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The ground-state properties of the spin-2 Heisenberg chain, which has two exchange couplings

(J & J ) alternatingly, are studied. This model interpolates the spin-1 antiferromagnetic Heisenberg
chain (AFHC) (J'~ —~, J & 0), the dimerized spin- —,

' AFHC (J' =J )0), and the uniform spin- —'

AFHC (J'=J )0) continuously. The string order introduced by den Nijs —Rommelse and Tasaki

changes continuously through the Haldane phase and the dimer phase to vanish at J=J'. It is at a max-

imum for J'=0. This implies that the string order is related to the local singlet correlation in terms of
the spin-

~
model. The lowest excitation can be regarded as the renormalized triplet wave. The reversal

of the anisotropy effect on the excitation spectrum of the spin-1 AFHC is also explained in a intuitive

way based on this picture.

I. INTRODUCTION

Since Haldane's conjecture in 1983,' the essential
difference between the ground-state properties of the an-
tiferromagnetic Heisenberg chain (AFHC) with integer
spin and that with half-integer spin has attracted the at-
tention of many physicists. Haldane suggested that the
AFHC with integer spin has a finite energy gap (Haldane
gap) above the ground state, while that with half-integer
spin has no energy gap, as is evident for the case of spin

This conjecture was supported by a number of
theoretical ' and experimental studies.

In this work, we study the spin- —,
' alternating Heisen-

berg chain which has two different exchange couplings J
and J' alternatingly. This model has been studied inten-
sively related to the spin-Peirels system for J'=J.
The anisotropic version of this model is equivalent to the
highly anisotropic Ashkin-Teller model and has been
also studied in this context. Here, we regard the spin-1
AFHC as the alternating spin- —,

' Heisenberg chain with

antiferromagnetic J and infinitely large ferromagnetic J'.
If we change J' from —~ to J, the ground state of our
model changes continuously starting from the Haldane-
gap phase to the gapless spin-liquid phase (J=J') passing
through the points of the noninteracting singlet state
(J'=0) and the dimer phase (0(J'=J). Among these
phases, both the Haldane phase and the dimer phase are
characterized by the finite energy gap and the exponen-
tial decay of the antiferromagnetic correlation. In this
work, we clarify that these two phases are two extreme
cases of a single phase. This notion also helps us to un-
derstand some exotic features of the Haldane-gap phase
intuitively.

In order to characterize the Haldane phase, den Nijs
and Rommelse' and Tasaki' introduced the string
correlation function 0;„(i—j) and the string order pa-
rameter 0'„,defined by

0;„= lim 0;„(i—j) .
l(~
—j I

(1.2)

Here S is the z component of the spin operator S; with
magnitude 1 ~ In the case of the spin-1 chain, this order
parameter remains finite in the Haldane phase and van-
ishes for the more trivial disordered state which is in-
duced by the anisotropy effect. ' ' The existence of the
string order in the Haldane phase is also checked numeri-
cally. ' ' The order parameters 0„,and 0„,are defined
similarly and also remain finite in the Haldane-gap phase.
In the present work, we concentrate on the rotationally
invariant states. Therefore these three order parameters
have the same value and we omit the superscripts x, y,
and z.

In the next section, we explain the model Hamiltonian.
We also extend the above definition of the string order
parameter to the present model. In Sec. III the bosoniza-
tion method is applied and the string order parame-
ter is calculated analytically within the self-consistent
harmonic approximation for J=J'. The string order and
the energy gap are calculated by the exact diagonaliza-
tion of small size systems in Sec. IV. The physical pic-
ture of the lowest excited state is also given based on the
perturbation calculation for J'=0. The last section is de-
voted to summary and discussion.

II. ALTERNATING HEISENBERG CHAIN

We consider the alternating Heisenberg chain
represented by the following Hamiltonian H:

0;„(i—j)
= —(S exp[in(S+&+S+z+ +S', )]S'),
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N N
H=2J' g Sz; ~ Sz;+2J g Sz, Sz, +, , (2.1) S 1

N

H = $ —JS, .S, +, ,
i=1

where S; =(S,",Sf,S,') is the spin operator with spin —,'.
The suffix i denotes the lattice point and the number of
lattice sites is 2X. The periodic boundary condition
S1=S2N+, is assumed. The coupling J is assumed to be
antiferromagnetic. For J'= —~, the spins S2 1 and S2,
form a local triplet and this model reduces to the spin -1
AFHC:

where S;(=Sz; &+Sz, ) is the spin operator with spin 1.
On the other hand, this model becomes the spin- —,

' dimer-
ized antiferromagnetic chain when J' is close to (but not
equal to) J.

