shaped
band edge. Consequently, the internal energy U* ap-
proaches the lower band edge for T—0 in all three cases
X =F,N,R, while the specific heat always assumes the
limiting value 2kp. In Fig. 14 we show c¥ as obtained by
our approximation (with p; =p; =1) in comparison with
the exact result for ¢} and the approximation for the
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FIG. 14. Specific heat of single-hole states in a random back-
ground, c¢f(T), for d=3 as obtained by the self-consistent ap-
proximation. The results of the retraceable-path approximation
ciP2, of the approximation for the Néel state cf, and the exact
result for the ferromagnetic background cf are also shown.

Néel state c{’, as well as c[P? for a three-dimensional cu-
bic lattice.
V. DYNAMICAL CONDUCTIVITY

A. Expansion as a sum over paths

The dynamical conductivity of a single hole in a spin
background X is given by the Kubo formula as

ox(w)=V'lfowdrfoﬁdk(Ja(O)Ja(T-Hk))X,,ei“’T :

(44)
where V is the volume. Here J,(s) is the current opera-

tor for a lattice model with next-neighbor hopping ampli-
tude —¢, i.e.,

Jo(s)=e'Hs] e ~iHs (45)
Ja=—ieat2(c}+a,ocja—c}_a,acja) , (46)
j,o

where the lattice constant a is now written out explicitly,
and a is an arbitrary unit vector on the lattice (o* does
not depend on the direction of a). Furthermore,
( -+ )y is a thermal average over all single hole states
in the background X, i.e.,

..y, 47

¢ >Xh=%tr)(h(e
where the trace runs over a complete set of one-hole
states in X, including an average over all spin
configurations in the random case.
Inserting a complete set of one-hole eigenstates of H
between the current operators in (44), one can carry out
the 7 and A integrals. This yields® !?

i do do 1 —Boy _ —Be,
O'X(a)):- L 1 2 FX
i o—ortopti0T  w—w, | (@p@2), “8)
where
Fx(wl,a)z): E 3152fX(w1+iS10+,0)2+i520+) (49)

sl,s2=i1
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and the function f*(z,,z,) is defined by
1
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X _ 1
(zy,z,)=t —J J
f Z] ZZ) th ZI—H azz__H a (50)
So far, no approximation has been made.
In particular, the real part of the complex conductivity o(w) [Eq. (48)] is given by!2
X \— 1 1—e” —Bo
Reo¥(w)=————3 f doe Floyote) . (51)
Inserting J,, [Eq. (46)], one obtains’
[Hz1,2)=f(z1,2)+ f5(z1,2,) (52)
where
1 1
(zy,2,)=2e%a?t? t ——cl . e f e
f 1 2 (%)02” Txp _Hcl a,acw zz_Hc]+a,acja ’ (53)
X — . 9,2,2,2 1
f2 (zy,z,)=—2e"a"t (izj) 0,20’ try, —_?ci-%a,acw Z _HCI+a,a’cja’ (54)

Using the identity (10) one can expand f%(z,,z,) as a
sum over closed paths, similar to the expansion of G¥in
Sec. IIT A. In Fig. 15 we show the general structure of
the hole paths contributing to f¥ and ¥, respectively. A
solid line represents a step i—i—a, etc., in (53) and (54)
generated by in the current operator, wh11e a wiggly llne
represents a sequence of steps generated by (z; —H )~
(z,—H)™'. Hence the hole starts at site i+a and then
moves through the segments 1,2,3,4 of the path, thus re-
turning to j+a. The spins on the sites j,i—a,i in Fig.
15(a) and on j,i+a,i in Fig. 15(b), respectively, must be
equal to make possible the restoration of the spin
configuration by the moving hole. Note that in general
the paths in Fig. 15 may interfere; e.g., the paths labeled
by 2 and 4 may have common lattice sites; furthermore,
i—a and j may be equal, etc. In finite dimension an ex-
act summation of all paths is possible only for the fer-
romagnetic background.

