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We analyze the zero-temperature phase diagram of the spin-2 quantum XXZ chain in the presence of
weak disorder. The effects of various random perturbations are considered, including random 6elds and
random exchange. For random perturbations that preserve the XYsymmetry, we 6nd a phase transition,
as the anisotropy parameter is varied, from a ground state with quasi-long-range order (as in the pure
system) to one in which typical correlation functions decay rapidly. The critical behavior at this transi-
tion is shown to be in the universality class of the Giamarchi-Schulz transition for one-dimensional bo-
sons in a random potential. Random perturbations that break the XY symmetry are found always to des-

troy the quasi-long-range order of the ground state. Properties of the resulting random phases are also
discussed.

I. INTRODUCTION

Classical disordered magnetic systems, such as the
random-field Ising model and the Edwards-Anderson
spin glass, have been studied extensively in recent years,
but comparatively little is known about the effects of dis-
order in quantum spin systems, or in other many-body
quantum systems. Weakly disordered quantum spin
chains appear promising as model systems for a study of
the interplay between randomness and quantum effects
for a number of reasons. Firstly, because of the low
dimensionality, quantum fluctuations are especially im-
portant in spin chains, which exhibit a rich variety of in-
teresting behavior. In addition, a wide variety of tech-
niques, including exact solutions and mappings to contin-
uum field theories, are available for studying homogene-
ous spin chains. Finally, because of the marginally or-
dered nature of some of the phases in quantum spin
chains, substantial progress can be made by studying
weak disorder.

In this paper, we consider a class of spin- —,
' quantum

systems with Hamiltonians

H =Ho+H~

consisting of a nonrandom part, Ho, of the XXZ form

Ko = g (S;"S;"+,+ Sf S7+, +hS S;+, ),

which has XY symmetry, and various random parts, Kz.
In the absence of disorder, the ground state of this system
exhibits several different kinds of behavior as the anisot-
ropy parameter 5 is varied. For 6( —1, the ground
state has Ising-like ferromagnetic long-range order with
all the spins completely aligned along the z axis. In the
range —1&6~1, there is a gapless quasi-long-range-
ordered phase in which the ground-state expectation
values of the spin operators vanish, but spin correlations

exhibit power-law decay with exponents that depend con-
tinuously on h. For 5) 1, the ground state has long-
range Ising-like antiferromagnetic order along the z axis
with quantum fluctuations of the spins, so that
I(S, ) I

& —,'.
We will primarily be concerned with the quasi-long-

range-ordered phase with
~

6 & 1, for which we will intro-
duce a perturbative renormalization group (RG) to study
the effects of weak disorder. We use a simple generaliza-
tion of Harris' criterion for the XXZ chain in this region,
which relates the relevance of a random perturbation to
correlation functions in the pure system of the operator,
which couples to the randomness. Specifically, if we in-
troduce a random perturbation of the form

H~ = gh;0;, (1.2)

A. t,
= 1+2z —2g, (1.4)

where the dynamical exponent z equals one in the gapless
phase of the XXZ spin chain. The factor of 2 multiplying
the dynamical exponent in Eq. (1.4) arises from the time
independence of the randomness so that in a space-time
volume L XL' the mean-square random perturbation
scales as L XL '. Thus if A, & (0, the random couplings

I h; I are irrelevant, and, provided that other relevant ran-
dom (or uniform) couplings are not generated by renor-

where the h; are independent, identically distributed ran-
dom variables with zero mean and second moment D&
and the 0,. are quantum operators depending on spin
variables near site i whose ground-state expectation
values in the pure system satisfy

(0,0, ) —
~i j~—

then the RG eigenvalue A, &, which determines the rescal-
ing of D&, satisfies
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malization, no significant modifications of the pure sys-
tem behavior will occur.

We study the effects of several kinds of weak disorder,
specifically (i) a random transverse magnetic field in the z
direction,

Hzp= gh;S;

as a discussion of the phase diagram, appear in Sec. III.
We discuss the properties of the disordered phases of
quantum spin chains in Sec. IV. Section V summarizes
the results and raises questions for future study.

II. CONTINUUM FIELD THEORY
FOR THE XXZ CHAIN

(ii) a random component in the planar exchange interac-
tion,

H pE
= g 5J;"~(S,"S;"+,+S)Sf+, ),

(iii) a random component in the z-z exchange,

HzE= +5J S S+), (1.7)

(iv) a random field in the X-Y plane,

H „=g (h;"S;"+hfSf), (1.8)

and (v) a random XY symmetry-breaking exchange in-
teraction,

Hpp, = g3';(S,'S,"+, —S, S, +, ) . (1.9)

We find that the first three perturbations, which preserve
the X-Y symmetry, give rise to an identical phase transi-
tion in the disorder-exchange anisotropy plane from a
ground state with quasi-long-range order (as in the pure
system) to one with more rapid decay of spin correla-
tions. We identify a critical anisotropy A=A, = —

—,
' as

the exact value of the exchange anisotropy where the re-
sulting phase boundary intersects the line of zero disor-
der, and we give a renormalization-group analysis of the
critical behavior at the transition. In particular, we show
that the transition is in the same universality class as the
localization transition for one-dimensional (1D) bosons in
a random potential first analyzed by Giamarchi and
Schulz, ' and that the disordered phase is characterized by
a correlation length g, which diverges as the phase
boundary is approached from the disordered side with
the characteristic Kosterlitz-Thouless form

g- exp[const/D ' (b, —b, , )' ], (1.10)

where D is the mean-square strength of the disorder.
The random XY symmetry-breaking perturbations,

Eqs. (1.8) and (1.9), always destroy the quasi-long-range
order. This occurs for the random anisotropic planar ex-
change interaction HpA, Eq. (1.9), even though the gen-
eralized Harris' criterion, Eq. (1.4), suggest that there
should be a regime where this type of disorder is ir-
relevant. We show how this discrepancy arises from
higher-order terms in the RG.

The remainder of this paper is organized as follows. In
the next section, we review the techniques used in treat-
ing the spin- —, XXZ chain without disorder and derive a
functional integral expression for the partition function,
which will be useful in the RG analysis. The RG treat-
ment of the phase transition in the random case, as well

Since the long-distance properties of the system will
determine the behavior for weak randomness, we may use
a continuum description in phases with a continuous
symmetry. In this section we review a continuum field
theoretic description of the pure XXZ chain, which al-
lows us to calculate correlation function exponents exact-
ly in the region ~h~ &1 in terms of a single parameter,
which can be determined from the exact Bethe-ansatz
solution. Following AfBeck and earlier work by Luther
and Peschel, we obtain a representation of the quantum
spin chain in terms of a classical 2D Gaussian model,
which will prove convenient for the RG analysis of Sec.
IV. We also derive continuum forms of the random per-
turbations, Eqs. (1.5)—(1.8).