In the present model, we define the string correlation
function 0„,(i —j) by

0„„(ij)=——4(S;, exp[i~(S;, +, +S;,+, + +S», )]S», ) . (2.3)

The factor 4 is introduced so that this expression reduces
to (1.1) in the limit J'= —~. The string order parameter
O„,isdefinedbyO„, =lim~;

~

„0„,(i —j). HscvA —f dx Ayz+Bpz D—y' —(y')
x eff 2

III. BOSONIZATION FOR J=J'

For J=J', we have a weakly dimerized spin- —,
' antifer-

romagnetic chain. In this case, the spin- —,
' operators are

transformed into the spinless fermions by the Jordan-
Wigner transform and further transformed into the boson
field P taking the continuum limit. The Hamiltoni-
an H is transformed into the form

H= fdx[AP„+Bp Dcos(4)]—,

with

(3.1)

[p(x),P(x')]= i5(x ——x') . (3.2)

(3.3)

where a is the lattice constant of the original lattice.
Using the identity for the spin- —,

' operators,
S=exp(i~S,')/2i, the string correlation function

0„,(i —j) is rewritten as

The spatial variable is changed from the discrete variable
i to the continuous variable x. The parameters are given
by

A=vF/8, B=m. v~/2, D=(J—J')la, vF=Ja,

(3.6)

D,~=D exp( —
—,'(P') ) .

The expectation value (p ) is given by

(3.7)

(y') = (3.8)

where co(k)=(nvF/2)(k +m )' and m =D,z/2A.
Then Eq. (3.7) yields

1/3
aD2m=

8+A
(3.9)

The string order parameter is given by

0„,= lim 0„,(x —x')
)x —x')

lim exp I
—

—,'([P(x)—P(x')] ) I
[x —x'/

=(n/ma)' —(1—J'/J)' (3.10)

The string long-range order 0„,disappears for J'=J. At
this point, the string correlation function 0„,(x,x')
behaves as

where the average ( ) is taken in the ground state of'

he quantity D,ff is defined by

0„„(i—j)=( exp[in(Sz, . +Sz,. +, + . . +Sz, )]) .

(3.4)
0„,(x —x') —ix —x'i (3.11)

Because the slowly varying part of the spin density is
given by B„P/2m, Eq. (3.4) can be transformed into the
boson representation as

Thus the string correlation function decays by this power
law in the uniform Heisenberg antiferromagnet with spin

This means that the 0„,in the finite system depends
on the system size %as 0„,-%0„,(x —x')= ( exp[i[/(x) —P(x')]/2j ) . (3.5)

IV. NUMERICAL DIAGONALIZATION
We apply the self-consistent harmonic approximation

(SCHA) to the nonlinear term in the bosonized Hamil-
tonian. The approximate Hamiltonian HsceA

given by

We have numerically diagonalized the Hamiltonian
(2.1) with 2N= 12, 16, 20, and 24 by the Lanczos method
using the program package TITPACK version 2 developed
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by Nishimori. The string correlation function O„,(l) is
shown in Fig. 1(a) (J'&0) and Fig. 1(b) (J'&0) in the
ground state. It is seen from Fig. 1 that O„,(l) ap-
proaches quickly to the constant value with l except for
J'=J. This implies the presence of the long-range string
order in our model for JAJ'. We estimate the value of
O„„byextrapolating O„,(N/2) to N~~. The system
size dependence of O„,(N /2) for N =8, 10, and 12 is
negligible in the region —~ &J'/J & 0.7. For 0.7
&J'/J &0.9, the extrapolation is made using the Shanks
transform. ' ' For 0.9 & J'/J &1.0, the convergence of
the Shanks transform becomes worse. This is due to the
divergence of the string correlation length for small
J—J'.