B. Limitd — o

In the limit of high lattice dimensions d — oo, there are
two simplifications in the calculation of f*.

i1 e j o1 e

a3 i3 e
(a) (b)

FIG. 15. General structure of the hole paths contributing (a)
to f¥ and (b) to f¥. The solid lines represent single steps as pro-
duced by the current operators; the wiggly lines indicate paths
produced by the resolvents (z; —H)~'. The numbers 1,2,3,4 in-
dicate the sequence of the motion.

-

(i) Interferences between the paths 2 and 4 in Fig. 15
can be neglected.

(ii) f£=0.

This may be understood from the three graphs contrib-
uting to f* shown in Fig. 16. Graph (a) contributes to
¥ and has no interferences; graph (b) also contributes to
¥, but has an interference on site h; graph (c) contrib-
utes to fX. All these graphs have the same number of
lines; however, while the number of embeddings of graph
(a) is of order d? in high dimensions, for (b) and (c) it is
only of order d? (steps from j+a to j, from i—a to i and
from i+a to j have a fixed direction). Hence the contri-
bution of the graphs (b) and (c) is suppressed by a factor
1/d with respect to (a); for d — oo this leads to the two
simplifications indicated above.

The absence of interferences between the paths labeled
2 and 4 in Fig. 15 allows one to sum these segments of the
total path separately. Clearly, these separate sums are
precisely the hole Green function G%, e.g., G{Y_a,j(zz) in
the case of segment 2, in Fig. 15(a). It is therefore possi-
ble to evaluate f¥ exactly in d = . In finite dimensions
d this is no longer possible. However, the neglect of in-
terferences may be used as an approximation in this case.
At the same time the contributions to f3 have to be in-
cluded to treat the ferromagnetic limit correctly.

iea

(a) (b) (c)

FIG. 16. Graphs contributing to f*.
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We will now perform the explicit evaluations of o*(w)
in the Néel and random backgrounds.

C. Néel background

The Green function G" of a hole moving in a Néel spin
configuration was shown to be diagonal in d = . This
property remains in the case of G¥ derived within our ap-
proximation and the retraceable-path approximation in
d < . Hence the only contribution to fV (see Fig. 15)
comes from the graph shown in Fig. 17, where the bold
lines represent the diagonal Green function G, which
starts and ends at the same lattice point. This graph is
obtained from that shown in Fig. 15(a) by identifying site
j with i—a and i with j+a, respectively. The hole starts
and ends on site i. The spin on j may be up or down and
is automatically restored by the type of path in Fig. 17.
The algebraic expression corresponding to the graph in
Fig. 17 reads

fMzy,2y)=2e2a%*LGNz,)GNz,) , (55)

where (53) and (54) have been used to obtain the correct
prefactors. This result has already been derived by
Brinkman and Rice.? Here we have shown that for a
Néel spin background it is exact in high dimensions.
From (49) and (55) one finds, for the function F¥,

FMaoy,0,)=—87%%a** LD 0,) DM w,) , (56)

which can be inserted into (48) or (51) to calculate the
conductivity 0™ ). In the zero-temperature limit T—0,
one obtains the simple result

2me’a’t?
Vo

where —w, is the lower band edge of DY (e.g., w,=2¢* in
d = ). Inserting DV [Eq. (21)] into (56), we obtain the
exact expression for the conductivity of a hole moving in
a Neéel spin background in d = . Since the conductivity
is a correlation function between two sites (i.e., for a
given direction a), it vanishes as 1/d for d — « as a re-
sult of t2=1*?/2d. However, o /t>« od remains finite in
d = o and can be compared with results in d < . The
result for Reo™(w) in d = « is plotted in Fig. 18 for vari-
ous temperatures. The dc conductivity Reo™(0) diverges
only at zero temperature. Of course, our exact result for
Reo™M(w) obeys the f-sum rule’!

ReoMw)= DMw—wy) , (57)

‘)7‘6202

o0 R -
f“w eoc(w)dw v

(H,), (58)

where (H,)=(H)/d is the average kinetic energy in
one particular direction a.