We first perform a Jordan-Wigner transformation to
obtain a representation of the spin chain in terms of spin-
less fermions on a lattice:

S„=exp imp(S. '+ —,')
m (n

S'=0'% —-' .n n n

(2.1)

Thus a fermion is present on a site when the spin is up
and absent when the spin is down. The "tail" operator is
needed to ensure that fermion operators at different sites
anticommute.

When the anisotropy 6 equals zero, the Hamiltonian
can be diagonalized exactly because the Jordan-Wigner
fermions do not interact. The free fermion dispersion re-
lation is ok = —cos(ak), where a is the lattice spacing,
and the ground state is simply a half-filled band with Fer-
mi points at +m/2a. Thus there are two types of low-
energy excitations. An excitation that excites a fermion
from just below to just above a given Fermi point carries
momentum that vanishes linearly as the excitation energy
goes to zero. Excitations across the Fermi sea carry a
minimum momentum of 2kF. Thus there are important
modes with momenta near 0 and 2kF, which must be re-
tained in taking the continuum limit. We can rewrite the
field + as

+„=&a [e %~(x)+e 41(x)], (2.2)

where x =na, kF =sr/2a, and O'R and O'L describe excita-
tions near the right and left Fermi points, respectively.
This decomposition is exact provided that the fields O' R

and %1 only include the momenta k
~
&~/2a Thus ex-.

citations near each of the Fermi points are regarded as
different species of particles, and in the ground state all
the negative (positive) wave-vector states of %R (%1 ) are
occupied. In the low-energy sector of the Hilbert space,
the fields +I,%'R are slowly varying, and the cutoff struc-
ture is therefore unimportant. We will impose a high-
momentum cutoff A on the fields O' R,+I with A satisfy-
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ing I /L «A «~/2a, where L is the size of the system.
If we assume that a description in terms of low-energy ex-
citations near the Fermi points is valid even for nonzero
5, then the fields 0'z, +L are again slowly varying, and
the continuum limit may be taken by substituting the
definition, Eq. (2.2), of the lattice fermions in terms of
%z and VL into the Hamiltonian, Eq. (1.1), and keeping
the lowest-order terms in a gradient expansion.

The result is

H =H~+Hl~t+HUmk

where

H =ia f dx(% B„+ —qi B,% ),

H;„,=ah, fdx[(qiL +L ) +(qi&%& ) +4qil %&4&qi& ],
(2.3)

and

H„„=—aa dr eL' ~ e, x eL' &+a e, ++a

+%~(x )VL (» )%„(x+a)+L (x+a )] .

We have dropped a term in the Hamiltonian, which is
quadratic in the fermions, because it is proportional to
the conversed fermion number. The term H„k results
from umklapp scattering of two fermions across the Fer-
mi sea in the same direction. Although the coefticients in
Eq. (2.3) are correct only for small 6, we shall see later in
this section that by using the exact Bethe-ansatz solution
we can obtain a representation of the XXZ chain valid for
all anisotropies —1(5~ 1 in the phase with unbroken
continuous symmetry.

Except for the random in-plane field, Eq. (1.8), the ran-
dom perturbations, Eqs. (1.5), (1.6), (1.7), and (1.9), can
all be expressed in terms of the ferrnions as local opera-
tors due to the cancellation of the tails entering in the
Jordan-Wigner transformation. Thus their continuum
forms can be similarly obtained, resulting in

HZF f«[ q(» )(+R+R ++I.+L )+P(x )+L+R +P(x )+R +L 1

HPE = dx (ip'll 'Pz

ipse—

'a qil )+derivative terms,

HzE =HzR +random quartic terms

Hp~ = f dx [ri(x )i(+tL+tz —%„%'I )+ip(x )[V„(x)%z(x+a )
—VL(x )VL (x+a )]

—ip(x ) [41 (x )%1 (x+a ) —%~ (x )%z (x+a ) ]},

(2.4)

where rI(x ) and p(x ) are composed of the Fourier com-
ponents of the coefficients [h; } of the appropriate ran-
dorn perturbation near zero and 2k+, respectively. For
simplicity we have dropped the subscripts corresponding
to the various random perturbations from g and p. The
omitted terms in HzE correspond to a spatially random
urnklapp coupling, which can be shown to be irrelevant
by arguments similar to those used in Sec. III. The
remaining random perturbation, Eq. (1.8), cannot be ex-
pressed locally in terms of the fermions because of
Jordan-Wigner tails:

HPF= —,
' +exp im g n [(h, ih; )4';+—(h;"+ih; )4';] . '

(2.5)

Later in this section we will show how the continuum
limit of the tail operator may be obtained by transforrn-
ing to a new set of variables which we now describe.

This final transformation of the spin Hamiltonian gives
a description of the interacting fermion system in terms
of bosonic density modulations. Such a formulation is
advantageous because (i) the resulting boson Hamiltonian
is harmonic and (ii) it enables one to write a functional in-
tegral over c-number fields, which will prove convenient
for the RCx treatment of Sec. III.

Mattis and Lieb discovered that the operators

2'
l

qL

' 1/2

Xkcz~k+qc&~k, Q 0 0

b =
q

2K

Iq IL

' 1/2

XkcL~k+qcL, k &

(2.6)

@~(x)= gR

@L(»)= g
Ip IL

1/2
—ipxb + ipxb t

)P p (2.7)

and

@(x)=4„(x)+@I(x),

where c~ (cL ) are fermion creation operators for the R
(L ) particles, satisfy Bose commutation relations in the
idealized limit of an infinite, fille Fermi sea for the R
and L particles. (In the actual model, these commutation
relations hold only in the sector of Hilbert space, which
contains neither particle nor hole excitations at distances
greater than A from the Fermi points, where A is the
cutoff on the fields V~, qil . ) Furthermore, the boson ex-
citations form a complete set of states for the fermions at
fixed particle number. Several field operators construct-
ed from the Bose creation and annihilation operators will
prove convenient for later use. Let us define

1/2

(
—lPXb + EPXb f

)P p
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1/2
Ip I

(~0) 2~L
(

—iPxb iPxb t
)P P

(2.8)

The fermion operators 4'~ and O'L are related to the
fields 4~ and 41 by

1
%z(x ) = —:exp[ i—Ciz(x )]:,v'L

1
%1 (x ) = —:exp[i@L(x) ]:,

L

(2.9)

where the colons denote normal ordering. A concise
derivation of this correspondence is contained in Ref. 4.
The physical meaning of the Bose field 4 has been eluci-
dated by Haldane in work on one-dimensional harmonic
fluids. In terms of the particles corresponding to the po-
sitions of the up spins, ( I/2m. )B„4 is the coarse-grained
density fluctuation about the mean density. The actual
expression for the particle density in the continuum is

n (x ) = no+ i)„@ g expim (C&+marx /a ),1

277
(2. 10)

where n0 is the mean density, which is equal to 1/2a in
the absence of a uniform z field or Ising ferromagnetic or-
der. The sum over harmonics takes into account the
discreteness of the particle number by allowing the densi-
ty to be nonzero only when C&(x)+2mnox is an integer
multiple of 2m. The field —4/2mn0 is thus a continuum
limit of the Eulerian displacement coordinates of the bose
particles away from their regularly spaced positions with

separation 1/n0. Since the higher harmonics in Eq.
(2.10) will turn out to be less relevant, it usually suffices to
keep only the lowest-order terms in the sum; physically
this corresponds to "smearing out" the particles.