The J' dependence of 0„,is shown in Fig. 2(a) (J' & 0)
and Fig. 2 (b) (J' & 0). According to the bosonization cal-
culation, 0„,vanishes as O„,-(1 J'/J)'~ —for J=J'.
Therefore, we plot 0„,as a function of (1—J'/J)'~ in

Fig. 2(a). The plotted data are proportional to
(1—J'/J)'~ for 0.9&J'/J&0. 7, in reasonable agree-

(4.1)

with

—(I 1 &„Il &„„—
I l &„It &„„),1

2
(4.2)

where ~cr &; denotes the state with spin cr(= l' or l) on

ment with the bosonization result. The system size
dependence of 0„,for J=J' is also checked numerically.
This is shown in Fig. 3. The data fit approximately with
the prediction of bosonization theory O„,-N ' . The
deviation might be attributed to the smallness of the max-
imum system size N=12. For J'&0, the data are plotted
against (1—J'/J) in Fig. 2(b). It approaches the Hal-
dane. value ( =0.38), ' as indicated by the open square.

It should be remarked that 0„,takes the maximum at
J'=0. At this point, the string order parameter is exact-
ly equal to unity as follows:

The ground state
~
G & for J' =0 is given by

0„,
1 I I I I I I I I I

pp
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FIG. 1. l dependence of the string correlation function O„,(l)
for N=10. The parameters are: (a) J'/J=1 (~), 0.9 (0), 0.8
(~ ), 0.7 ( ), 0.6 ( & ), and (b) J'/J = —0. 1(~ ), —1.0 ( o ), —2.0
( ~ )', -5.0(0).

FIG. 2. String order parameter 0„,. (a) 1)J') 0: plotted
against (1—J'/J)' . The solid line is a guide for the eye. (b)
0)J'/J & —~: plotted against (1—J'/J ) '. The open square
is the value for the spin-1 AFHC.
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0. 6- (4.&)

(4.6)

(4.7)

0. 2-

Because the position 1 of the triplet pair is arbitrary, the
first excited states are N-fold degenerate. The first-order
correction in J' removes the degeneracy within the sub-
space X(S')=[ll;S'&:l=l,NJ (S'=0,+1). The pertur-
bation Hamiltonian H is the first term of (2.1). The ap-
plication of H~ on the state ll;S'& results in the expres-
sion

0. 2 0. 4
I J/

H ll;S'&= ——It+1;S'& ——li —1;S'& . (4.8)

FIG. 3. System size dependence of the string order parameter
0„,for J=J' plotted against 1/N' Diagonalizing 0 within this subspace, the excited states

are given by the following extended states:

the ith site. Using the identity

exp[in(Sz;+Sz;+& )]ls &;
= 4S&;S&;+—&

ls &;

(4.3)

on expression (3.4), it is easily verified that 0„,is equal to
unity.

In this context, we may interpret the string order pa-
rameter as the measure of the strength of the localized
singlet correlation. In the presence of finite J', the per-
fectly localized singlets are perturbed by the interaction
with other spins. Both the Haldane phase and the dimer
phase are characterized as the phase in which the local-
ized singlets survive such perturbation, while the string
order decays by the power law in the spin-liquid phase
(J'=J). It should be noted that the antiferromagnetic J'
is more effective than the ferromagnetic J' to reduce the
string order.

The energy gap hE between the ground state and the
first excited state also characterizes both the dimer phase
and the Haldane phase. The J' dependence of the gap is
shown in Fig. 4. The system size dependence is very
weak except the regions J=J' and —J' »J. The Shanks
transform is again used for the extrapolation to N~ ~.
The gap tends to the Haldane value (=0.41J/2) as
J ~—~, which is indicated by the open square in Fig.
4. The factor —,

' comes from the overall factor —,
' in (2.2).

It is remarkable that the energy gap has a cusp at J'=0.
This can be understood by the first-order perturbation in
J' as follows.

The unperturbed ground state is given by (4.1). The
ground-state energy has no first-order correction in J'
and is equal to —3JN/2 up to this order. The unper-
turbed excited state is obtained by replacing one of the
singlet pairs in the ground state by a triplet pair as

AE/J

0
0 0

0 p0 000 0
00 0

0 000 000 0
0 0

oo
oo

0 0

0 I

—1

AE/J
I I I I I I I I I I

0

0
0

0
0

0. 5—
0

00

0—
(b)

0 I I I I I I I I I I

—1 —0. 5 0

where

(4.4) FIG. 4. J' dependence of the energy gap hE for (a)
1 & J'/J & —1 and (b) —1 & J'/J & —~ (o ). The open square
is the value for the spin-1 AFHC.
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1/2