FIG. 17. Graph contributing to f%; the bold lines represent
the Green function G*.
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FIG. 18. Exact dynamical conductivity for a hole in a Néel
background, Rea™ w), for various temperatures (8=1/kzT) in
d =oo. All energies are scaled by ¢*. In the inset the behavior
for larger ® is shown. The conductivity vanishes at o =4¢*,
corresponding to the bandwidth.

D. Random background

In d =, f¥ is zero for arbitrary backgrounds (see
Sec. VB). Summing the noninterfering segments 2 and 4
of the graph in Fig. 15(a), one finds the exact result for
fRin d = », namely,

fRzy,z,)=2e%%?S S, 'Ghilz

o i

)G Ri(z)), (59

where the prefactor has been obtained by (53) and the site
indices have been shifted because of translational invari-
ance. The requirement of spins to be equal for a loop to
contribute in d = is satisfied owing to the additional
factor p_ ! in (59). Inserting (59) in (49) and using the
Fourier representation of foij(z), one obtains

FR(a)l,wz)=—817'2e2a2t22Epglpg(k,wl)pg(k,wz) .
o k
(60)

Inserting F® into (51) and integrating (numerically) over
®;, one can now calculate the exact conductivity for a
hole moving in a random spin background in d = .

We note that within standard perturbation theory and
for a grand canonical ensemble of interacting lattice fer-
mions in d = «, the conductivity is determined exactly
by the simple bubble diagram,; i.e., vertex corrections van-
ish.?? In our case (one hole in a restricted Hilbert space),
the applicability of this standard formalism is not a priori
guaranteed, but eventually we obtain the same result.

In the ferromagnetic limit (p, —1, p _,—0), the spec-
tral function p? is a § function, pf(k,0)=8(w+¢,), while
pf  is zero, and (60) becomes



2248

FHw;,0,)=—8me%a*’LD%»,)8(v,—w,) . (61)
The real part of the conductivity therefore becomes
Recf(w)=2me%a?t?V " 188(w) . (62)

This is, of course, precisely the result for a free particle
on an empty lattice in d = .

Returning to the unpolarized random background, the
dc conductivity Rea®(0) is infinite for all temperatures,
but the corresponding peak contains considerable spec-
tral weight only at low temperatures. At T=0 only a
peak at © =0 remains, i.e.,

22,2
lim ReoR(w)=".2L B8(w)2e212B5(w)=~Reo () .

1
T—0 2V 4
(63)

The prefactor has been calculated from the f-sum rule,
which must necessarily be satisfied in this exact calcula-
tion (and has indeed been checked numerically at high
temperatures, where the peak at @ =0 carried only negli-
gible weight). The origin of the low-T behavior of ofis
quite clear. At low temperatures only the low-energy
states are relevant. In Sec. III we found that single-hole
states in the random background with low energy
(w— — ) behave like free-particle states with a disper-
sion —g, /2. It is therefore not surprising that o®(w) is
given by a free-particle conductivity with ¢ substituted by
t/2 for T—0.

E. Sum-rule-conserving approximation for finite dimensions

1. Neel background

As in the case of the density of states (see Sec. IITE),
the conductivity o(w) in d < © may be calculated by two
different approximations, both of which become exact in
d = . Namely, the density of states determining the
partition function Z* as well as F¥ in (56) can either be
approximated by that obtained within the retraceable-
path approximation or by the half-ellipse [Eq. (21)]. In
the latter case the f-sum rule (58) is fulfilled exactly for
all d_(again, the d dependence only enters through
t*/V'2d ). By contrast, for d < = the retraceable-path
approximation never fulfills this sum rule as was noticed
for d=2 in Ref. 11. This can be explicitly verified in the
limit T—0. Using (57), the right-hand side of (58) yields

Zw: rpa ™ 202 *
f_zw*dwReo Pw)= T—1¢ p@ (64)