The physical meaning of the field 4 can be understood
by considering the bosonized form of the spin-raising
operator S+. From the above discussion of the field 4,
the tail operator may be expressed in the continuum limit
as

exp in g n = expi(mx /2a+4/2) .
j (x/a

(2.1 1)

im.n.
[Note that the factors e ' entering in the lattice form of
the tail operator have the property that their squares are
equal to the identity. Since the continuum form, Eq.
(2.11), does not have this property, it will not necessarily
yield the correct continuum forms of products of spin
operators and must thus be used with some caution. ] Us-
ing the relation, Eq. (2.1), between the spin operator and
the fermions together with the continuum forms of 4' and
the tail operator, Eqs. (2.2) and (2.11), we obtain

g+(x ) e
—

i4&/2[1+ ( 1 )x/a A&] (2. 12)

which allows us to identify —4/2 as the azimuthal angle
of the spins. The effect of the factor in brackets (which
for N =0 corresponds to equally spaced up spins on alter-

4(x ) =@+(x )
—@l (x ) .

The momentum operator canonically conjugate to 4(x)
is

nate sites) is to make S+ zero at the positions of the up
spins, hence enforcing the hard-core constraint appropri-
ate to spin —,

'
~

As shown by Mattis and Lieb, the kinetic part of the
Hamiltonian can be expressed in terms of the boson
operators:

Hx=a g IpI(bpbp+b pb p) .
p)0

(2.13)

=4m. a( 1 —.5 /m ),
a~=(4n. ) 'a(1+36 /n. ) .

The first term on the right-hand side of Eq. (2.14), which
is proportional to the square of the current, is the kinetic
energy of the particles. The second term, proportional to
the square of the density modulations, arises from the
compressibility of the particle fluid.

Using Eq. (2.9), we rewrite the umklapp term in the
Hamiltonian, Eq. (2.3},as

H„„=gf dx:c os( 24}:, (2.15)

where g is a function of 5, which we will not calculate
and the colons denote normal ordering.

A functional integral expression for the partition func-
tion, from which we can calculate ground-state correla-
tions, can be obtained from the Hamiltonian, Eq. (2.13),
in the usual manner:

Z = fDil D4 exp —f dx dr[ i @II + —,'a&. (B„@)'

—i IIB,@+gcos(24)]

(2.16)

Performing the Gaussian functional integral over H and
rescaling r to make the spin-wave velocity, c =(KyK )'

equal to one, we obtain

Z = fD@exp[ —f dx dr[ ,'v(B,C ) + —,'a—(B„&)'

+g cos(24)][, (2.17)

where the stiffness K satisfies

Ky
K

K~

1+3A/a
(4m. ) (1—b, /~)

(2.18)

Thus, we have mapped the XXZ spin chain with an-

isotropy 6 onto a family of (1+1)-dimensional Gaussian
models parametrized by the stiffness K. The derivation
from the microscopic Hamiltonian has yielded the rela-
tionship, Eq. (2.18), between a and the anisotropy b, in

the lattice model. However, as typically happens in going
from a lattice to a continuum model the short-wavelength

Since H;„, is also quadratic in the Bose operators, we can
rewrite Hz+H;„, in terms of 4 and II:

H +H;„,= f dx[ —,'a II (x)+—,'ir~(i)„4) ], (2.14)

where, for small 6,
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behavior can renormalize the parameters of the model.
Therefore, it is important to check the result, Eq. (2.18),
against known properties of the lattice spin system. For-
tunately, a Bethe-ansatz solution exists for the spin- —,

'

XXZ chain, which gives the scaling of the gap induced by
a uniform XY symmetry-breaking exchange anisotropy
with the strength of the anisotropy. From this it is possi-
ble to deduce the renormalized value of the stiffness ~ in
terms of the bare anisotropy 5 in the lattice model, yield-
ing

K= 1 cos
1 1

2' 1T
(2.19}

and may be calculated by using the definition, Eq. (2.7),
of the fields 4,4, in terms of creation and annihilation
operators and performing a Bogolyubov transformation
to diagonalize the Hamiltonian, Eq. (2.14). These corre-
lation functions are related to ground-state spin correla-
tions in the original XXZ model.

For the spin- —,
' XXZ chain without disorder, the

power-law decay of ground-state correlations and the
dependence of exponents on the anisotropy 6 imply the
existence of a renormalization-group transformation,
which maps the original lattice Hamiltonian, Eq. (1.1),
onto a one parameter family of distinct fixed-point Ham-
iltonians for every distinct value of 6 in the interval
( —1, 1), or equivalently, for a in the interval 0 to 1/2m. .
Such a transformation eliminates degrees of freedom with
momenta in the range A/b & k & A and rescales distances
and times according to x ~bx and v.~b'~, where z is a
dynamical exponent, equal to unity for the Lorentz-
invariant fixed points of interest here. Operators are res-
caled according to O~b ~O, where g, the scaling di-
mension of the operator 0, can be determined from the
decay of ground-state correlations of 0:

which agrees with our previous result, Eq. (2.18), up to
second order in A.

The stiffness ~ determines the exponents for the decay
of various ground-state correlations functions. These
correlation functions have the general form

(exp[i[a@(x)+b4(x)]]exp[ —i[a@(0}+b4(0)]])
+" 4 "' (2.20)

with the opening of a gap in the excitation spectrum and
the onset of long-range Neel order.