~
k;S') = — g exp( 2ikla }

~ 1;S'),1
(4.9)

where k=nrr/Na ( N—/2&n &N/2; n =integer). The
energy eigenvalue E (k) of the state ~k;S') is given by

E(k}= ,'J—N—+2J J'—cos(2ka) . (4.10}

N

H,„=Dg (S~;,+S~;) (4.11)

We may call these excited states the "triplet wave" states,
because a triplet pair is wandering around in the back-
ground of singlet pairs. The energy spectrum of the trip-
let wave forms a band with width 2J' and the first excited
state is the bottom of the band at 2J—

~

J'~ measured from
the ground state. For J')0, the bottom of the triplet
wave band is located at k=0. As J' approaches J, this
gap continues to the dimer gap at k=0. For J'&0, the
bottom of the triplet wave band is located at k =n. /(2a).
Taking into account that 2a corresponds to the size of the
unit cell for J'%0, this point is the zone boundary. Thus
the gap at J'&0 continues to the Haldane gap, which
also lies at the zone boundary. Because the numerical
data shows no discontinuity between J'=0 and J'~ 00, it
would be reasonable to expect that the excited state
above the Haldane gap also keeps the character of the re-
norrnalized triplet wave state. Although this picture is
not rigorous, it helps to understand some exotic features
of the Haldane phase in a simple way.

For example, one remarkable characteristic of the ex-
cited states of the Haldane phase is the anisotropy effect.
In the presence of the single-site anistoropy, the triplet
states with total spin S„,=1 are decomposed into the
doublet with S,'„=+1and the singlet with S'„,=0. In
contrast to simple minded intuition, the doublet has
lower energy than the singlet for easy-plane anistropy. '

this can be easily understood by the triplet wave picture
above as follows.

The single-site easy-plane anistropy in the spin-1 model
corresponds to the additional term

V. SUMMARY AND DISCUSSION

We have studied the ground-state properties of the al-
ternating Heisenberg chain with spin —„which has two
exchange couplings J( &0) and J'(J &J' & —~ ) alternat-
ingly. The string order parameter 0„,is defined and cal-
culated. It is found that 0„,remains finite not only in
the Haldane-gap phase (J' & 0, ~

J'~ &&J) but also in the
dimer phase (J' =J ). It takes the maximum value for
J'=0 where the ground state is simply the assembly of
perfectly localized singlet pairs. This observation sug-
gests that the string order is the measure of the localized
singlet correlation. Therefore this order parameter must
be useful to distinguish the static valence-bond-type
disordered states from other disordered states. It should
be remarked that the relevance of this type of disordered
state to high-T, superconductivity was recently pointed
out.

From the present viewpoint, the Haldane-gap state is
characterized as a special case of the static valence-bond
state of the spin- —,

' model. The valence-bond solid state
proposed by ANeck et al. ' ' also possesses this charac-
ter. On the other hand, in the field-theoretical approach,
the Haldane state is characterized by the absence of the
topological term in the corresponding nonlinear o. mod-
el. ' ' The relation between these two characterizations
of the Haldane phase is not quite clear.

The lowest excitation is the extended triplet wave for
J'=0, which has a gap 2J—J'~ above the ground state.
This gap continues to the dirner gap for small J—J' and
to the Haldane gap for J' « —J. It is speculated that the
excited state in the Haldane phase has also the character
of the renormalized triplet wave. This picture gives an
intuitive explanation of the reversal of the anisotropy
effect on the excitation spectrum of the Haldane-gap sys-
tem. Although not rigorous, such a physical picture
must be useful in the phenomenological interpretation of
the experimental results. Further investigation of the an-
isotropy effect in this model also must be interesting.
This is left for future study.

with D & 0 in the present model Hamiltonian (2.1). Omit-
ting the trivial c-number terms, H,„hasno matrix ele-
ments in the subspace X(+I), while in X(0) the applica-
tion of H,„gives

H,„~i;0)= ——~1+ 1;0)——
~/

—I;0) .
D D

(4.12)

Thus the bottom of the triplet wave band at the zone
boundary becomes 2J —

~

J'+D
~

for S'=0, while it does
not change for S'=+1. For negative J' and positive
D( & ~J'~) this implies that the doublet (S'=+1) has
lower energy than the singlet (S'=0).
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