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Vibrational dynamics and Raman scattering in fractals: A numerical study
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The vibrational dynamics and Raman coupling coe%cient of site percolating structures have been
studied numerically. The main results that emerge from this work are the following: (i) Charac-
terization of fractons in k space clarifies the oscillatory nature of the modes and allows an average
wavelength to be defined, which is more correlated with frequency than the localization length, which
fluctuates strongly; (ii) in these systems, it is not easy to define a local strain due to their essentially
disordered structure; (iii) the Raman coupling coefficient C(is) was calculated in the dipole-induced-
dipole and bond-polarizability approximations. The scaling laws proposed so far for C(u) do not
reproduce the results of our simulation; the difhculty of finding a scaling law in terms of the fractal
macroscopic parameters is discussed.

I. INTRODUCTION

The dynamical and static properties of deterministic
and random fractals have been a subject of extensive
investigation. One reason for such interest is that the
dynamics of fractals is expected to share some character-
istics with that of real disordered systems, which, how-

ever, are exceedingly dif6cult to handle.
In particular, for real systems it is interesting to know

both the density of vibrational states and the shape
and extension of the localized vibrational wave functions,
which determine thermal and transport properties.

Low-frequency anelastic light scattering is a powerful
tool for obtaining information on the vibrational dynam-
ics. Since the time when the observation of Raman scat-
tering from (presumably) fractal structures was reported
in aerogels, ~ metallic clusters, and glasses, systematic
experimental investigation has been carried out on silica
aerogels.

The observed power-law dependence on frequency of
the reduced spectrum in the acoustic low-frequency re-
gion was explained on the basis of models exploiting the
scaling properties of the local strain. In this way, the
observed exponent was related to the parameters, which
describe the static and dynamic scale invariance of frac-
tals.

Different expressions for the Raman coupling coef-
ficient were derived; this induced us to test the pro-
posed models by performing a numerical simulation
on model systems consisting of square and cubic site-

percolation clusters with equal masses and force con-
stants. We computed the Raman coupling coefBcient in
the dipole-induced-dipole (DID) and bond-polarizability
(BP) frameworks by assuming spherical polarizable units
in each occupied site of the cluster. A brief report of our
results was published in a recent paper;iz in the present
paper we report more extensive data and discuss them.

In Sec. II we describe briefly the numerical procedure
and the relative checks; in Sec. III we discuss the charac-
teristic features of the vibrational eigenmodes; the prop-
erties of the dynamical structure factor are discussed in
Sec. IV, while the formalism for the Raman coupling co-
efficient is developed in Sec. V; our numerical results are
presented in Sec. VI and discussed in Sec. VII.

II. NUMERICAL METHOD

The systems we considered were square and cubic
site percolation clusters containing N identical masses

(M = 1) and with identical force constants (I~ = 1) be-
tween nearest neighbors. The frequency and eigen-
vectors of the normal modes of the system ("fractons")
are provided by diagonalization of the dynamical matrix;
indeed the displacement of the ith mass from its equilib-
rium position r' can be written as

where p is the fracton index, p = 1, 2, . . . , Nd (where d
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is the space dimensionality), uz its frequency, and e(ilp)
are real and orthonormal vectors, which (apart from the
solution at u = 0) do not shift the center of mass, i.e. ,

superexponentially decaying wave function:

le(ilp)l oc t„e&I' '~l/'~l (5)

) e(ilp) = 0.

(2)

The corresponding quantities in the case of phonons
would be (p -+ k, g)

e(ilp) = e(ilk, &) = s(k, g)e'"' (3)

III. CHARACTERIZATION OF FRACTONS

where c(k, g) is the polarization vector.
We assumed scalar elasticity, which reduced the ma-

trix to be diagonalized to an N x N one because in this
case each eigenvalue is d-fold degenerate. In this case the
polarizations of the normal modes of the system are al-
ways parallel to the axis of the square (or cubic) lattice,
and the quantity e(ilp) can be treated as a scalar. We
also imposed cyclic boundary conditions.

The maximum number of masses that could be han-
dled by a Gray Research, Inc. YMP computer was of
the order of 4300, around which value the EIspAcK di-
agonalization routine started to fail, especially for the
low-energy eigenvectors. A series of preliminary checks
was performed to test the reliability of the results.

(i) The baricenter of the system should be conserved
by each mode.

(ii) The Raman scattering of a perfect lattice should
be zero.

(iii) The nearest-neighbor potential energy should vary
as (d

In all cases the departure from these conditions was
small enough to ensure that the eigenfunctions were
sufBciently accurate up to matrix dimensions of about
4000x4000.

where r& is the coordinate of the fracton center of mass,
I& is the localization length of mode p, and d~ is the
superlocalization exponent. High d~ values give rise to
steplike functions of width l&. By averaging over many
neighboring modes of two-dimensional percolation clus-
ters and by fitting the mean fracton shape to Eq. (5), the
dispersion relation (4) was verified and the value d~ —2.3
was derived. i7 Equation (5) has the obvious disadvantage
of neglecting spatial oscillations, which are required by
Eq. (2). As we shall see in the following, Eq. (5) may
at most, represent squared modes averaged on a certain
frequency range, and the look of individual actual frac-
tons bears no resemblance to it. Even worse, the square
root of (5) has been used as wave functionz s zs in the
calculation of scattering properties.