The final result we will need is the bosonized, continu-
um form of the random perturbations, Eqs. (2.4) and
(2.5). Using the bosonization formula, Eq. (2.9), we find

Hz„= fdx(gB„@+pe' +pe ' ),
Hp„= f dx[(g„+p„e' +p„e ' )cos(4/2)

+(g~+p~e' +p e '
) sin(4/2)], (2.23)

HpA= fdx[ jrsi n4+ip(e "—e )

—2i@~ 2i+~
jp(e

ReL�)]
where g and p are proportional to the uniform and alter-
nating parts of the coef5cients of the appropriate random
terms in the Hamiltonian. Since a random field in the z
direction acts as a random potential coupled to the parti-
cle density, we have used the expression Eq. (2.10) for the
density and kept only the leading harmonic in 4. Be-
cause this harmonic carries the phase factor e', it cou-
ples to the alternating part of the random potential.
Since 4 is twice the azimuthal angle of the spins, the
terms cost/2 and sin@/2 in HPF represent random fields
in the x and y directions, respectively. The term sinN in

HpA has the symmetry under 1 80' rotations about the z
axis appropriate for anisotropic planar exchange, Eq.
(1.9). (We do not obtain cost as one would naively ex-
pect from the identification of 4/2 with the azimuthal

~kF~
angle because of the phase factors e associated with
fermions at adjacent sites. ) The terms in HPA coupling to
the alternating part of the disorder are of the form
e' e'; these involve a coupling between the alternating
part of the density and the phase of the spins, which
arises because of the hard-core constraint, which ap-
peared, for example, in Eq. (2.12). The couplings to
higher-order harmonics in the density will turn out to be
less relevant, and we have, hence, dropped them.

III. EFFECTS OF WEAK RANDOMNESS

A. XYsymmetric randomness

(O(x, r)O(y, r) ) —~x
—y ~

(2.21)

Thus we can use Eq. (2.20) to determine the scaling di-
mension of operators of the form exp(ia4+ib4).

We now examine the effect of the umklapp term, Eq.
(2.15}. Power counting in the action in Eq. (2.17}reveals
that the RG eigenvalue, A, , which describes the rescaling
of the umklapp coupling, g, is related to g by

A, +g~=l+z, (2.22)

where the dynamical exponent z equals one at the Gauss-
ian fixed point. Using Eq. (2.19), which related the renor-
malized stiffness a to the anisotropy 5, we determine that
H„k is irrelevant for 6&1. The runaway from the
Gaussian fixed line, which occurs for 6) 1 is associated

As we have shown in the preceding section, the dom-
inant continuum forms of the random z field and random
z exchange are identical and of the same form as Hz„ in
Eq. (2.23). Thus the total imaginary-time action corre-
sponding to these XY-symmetry-preserving random per-
turbations is

S[@]=f —,'a(B,@) + —,'~(8„4) +g cos(2@)
X)7

+g(x )B„@+p(x)e' +p(x )e (3.1)

In order to perform calculations in the presence of
quenched disorder, it is convenient to use the replica for-
malism and consider the disorder average of the nth
power of the partition function. This has the functional
integral representation
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nZ"= D4 . D4 exp — S 4 (3.2)

ns„=y f [-,'~(a,e.)'+,'~(a, e.)']
X)7

a=1

where S is the imaginary-time action, Eq. (3.1), and the
overbar denotes a disorder average. This formalism al-
lows one to compute various disorder averages of
ground-state expectation values. For example, for arbi-
trary operators 0'" and 0' ',

(0'")(0' ') = lim ((0"'0' '))Pn~O
(3.3)

+g cos(2@ )+g(x 9„4 ]

—g D J cos[4 (x, r) 4&(x, r'—)]
X, 7) 7

(3.4)

as our (intermediate) replicated action. Before perform-
ing the remaining disorder average over g, we follow a
procedure analogous to the treatment of 1D bosons in
Ref. 7 and eliminate the term linear in the spatial deriva-
tive in Eq. (3.4) by shifting the field 4:

x4(x )~4(x ) =—f dy r)(y ) .
K

(3.5)

This shift affects only the Umklapp term in Eq. (3.4),
which becomes

where aAP and the double brackets refer to averaging
with respect to the functional integral in Eq. (3.2).

We perform the average in Eq. (3.2) in two steps. Us-
ing the Gaussian nature of the randomness, we first aver-
age the exponential in Eq. (3.2) over p to obtain

ns„=y J [-,'~(a,a.)'+-,'~(a„c.)'
X,7

—g D J cos[4 (x, r) —4&(x, r') ]
X, 7, 7

CX~ Iw

2 2

+ cos[24 (x, r) —24&(x, r') ] . (3.8)

cos[n 4& (x, r )
—n 4&(x, r') ] (3.9)

at this fixed point is simply twice that of the operator
cos(n4) at the pure system fixed point. Thus, by power
counting, we find the RG eigenvalue, A,„,which describes
the rescaling of the coupling constant of the operator,
(3.9):

A.„=1+2z —2P, (3.10)

where the dynamical exponent z equals one and

Thus the randomness has induced a pairwise interaction
between the replicas. For random planar exchange, the
replicated action is identical except that, since averaging
over rj(x) is unnecessary in this case, the second harmon-
ic term, proportional to g, is not generated in this
manner.

We now examine the effects of the interreplica cou-
plings in Eq. (3.8). As we have discussed in Sec. II, the
Hamiltonian of the pure spin- —, XXZ chain flows to a dis-
tinct fixed-point Hamiltonian for every value of 6 in the
interval (

—1, 1). In the absence of randomness, the repli-
cated action, Eq. (3.8), with D and g set equal to zero, is
also a fixed point of a RG transformation in which each
replica scales independently. The scaling dimension of
the operator

X

g cos 24 ——
K —oo

(3.6)
n

gP =
4mK

(3.11)

The remaining disorder average over g must be per-
formed perturbatively in powers of g. Since the umklapp
term is irrelevant in the range of anisotropy 6 in which
we are interested, this perturbative approach is justified.
The leading term in the average over g is of order g and
is given by

2

f cos[24 (x, r) —24&(x', r')]f(x —x')
2 X,X,7, 7

CX, P

(3.7)

where

2D„
f(x x') = exp ——

K

Since the field N exhibits quasi-long-range order at the
pure system fixed point, we expect N to vary slowly over
the length scale K /D„, which characterizes the decay of
the function f(x —x'). Therefore we Taylor expand
@&(x') around x and keep only the leading term. This
gives our final result for the replicated action in the pres-
ence of a random z field or z exchange:

is the scaling dimension of the pure system operator
cos(n4), determined from Eq. (2.20). Since Az (0 every-
where in the gapless phase, the second random term, pro-
portional to g, in Eq. (3.8) is irrelevant and we may drop
it. However, A, &, the eigenvalue of D in Eq. (3.8) is posi-
tive for —

—,
' & 6 + 1, indicating that D is relevant in this

region and even an infinitesimally small amount of ran-
domness carries one away from the line of fixed points
governing the power law phase of the pure system. For
—1 & 6 & —

—,', the randomness is irrelevant, and thus for
small nonzero values of D, we expect a zero-temperature
quantum transition between a power-law phase similar to
that of the pure system and a randomness-dominated
phase as the exchange anisotropy 6 is varied through
some critical value A„which approaches —

—,
' at zero dis-

order. We will discuss properties of the random phase in
Sec. IV. However, before we do so, we analyze the criti-
cal behavior at the transition.