<

where 0 =V2(2d —1)/d t* is half the bandwidth of the
density of states D2, On the other hand, the right-hand
side of (58) is given by —me?a’w? /Vd. Hence the ratio
of both sides is (d —1)/d, showing that the f-sum rule is
only exactly fulfilled in the limit d = . The conductivi-
ty o(w) for a hole in d=3 as obtained by the retraceable-
path approximation is shown in Fig. 19. This result
should be compared with the exact result in d = c shown
in Fig. 18, which, as explained in Sec. II1 E, can also be
employed as a sum-rule-conserving approximation for o
in d <. Although the curves are qualitatively very
similar, the scales of o(w) are seen to differ by about a
factor of 2 for T=0 and w/t* <<1. More precisely, in
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FIG. 19. Dynamical conductivity Reo(w) for a hole in d=3
for various temperatures (B8=1/kzT), as obtained by the
retraceable-path approximation (rpa).

this limit the retraceable-path approximation yields

1/4 172
9 | 40 e a’ |t*
Reo P2 =7 | ¥ . S .
o= 3| TV e
172
2 2 *
e‘a’ |t
~2.1552 | — | | 65
dV e (652)
while our approximation for the Néel state leads to
o2 g2 [ 172
ReoMw)=5-2L | —
eoc(®) 77 o (65b)

The different prefactors originate from the different shape
and position of the band edges of the density of states in
the two cases (see Fig. 10). It is this dependence which is
of crucial quantitative significance for o(w) (particularly
at low temperatures), since the latter is determined by an
integral over the product of two shifted densities of states
whose main contribution comes from the region close to
the band edges. The fact that the density of states ob-
tained by the retraceable-path approximation is correct
up to O(1/d*) (cf. the discussion in Sec. IIIE) clearly
does not imply that the corresponding o(w), or at least
the f-sum rule, is given by a similar degree of accuracy.
Therefore, our approximation for o™(w), which fulfills
the f-sum rule exactly, can be expected to be more accu-
rate in this case.

2. Random background

In d < o the term f% [Eq. (54)] contributes, too. Its
presence is necessary to treat the ferromagnetic limit
correctly in d < o. However, we still neglect interfer-
ences between the segments 2 and 4 of the hole paths il-
lustrated in Fig. 15; for d < « this is an approximation.
Hence, summing the contributions to the segments 2 and
4 in Fig. 15(b) separately and using (54), one obtains
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R __ek’ o —1R R
fHen) ==t 3 3 GR 0i(2))GE 4 (2,) (66)
o ij
Adding this to f® [Eq. (59)] and Fourier representing G%, one finds
R e’a’ ., -1 2 R R
[Hzy,zy)= p t**>p, 3 2sin’k, G (k,z)GR(k,z,), (67)
4 k

where k,, is the component of k in direction a. In d — «, (67) reduces to (59) since GX depends on k only via g; i.e.,
sin’k, can be substituted by its average value 1 because k and g, are uncorrelated in d — ©.2! Inserting f® [Eq. (67)]

in (49), we obtain
472e?

d

FR(Q)l,mz)= -

which, via (48) or (51), yields our approximate result for
the conductivity o®(w)ind < .
In the ferromagnetic limit p,—1, p_,—0, the con-
ductivity obtained within this approximation is
2 2
oF(a))=—%a7(H)F8(w), (69)
where ( H ) . is the average kinetic energy of a hole in the
ferromagnetic background. This result is exact for all d.

The complex conductivity o®(w) calculated from (48)
and (68) is automatically analytic for Imw+#0, and
Reo®(w), given by (51) and (68), is always positive or
zero (for real w), in agreement with the corresponding ex-
act properties of the dynamical conductivity.

Results for the conductivity in an unpolarized
(py=p,=1%) random spin background in d=3, as calcu-
lated from (68), are shown in Fig. 20; for pR the approxi-
mate result from Sec. III E has been inserted. For high
temperatures, o X(w) is a broad function which is finite at
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2.0

(vd/e’a*) Rea(w)
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0.0 1 1 L
0.0 0.5 1.0
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FIG. 20. Dynamical conductivity for a hole in an unpolar-
ized random background, Reo®(w), for various temperatures
(B=1/kgT)ind=3.