The critical properties can be analyzed through a per-
turbative renormalization-group for weak disorder. Such
a RG treatment has been carried out by Giamarchi and
Schulz' for the closely related problem of boson localiza-
tion in a random potential. One can use a momentum
shell integration to rederive the RG recursion relations
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obtained by Giamarchi and Schulz, yielding

BD
P D

Bl 2+K

BK
(3.12)

where I = lnb and p is a positive constant. For K(1/6~,
the recursion equations have a stable line of fixed points
at D =0. Writing K=1/6m+ a, then to lowest order in c
and D the recursion relations become

BD

Bl
(3.13)

the standard Kosterlitz-Thouless form.
The correlation length also diverges as the D =0 axis is

approached from within the disordered regime with
5) —

—,'. The form of this divergence may be obtained by
renormalizing to a scale at which the strength of the dis-
order is of order unity so that g will be a smooth function
of the disorder. Outside of the critical region (i.e., for
D*/c ))1, where D* is the renormalized value of D at
which g becomes only weakly dependent on the strength
of the randomness), we may neglect the renormalization
of the stiffness K by the randomness, yielding

(=DO '&s

where
E

&I
=Dz/2

Ps =(3—I /2nw) (3.16)

where we have dropped all the unimportant constants.
The fiows conserve the quantity (e —D ), and thus the
flow lines are parabolas in the c-D plane. The left half
of the critical parabola c —D =0 marks the phase
boundary between the power-law phase and the disor-
dered phase. Flows with starting values to the left of this
critical parabola terminate on the fixed line at D =0.
Thus the only effect of the disorder in this region is to re-
normalize the stiffness K and, hence, the exponents for
spin-spin correlation functions. For a system with physi-
cal values of the anisotropy b and the disorder corre-
sponding to the starting values Do and co, the flows will

terminate on the fixed line at ea = (Eo —Do)—' and
correlation functions will decay with exponents charac-
teristic of the anisotropy corresponding to cz rather than
the physical anisotropy h.

Flows with starting values to the right of the phase
boundary are carried outside the region of validity of the
perturbative RG to a randomness-dominated regime. We
expect that there is some length scale, g, associated with
the disordered phase, which diverges as the phase bound-
ary is approached from the disordered regime. As dis-
cussed in the next section, with a random z field, g can be
identified as the correlation length of the decay of spin
correlation functions. For random exchange disorder, it
appears that such an identification is not possible, and it
is necessary to interpret g just as a crossover length to
disordered behavior. We will discuss further the physical
interpretation of this length scale in terms of properties
of the disordered phase in Sec. IV. In either case, we can
use the recursion relations to determine the form of the
divergence of g by renormalizing up to a scale I* at
which the flows, which started near the critical parabola,
are well into the disordered regime where g is of order
one. Assuming that g depends smoothly on e and D in
this region, we can use the transformation law for g

g(l*)=e' g'(0) (3.14)

to determine the dependence of g on the bare values of
the parameters. For a path in the phase diagram at fixed
disorder, Do, one obtains

is the crossover exponent for XY-symmetric disorder.
We now discuss the full phase diagram in the presence

of XY-symmetric randomness. For sufficiently anisotropy
6, the pure system becomes ferromagnetic, and the con-
tinuum description in terms of the field 4 breaks down.
The behavior of the random system in this region de-
pends on whether there is random field or random bond
disorder. For a sufficiently small random component in
the exchange interactions of the form Eq. (1.6) or Eq.
(1.7), the Ising-like ferromagnetic order is expected to
persist, although the magnetization may be diminished by
quantum fluctuations. For a random z field, however, the
Imry-Ma argument indicates that the ferromagnetic state
is unstable. Therefore, we expect a transition to a disor-
dered phase as 5 becomes sufficiently negative.

At the other extreme, for 6 large and positive, an arbi-
trarily weak random z field will also destroy the Ising an-
tiferromagnetic phase. However, weak random exchange
is not expected to destroy the antiferromagnetic order so
that there will be a second phase boundary passing
through 6=1,D =0 from a disordered phase to an Ising
antiferromagnet. The shapes of the phase boundaries
near the Heisenberg ferromagnetic point 6= —1 can be
found for weak randomness by considering the balance
between the random and elastic parts of the energy.
Since the transition in the pure system at 6= —1 is first
order, the randomness couples differently in the two
phases, which have opposite signs of

5F —=b, +1 . (3.17)

For a random z field the energy density for weak random-
ness is of order Dl5Fl '~ . In the XY phase this arises
from canting of the spins, while in the Ising field it is due
to the breaking up of the ferromagnetic phase into
domains of length l5Fl/D separated by walls of width

l5Fl '~~, which have energy l5Fl ~ . By balancing the
random energy with the energy density difference 15~1 be-
tween the two nonrandom phases, we see that the phase
boundary between the disordered and power-law phases
has the form

(3.18)

g- e pxcmost D/o~ (b, —b,, )'~ ], (3.15) This result can also be derived formally by considering
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DzF

Localized
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FIG. 1. Schematic phase diagram for a random z field with
mean-square magnitude DzF as a function of the anisotropy h.
The quasi-long-range-ordered phase exists in the cross-hatched
region and along the line DzF=O, —1&6~1. The Ising fer-
romagnetic and antiferromagnetic phases occur only in the ab-
sence of randomness at DzF =0 for 5 & —1 and 6 & + 1, respec-
tively.

the appropriate action near the ferromagnetic point.
Since the controlling ferromagnetic fixed point has no
fluctuations, the spin fields must not rescale. We must,
therefore, instead rescale Planck's constant (just as tem-
perature is rescaled near ordered fixed points) as
A'=b R. The appropriate dynamical rescaling with
z=2 (since co-k ) to keep the spin-wave stiffness fixed
then implies 9=1. The anisotropy, which couples to
S +S~, then scales as 5+=b 5F. When using replicas,
the effective action with the random field contains a fac-
tor 1/A' so that the rescaling of

D r
g

—29+2z —1D g 3DRF RF RF

Combined with the rescaling of 5F, this again yields the
result Eq. (3.18). From the calculations near the XY fixed
line, it would appear that randomness drives the system
towards larger effective h. Thus we guess that the RG
Rows will go toward larger 6, leading to the left part of
the phase diagram shown in Fig. 1.

DpE

The effects of random anisotropic exchange are quite
similar: the difference of random exchange energies be-
tween the two phases is of order ~6J, ~L' in a section of
length L, while the energy to bend the local order from
the XY plane to the z direction is of order 1/L at the
Heisenberg point. The energy density from balancing
these terms is of order D, which is comparable to 5F
for D, —~5F ~, as in the random z-field case. Now, how-
ever, there is an extra phase present: the ordered Ising
ferromagnetic phase. A natural guess is that the disor-
dered phase will always intervene between the XY and Is-
ing phases due to the destruction of correlations by
randomness-induced intervening segments of the other
phase. Both phase boundaries will have the same form
near the bicritical point at b, = —1, as given by Eq. (3.18)
and shown in Fig. 2. An interesting open problem is the
nature of the phase transition from the Ising ferromagnet
to the disordered phase.

Near the Heisenberg antiferromagnetic point, 6=+ 1,
the situation is somewhat different. In the pure system,
there is a Kosterlitz-Thouless-like transition from the
power-law XY to an ordered Ising antiferromagnet as

(3.19)

is varied through zero. The correlation length diverges
as g„—exp(5„'~ ) as the transition is approached. For a
random z field both phases will be destroyed by random-
ness and there is no phase boundary. Anisotropic ran-
dom exchange, on the other hand, is relevant in the XY
phase for 5~ ~0 but irrelevant in the Ising phase. Thus
there will be a phase boundary between the Ising antifer-
romagnetic phase and the disordered phase coming out of
the point D=5& =0. The renorrnalization by the ran-
domness of b, towards higher values as in Eq. (3.12) im-
plies that random exchange should favor the Ising phase.
Since the eigenvalue of D in Eq. (3.12) is 2 at the Heisen-
berg fixed point, the phase boundary should have the
form

1/2

(3.20)

The schematic phase diagram is shown in Fig. 2. The na-
ture of the phase transition from the Ising antiferromag-
net to the disordered phase is also an intriguing open
problem.

Ising
FM Random Singlet

Ising
AFM

1
2

FIG. 2. Schematic phase diagram for XY-symmetric random
exchange with mean square magnitude DPE (or similarly DzE)
as a function of anisotropy h. The XY phase exists in the shad-
ed region and along the DPE =0 line for —1 & 6 ~ 1. Both Ising
ferromagnetic and antiferromagnetic phases also exist as shown.
In between lies a disordered random singlet phase discussed in
the text in which all susceptibilities are divergent.

B. XY-symmetry-breaking randomness

We now consider the effects of various random pertur-
bations, which break the XY symmetry. A random field
in the XY plane, given by HPF, Eq. (1.8), couples to
operators of the form e', which have scaling dirnen-
sion g=vrv The second .moment of the random field thus
has the eigenvalue A.p„=3—2g, from Eq. (1.4), which is
positive everywhere in the gapless phase. Therefore a
random planar field is relevant and always destroys the
ground-state quasi-long-range order, as could have been
anticipated.

The effects of the random XY-symmetry-breaking corn-
ponent, Eq. (1.9), of the exchange interaction are rather
more subtle. As we have shown in Sec. II, the continuum
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BDss
~ssDss ~

BDs

Bl
~sDs+ aD ss

where

(3.21)

~ss= 3—8~~,

As=3 —1/(2na)

are the eigenvalues of the operators coupled to the XY-
symmetric and XY-symmetry-breaking randomness, re-
spectively, and Ds, Dss are the second moments of the
XY-symmetric, effective random exchange and the
symmetry-breaking random planar anisotropy, respec-
tively. The coefficient of the quadratic term, a, in Eq.
(3.21) is an unimportant constant whose value we have
not computed. The second moments satisfy the initial
conditions

Ds(0) =0,
DsB(0)=DPA .

(3.22)

Solution of the Row equations reveals that if A.ss & A,s/2,

form of this perturbation has two components. The alter-
nating part of the random exchange, p(x), couples to
operators of the form exp(2i+~ ) and exp(2i@r ). Using
Eq. (2.20) for the ground-state correlations of these
operators in the pure system, we find their scaling dimen-
sion is g=(4rra) ', which is greater than two everywhere
in the gapless phase. Together with Eq. (1.4) relating the
dimension of pure system operators to the RG eigenvalue
of the second moment of the random coupling, this sug-
gests that the alternating part of this random exchange
interaction is irrelevant everywhere in the gapless phase.
A similar analysis of the uniform part of the random per-
turbation, which couples to operators of the form
exp(i4), reveals that it is irrelevant only in the range
b, )v'I/2. Since both components of the random pertur-
bation are irrelevant in this range, it would appear that
the quasi-long-range order of the pure system persists for
5 in this region. However, examination of higher-order
terms generated by renormalization reveals that this is
not the case. At second order, the operators coupled to
the uniform and alternating parts of the random pertur-
bation combine to give cross terms such as

ib ' L i4e e =e', which are identical to the operators ap-
pearing in the case of XY-symmetric randomness. Since
these operators are relevant for all 5& ——' and e' is

2

relevant for 6 & & I /2, we conclude that the XY-
symmetry-breaking random exchange, Eq. (1.9), is
relevant eUerymhere in the power-law phase of the spin- —,

'

XXZ chain.
Because the runaway from the zero-disorder fixed line

is caused b~ diff'erent operators depending on whether or
not b, & &I/2, the crossover behavior in the presence of
random planar anisotropy is more complicated than for
XY-symmetric randomness. The RG How equations for
the disorder in this case are

DpA

Ising
FM Random Singlet

Ising
AFM

0.272... 1

FIG. 3. Schematic phase diagram for XY-symmetry-breaking
randomness with mean-square strength Dp„. The quasi-long-

range ordered phase exists only on the line Dp„=0 for ~b & 1.
The crossover exponent for small randomness has a discontinui-

ty in its derivative at 6=0.272.

=2/As (3.23)

is twice the crossover exponent for XY-symmetric ran-
domness, Eq. (3.16). When AsB)is/2, the crossover is
controlled by the symmetry-breaking randomness and

PPA 1/~SB ' (3.24)

Thus the crossover exponent for random in-plane anisot-
ropy has a discontinuity in its derivative at
6=0.2720. . . . As for the case of random exchange an-
isotropy, for ~b,

~
) 1 the ordered Ising phases are expect-

ed to persist with a small amount of random planar an-
isotropy or random planar field as shown in Fig. 3. The
phase boundaries will have the same shape as in the ran-
dom exchange case discussed earlier.