2
1223 p; 1 S 2sin?k pR(k,0.)pR(k,0,) (68)
o k

f

©=0. At lower temperatures, more and more spectral
weight moves into the neighborhood of @w=0, and at
T—0, o®(0) diverges.

The exact conductivity o®(w) at T=0 should actually
be a 8 function in d=3 (as in d = « ), since at low T the
Boltzmann factor in the Kubo formula singles out spin
configurations with large ferromagnetic clusters around
the hole. These clusters are not well described by our ap-
proximation, and consequently the expected 8 peak is not
reproduced in d < . The corresponding dc electrical
resistivity p(T) of a hole in d=3 is shown in Fig. 21 for
different backgrounds. The result for the retraceable-
path approximation has already been obtained earlier by
Oguri and Maekawa.'? The resistivity is seen to be al-
most linear for almost all 7.

We conclude this section with a simple physical inter-
pretation of our approximation for the conductivity.
Consider a hole (or particle) moving in a medium which
damps its motion while the medium itself is not affected
by the motion; the damping, described by
Im32%(®—i0"), may have an arbitrary energy depen-
dence. In this situation Eq. (68), which relates the con-

4.0
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FIG. 21. Electrical resistivity p(T) for a hole in d=3 for vari-
ous background configurations (Néel, random) in comparison
with the retraceable-path approximation (rpa).
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ductivity to the spectral function pR, is exact, since the
neglected self-interference of the hole path is irrelevant
when the hole does not change the background. Having
thus constructed a model for which (68) becomes exact
(for any pR ), we can immediately conclude that the f-sum
rule [Eq. (58)] is conserved by (68).

VI. SUMMARY

We have calculated the Green function, thermodynam-
ics, and dynamical conductivity of a single hole moving
in a spin background. The well-known retraceable-path
approximation, where loops in the path of the hole are
neglected, has been shown to be exact for a hole in a Néel
background in high dimensions d — «. However, for a
general background this neglect leads to serious
shortcomings in any dimension d > 1; in particular, the
hole dynamics does not depend on the spin configuration
at all then. A theoretical approach, in which loops are
included self-consistently to all orders, has been formulat-
ed. The resulting approximation scheme is sensitive to
the spin configuration, becomes exact in high dimensions
for any spin background, and treats the case of a fer-
romagnetic background exactly in any dimension; the
spectral sum rule for the Green function and the f-sum
rule for the conductivity are conserved. In view of the
starting point of our approximation, i.e., the limit d — oo,
our results are expected to apply to system in dimensions
d 2 3. In particular, quantum spin fluctuations, which
are not treated here, become increasingly important as
one goes to lower dimensions and are of fundamental
relevance in d=1,2.

Three types of spin backgrounds have been discussed
explicitly: ferromagnetic, Néel, and random, where in
the latter case all configurations are thermodynamically
averaged. Within our calculation, performed explicitly in
d=3 and o, the density of states of a hole in a Néel or
random background is found to become narrower with
respect to the ferromagnetic case, the narrowing being
stronger for the Néel case. The spectral function is k
dependent except for the Néel background, but has quasi-
particle peaks only in the ferromagnetic case. The spin-
configuration dependence is particularly pronounced for
the dynamical conductivity Reo(w). For a hole in a fer-
romagnetic background, we recover the exact result; i.e.,
the conductivity is a 6 function at all temperatures 7 and
for all d. In the Néel case the conductivity is found to be
a smooth function which is finite in @ =0 for T >0, while
at T=0 there is a »~ !/? singularity for small @ (both in
d=3 and « ). The conductivity for a hole in the infinite-
dimensional random background is always infinite at
=0, but the singularity is very weak at high tempera-
tures; for T >0 it is nonzero also at @70, while at T=0
all spectral weight is absorbed in a d peak at «=0. By
contrast, in d=3 our result for the dc conductivity is
infinite only at 7=0 and the ac conductivity is nonzero
for all T=0. Our approach, as any previous one, does
not give a good description of the contribution of large
ferromagnetic clusters in the random background at low
temperatures in d < . Correspondingly, the expected
Lifshitz tails in the density of states and the 6 peak in the
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zero-temperature conductivity are not obtained by our
approximation for d < «o. Unfortunately, there are no
numerical studies of the hole dynamics in d=3, where
our theory, being exact in d = oo, should be particularly
accurate.