IV. PROPERTIES OF THE RANDOM PHASES

We have shown that a weak random field in the z direc-
tion and weak XY-symmetric random exchange interac-
tions give rise to phase transitions from a quasi-long-
range ordered ground-state resembling that of the pure
system to disordered ground states. Although the critical
behavior at these transitions is identical for both random
field and random exchange disorder, we will see that the
disordered phases in the two cases appear quite different.
The fundamental reason for this difference is the symme-
try of the fu11 Hamiltonian in the random exchange case
under S,~—S, and the antiferromagnetic tendencies,
which combine to give some exact degeneracies. This
symmetry is absent when a random field in the z direction
is present. In this section we review previous work on
disordered quantum spin chains relating to the properties
of the disordered phases, and discuss these and some ad-
ditional results.

the crossover is controlled by the XY-symmetric opera-
tor, e', which is generated. In this case, the behavior of
the correlation length for weak randomness is

g-D PA

where



2176 CURTIS A. DOTY AND DANIEL S. FISHER 45

A. Random z-field disorder

The spin- —, XXZ chain in a random field in the z direc-
tion is equivalent to a system of lattice fermions with
nearest-neighbor interactions in a random potential. The
point 5=0 is particularly simple, since interactions be-
tween the fermions vanish and the ground state can be
described in terms of single-particle eigenfunctions,
which are always exponentially localized for site-diagonal
disorder in one dimension. In the ground state all the
negative energy eigenstates are occupied, and hence the
Fermi level lies at the band center, v=0. Therefore, the
density of states, p(c, ), near the Fermi level plays an im-
portant role in determining low-temperature properties.

For the Lloyd model, in which the random on-site en-
ergies have a Cauchy distribution, the density of states,
p(s), can be calculated exactly and is smooth and positive
at all energies. ' This behavior is believed to hold for gen-
eric smooth distributions of the on-site energies in one di-
mension. Since there is a nonzero density of states at the
Fermi level, the excitation spectrum in a random z field is
gapless. The low-energy excitations are localized with a
characteristic size given by the wave-function localization
length at the Fermi level.

The low-temperature behavior of the uniform z suscep-
tibility, g„,defined by

(4.1)

c„=&s,'s;) . (4.2)

They prove rigorously that C; decays exponentially with
probability one in the limit of large separations ~i

—j~.
Although this result may appear obvious, it is actually
rather nontrivial due to the effects of the tail operators,
which enter in the Jordan-Wigner transformation of Eq.
(&.1).

Another consequence of the low-energy localized exci-
tations in the disordered phase is that the in-plane sus-
ceptibility diverges at zero temperature even though the
spatial correlations decay exponentially. This is because
the susceptibility is given by an integral over both space
and imaginary time:

(4.3)

is also determined by p(s). Since the total magnetization
in the z direction is simply the number of excess fermions
above the Fermi level, the zero-temperature limit of y„ is
proportional to the density of states at the Fermi energy.
Thus g„approaches a finite, nonzero constant as T~0,
as it does in the quasi-long-range-ordered phase.

Klein and Perez" have used the correspondence be-
tween the 5=0 XXZ chain in a random transverse field
and fermions in a random potential to examine the decay
of the ground-state spin correlation function

energy localized excitation with energy c. In particular
the spatial average of

(4.4)

is dominated by the low-energy excitations yielding a g
which diverges as

1(T)—lnXX T
(4.5)

B. Random exchange disorder

The behavior of the spin chain with random exchange
is rather different. Again, most of the known results per-
tain to the 6=0 spin chain with a random component in
J . This corresponds to a tight-binding model of free
fermions with random nearest-neighbor hopping but no
random potential so that the system has an exact
particle-hole symmetry. As in the random field case,
there exist special distributions of the randomness for
which the density of states can be calculated exactly. In
particular, for several generalized Poisson distributions,
p(e) can be calculated using a method introduced by
Dyson' to study a harmonic chain with random masses
and spring constants. For these distributions the density
of states is singular at the band center, where it behaves
as

at low temperatures.
If 6 is nonzero, then the equivalent Fermi system is in-

teracting, and one cannot use the noninteracting results.
This phase is, however, equivalent to a "Fermi glass"
with short-range interactions, which have been studied by
a number of authors. ' For strong random fields the be-
havior can be understood by perturbing about the limit of
no hopping; as for the noninteracting case, one expects
low-lying localized excitations, in this case quasiparticles
(which are well defined in the limit of low energies in
spite of the interactions). These quasiparticles will have a
constant density of states at zero energy, p&(0). We can
thus use similar arguments to the noninteracting case to
yield a constant g„and a logarithmically divergent g„
at low temperatures. We must now, however, distinguish
between the quasiparticle density of states, p&(s), which
determines g„and the single-particle density of states,
p(s), which determines y„„. The latter differs by "wave-
function renormalization" from the former, but, with lo-
calized excitations, this will only give rise to a constant
numerical factor in y„. The localization length of the
excitations near the Fermi level yields the characteristic
length, g, for the decay of spatial correlations of the
spins. It is this length that will diverge as the transition
to the quasi-long-range-ordered phase is approached,
with the form of the divergence given by Eq. (3.15).

At fixed imaginary time difference, ~, the integrand de-
cays exponentially in spatial separation ~i

—j~, but for
small spatial separations the correlations decay slowly in
time as exp( —e~) in regions in which there is a low-

(4.6)

A general argument due to Eggarter and Riedinger' in-
dicates that this form is generic for purely off-diagonal
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randomness in one dimension. The form of the singulari-

ty implies that the susceptibility, y„, is divergent at low

temperatures,

(4.7)

in marked contrast to the random field case.
As in the random field case, the excitation spectrum in

the random exchange model is also gapless because p(e)
is nonzero at the band center. However, the single-
particle wave functions at very small energies are qualita-
tively very different. Away from the band center the
wave functions are exponentially localized, but as the
band center is approached the localization length, l(E)
diverges. Theodorou and Cohen' have examined the
form of this divergence for the Dyson model and find

l(e)- —lnE . (4.8)

1
C

li —jl' ' (4.10)

i.e., a power-law decay even in the disordered phase. The
in-plane susceptibility at low temperatures can also be
readily found to be

(4.11)

which is of the same form as g„. Note that one factor of
lnT in Eq. (4.11) arises from the spatial integral over the
correlation function. As we shall see below, it is not clear
that the low-energy excitations are well characterized by
a single length; nevertheless the form of the average
correlation function in Eq. (4.10) is likely to be correct.
Note, however, that the typical correlation function will
decay much more rapidly, since the average is dominated
by rare events.

For 6%0, the properties of the disordered phase are
less well understood. Several authors' have used ap-
proximate real-space renormalization-group methods to
conclude that the qualitative behavior is very similar to
the XF case with A=0. Indeed it is likely that the form,
Eq. (4.6), of the density of states, which determines the z
susceptibility remains the same for all lb,

l
(1 for strong

randomness. One of the authors' has recently shown
this to be the case using an asymptotically exact renor-
malization group. This behavior would probably even
persist for 6 ~ 1 with a transition to Ising antiferromag-
netic order at some critical b, , & 1 (which approaches uni-

ty for weak randomness).

Since the Fermi level in the spin chain lies at c, =O, the
low-energy excitations are only weakly localized, and
hence one would not expect strictly exponential decay of
spatial correlations in this disordered phase. By assum-
ing a single characteristic length, I(E), for the properties
of the low-energy wave functions, one finds a schematic
form for the average correlation function

C (r)- dEp(E)e ''e (4.9)IJ 0

The average equal time correlation function then decays
as

The basic picture of this phase is that of tightly cou-
pled singlet pairs of spins. Strong exchange bonds, J,-,
will pair nearest-neighbor spins, while other spins can be
coupled over long distances via virtual excitations of the
intervening pairs. The arguments of Eggarter and Reid-
inger' and Dasgupta and Ma' suggest that the effective
interaction between spins with separation R, which are
not paired with the intervening spins, will be of order
exp —~R. This implies that at a temperature T there
will be a density of spins 1/R(T)-1/ln T, which are
still unpaired and hence contribute to the susceptibility,
yielding a y„of the form of Eq. (4.11). The existence of
these almost free spins arise from the degeneracy of the
ground state for chains with an odd number of spins.
Since the total ST is a good quantum number and the
Hamiltonian is symmetric under S'—+ —S', any odd
length chain will have a degenerate pair of ground states
with ST=+—,'. In the uniform phase the difference be-

tween these two states will be spread over the whole
chain, but in the presence of sufficiently strong random-
ness the difference will primarily be localized on one or a
small group of spins. If two such chains are joined to-
gether, the free spins will pair together to form a low-
energy singlet-triplet excitation.

The spatial correlations in this picture do not decay
uniformly: the "almost free" spins may be anomalously
strongly correlated to spins far away. The probability of
a pair of spins at separation R being strongly correlated is
of order 1/R, which is just proportional to the probabil-
ity that both are free at temperature T(R ). Thus the con-
tribution of these pairs to the average spatial correlation
function yields

1

l~
—jl' '

the same form as found previously from the assumption
of a single length scale. Although the single length scale
assumption appears to be incorrect, the contribution to
C; from the strongly coupled pairs is of the same order
as that from the exponential tail in Eq. (4.9). Note that
this behavior cannot occur in the presence of a random
(or uniform) z field, since in that case there will no longer
be exact degeneracies. The half-integer spin is also im-
portant in giving rise to isolated spins: integer spins can,
in some circumstances, pair half with each of two other
spins, although there should also be circumstances in
which they wiH form random singlet phases.

As the phase boundary between the random singlet
phase and the quasi-long-range-ordered antiferromagnet-
ic phase is approached, there will be a characteristic
length g above which the decay of correlations become
broadly distributed. This length, which is likely to
characterize the typical long-distance decay in the disor-
dered phase, should diverge as the transition is ap-
proached, as given by Eq. (3.15). A better understanding
of the "random singlet" phase will have to await further
work.

C. XY-symmetry-breaking randomness

We finally consider the disordered phases, which wi11

result from in-plane random fields or random anisotro-
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pies.
In the case of random in-plane anisotropy, the Hamil-

tonian is still invariant under 180 rotations about the z
axis as well as S,~—S,. The total z component of the
spin, ST, is thus still a good quantum number mod 2.
This implies that odd length chains will again have exact
degeneracies. We thus again expect, at least for some
range of parameters, a random singlet phase with diver-
gent susceptibilities of the form discussed above for the
random exchange case. The X and Y susceptibilities still
have similar divergent contributions because they con-
nect states with ST differing by +1, which can therefore
be almost degenerate.

In the case of random planar field, ST is no longer a
good quantum number although the system is still sym-
metric under S'~ —S' (or more precisely a rotation of
180' about the z axis followed by time reversal). The ab-
sence of ST conservation gives rise to local level repul-
sion, which suppresses the large low-energy density of
states, which exists in the more XY-symmetric cases.
This should make the susceptibilities finite at zero tem-
perature at least for strong random fields. However, this
will not always be the case. If the Ising anisotropy is
suSciently large, but not large enough to cause a transi-
tion to a long-range Ising ordered phase, then regions of
the system with a stronger tendency towards Ising fer-
romagnetic order can support low-energy excitations be-
tween states, which are locally approximately given by
even and odd combinations of mostly up and mostly
down spins (or the two staggered combinations for the
antiferromagnetic case). In such a "Griffiths phase, "
these regions can give rise to a strongly divergent y„(or
staggered susceptibility) if they occur with sufficient spa-
tial density. They would not, however, appear to give
rise to divergent y„, or y, since the two states differ by
a large number of spin flips. This behavior has been
found explicitly for the exactly solvable case with
A~ —~,h,"=0, and a random h with magnitude of or-
der ~b ~.

' A schematic phase diagram for random planar
fields is shown in Fig. 4. Note however, that although
y„diverges at some value of the anisotropy before the Is-

ing ordered phase (shown as a dashed line in Fig. 4), this
does not represent a true phase boundary.

V. CONCLUSIONS

In this section we briefly summarize some of our main
results and raise questions for further study on random
quantum spin chains.

We have used a generalized Harris' criterion along
with a perturbative RG to study the phase diagram and
critical behavior near the phase boundary of the spin- —,

'

XXZ chain with several kinds of weak randomness. For
random fields and random exchange disorder, which
preserve the XYsymmetry, we have found a transition, as
the anisotropy 5 is varied, from a quasi-long-range-
ordered ground state resembling that of the pure system
to one in which typical correlation functions decay rapid-
ly. Although the critical behavior at this transition is
identical for the random field and random exchange
cases, the resulting random phases are quite different. In
the case of a random z field, the disordered phase is ex-
pected to resemble a "Fermi glass" in which the elemen-
tary excitations are localized and spin correlations decay
exponentially, even though the susceptibility g is
infinite. For XY-symmetric random exchange, on the
other hand, one finds a "random singlet" phase in which
spins are tightly coupled in singlet pairs. In contrast to
the random field case, where elementary excitations are
well localized, these singlet pairings can occur over large
distances, giving rise to strongly divergent susceptibili-
ties, y„and y„, at T~0. Further work on this random
singlet phase would be useful, especially since analogous
phases also occur for spin- —, systems in higher dimensions
such as the insulating and metallic phases of phosphorus
doped silicon. '

In addition to the phase transition from the quasi-
long-range-ordered XY phase induced by randomness,
there also exist randomness-induced transitions from
states with long-range Ising ferromagnetic or antiferro-
magnetic order. At this point, only one of these transi-
tions is understood at all' and the nature of other such
transitions —especially those in the presence of other
conserved quantities —is a very interesting question for
future research.

Finally, it should also prove interesting to investigate
the behavior of higher spin chains in the presence of
quenched disorder. Aleck and Haldane have con-
structed critical theories for higher half-odd-integer spin
chains via non-Abelian bosonization, and further pro-
gress along these lines and those discussed in this paper
should be possible.
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