There are several applications and possible extensions
of our results. For the polarized random spin back-
ground, they can be directly applied to the calculation of
the magnetoresistence and Hall effect, where a proper
summation of loops is crucial. As a straightforward gen-
eralization, the above theory, which has been derived for
three special types of spin backgrounds, can be easily ex-
tended to any mean-field ensemble of spin configurations
in a Heisenberg model. The spin excitation energy,
which has not been considered here, can also be imple-
mented in our approach. A practical approximate treat-
ment of spin fluctuations may be achieved by summing
the same class of hole paths as above, but allowing for ar-
bitrary, background-restoring spin flips along the path.
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APPENDIX: ANALYTIC PROPERTIES
OF G® AND SPECTRAL SUM RULE

In this appendix we show that our result for GR(k,z)
has the following properties.

(i) GR(k,z) is analytic for Imz >0 and Imz <O0.

(i) pR(k,z) is never negative.

(iii) The spectral sum rule (41) is satisfied.

In d = « the Green function has been determined ex-
actly; therefore, it satisfies the exact properties (i)-(iii) a
priori.

In d < o, where D° has a finite bandwidth, the power
series (12) converges if |z| is larger than some value z,
(this is easily shown by deriving upper bounds for the
number of n-step hole paths; cf. Ref. 10). Hence GR(z),
as obtained from (32), is analytic for |z| > z,, since in this
case it is given by the sum of a convergent power series in
1/z. For |z| <zy, Eq. (32) determines an analytic con-
tinuation of GR(z). This continuation has singularities
only on the real axis. This is because (32) has no real
solution G® for complex z [real G® implies real z by (32),
since G | (&) is real for real £], while near a singularity
(pole, essential singularity, branch cut) real values must
exist. Hence G*(z) is analytic for Imz=0.

Since GR(z) is complex for complex z, InG*(z) does
not change sign in the upper and lower complex z planes,
respectively. For large |z|, Eq. (32) has the asymptotic
solution

GR(zlel 7oL

~ ’

z

(A1)

which identifies the sign of InG%(z) as
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ImGR(z) <0 for Imz <0,

(A2)
ImG®(z)>0 for Imz>0 .
Consequently, by (9) and (36),
ImGR(k,z)<0 for Imz <0,
(A3)

ImGR(k,z)>0 for Imz>0 .

Hence, by the same arguments as for GR(z) above,
GR(k,z) is analytic for Imz >0 and Imz <0; this proves
@). Furthermore, (A3) yields (ii)), namely,
pR(k,0)=7"1GR(k,0—i0")>0.

Since G®(k,z) is analytic for Imz0, it can be ex-
pressed by Cauchy’s integral formula as

R _ 1 r Gk, 0)
G7k,2) 27rifr z—¢ a,

where I’ is a contour enclosing the singularities of

(A4)
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GR(k,&) on the real axis and z is not enclosed by T.
Equations (36), (32), and (9) imply that

GR(k,z)=GRk,z), (A5)

where the bar indicates complex conjugation. Choosing
the contour I' arbitrarily close to the real axis, one ob-
tains from (A4) and (A5), for Imz+#0,

- R it
GR(k,z)=if demG (k,w—i0") ' (A6)
Ty — Z—w
For large |z|, (A6) yields
[ dopFk,0)= lim zGR(k,2) . (A7)

Integrating (A7) over k and using (A1) for the right-hand
side, one obtains the spectral sum rule (41). The positivi-
ty of pR and the spectral sum rule have also been checked
numerically for several cases.
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