The difficulty of characterizing fractons by an analyti-
cal function like (5) is evident when looking at Figs. 1(a)
and 1(b), where two eigenvectors relative to two adjacent
modes of a 65x65 square percolation cluster, of energies
0.80204 (mode A) and 0.80344 (mode B) respectively,
are depicted. It is obvious that the two nearly degenerate
modes have very different localization lengths. However,
the distances among groups of masses, which move with
the same phase, appear to be on average the same. This
is more evident in Figs. 1(c) and 1(d), where the same
fractons are shown in a logarithmic scale in order to evi-
dence small, otherwise hidden displacements of masses in
the most localized mode. Although we did not attempt
any quantitative analysis of the average spatial oscillation
periods, visual inspection confirms that these periods are
very similar. Therefore, it is not the localization length,
but rather the wavelength of the disordered, spatial os-
cillations that is important in determining the energy:
We expect that the Fourier transforms of these modes
are much more similar to each other than are the modes
themselves.

We have therefore analyzed the normal modes in the
reciprocal space, by defining the (normalized) transform

As is known, the disordered nature of fractals tends
to localize the eigenvectors in a finite volume; it was
suggested that the modes could be characterized by
a single energy-dependent parameter, i.e., the localiza-
tion length l, which in turn defines the localization vol-
ume /, where D is the fractal dimension. From scaling
arguments 8 9 it was found that any such parameter, to
be relevant, should obey the dispersion relation

(4)

where d is the spectral dimension. is Equation (4)
was thought to be the fracton analogue of the long-
wavelength acoustic phonon relation

f(k, p) = —) e'"' e(ilp), (6)

where m is the linear dimension of the cyclic lattice on
whose sites the fractal cluster is defined (here m = 65).
The squared moduli of f(k, p) are reported in Figs. 3(a)
and 3(b) (three-dimensional plots) and 3(c) and 3(d)
(contour maps) in the k —kz space for the same fractons
as in Figs. 1(a) and 1(b).

Very broad wave packets are observed: The more lo-
calized nature of mode B is reflected in its smoother
transform. However, these wave packets corresponding
to nearly degenerate fractons have a maximum at very
close values of lkl. In order to better quantify this con-
cept let us define the function X(k, p)

The localized nature of fractons, as opposed to the propa-
gating one of phonons, was represented~ by the following
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FIG. 1. Vibrational amplitudes of two successive fractons of a 65x65 cluster at percolation threshold. (a) urq = 0.80204
(mode A); (b) uz = 0.80344 (mode B). (c) and (d), same as (a) and (b) but in a logarithmic scale to enhance the oscillatory
behavior of the fracton tails Freque. ncy in +It'/M units: Debye frequency is 2~2.

FIG. 2. (a) Vibrational amplitudes of a, low-frequency mode (u = 0.022) of a 65x65 cluster at percolation threshold

(c = 0.59). (b) displacement dilference of any pair of neighboring masses in the x direction (see text).
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FIG. 3. Squared Fourier transforms in the (k, k„)space of the two fractons shown in Fig. l. (a) and (c), mode A; (b) and
(d), mode B. The k values are in units of 2x/L, where L = 65a is the lattice size.

which is an average over all directions in the k~-k& plane
of the dynamical structure factor of mode p. This func-
tion has large fluctuations, but after smoothing it is pos-
sible to determine the position of the maximum, Kz, for
each mode p. This analysis was performed for all modes
of a two-dimensional cluster of concentration c = 0.59
(Fig. 4). As can be seen, at percolation Kz scales with

dI D
frequency as K& (x ~ = u& over a wide range of

P
frequencies; no average over different fractons was per-
formed, contrary to what is required for the characteri-
zation of fractons in real space. We also tried different
ways of defining a characteristic )C& value for the wave
packets, for example by taking the square root of the
second moment of j(k, p); however, the values obtained
in this way follow the scaling relation in a limited k range,
which excludes the extremal values where the broad wave
packets are asymmetric.

The same detailed analysis was performed for a concen-
tration c = 0.75, for which a crossover from fractons to
phonons is expected and actually observed at u, o 0.3.
For u & ~, no significant changes are observed in the
Kp vs clap relation with respect to the cluster at the perco-
lation threshold, while at lower frequencies a phononlike
behavior (Kz oc ~z) is observed.

True phonons in an ordered system would produce
eight peaks in the transform due to the eightfold degener-
acy of the modes (the degeneracy is reduced to four when

)k )
= [ks[ or when k or ks —0). A moderate disorder

mixes these states, which are no longer degenerate, and
induces only a slight mixing of other k values; when the
disorder is increased the mixing also increases and broad-
ens the wave packet, which retains a somewhat ringlike

shape similar to, though less disturbed than, Fig. 3(a).
From this analysis it appears that also in the case
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IrI )) a it may still be meaningful to define a local strain,
and

0
([e(r*lp) —e(r'+ rip)]') ~ ~, '"' (8)

0.1
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O

4 0.01

0.01 0. 1

FREIQUENCY

FIG. 4. K„asa function of frequency, for two 65x65 lat-
tices of different concentration, c = 0.59 and c = 0.75. For
graphical reasons the points relative to c=0.75 are shifted
downward by a decade, and for ur ) 1 only one. point out of
ten is plotted. The straight lines of slopes 0.704 (= d/D) and
1 are reported as guides to the eye.

of fractons is possible to define a sort of wavelength,
Az ——2n/Kz, which determines the vibrational frequency

according to the dispersion relation A& oc u& . As
mentioned, the localization length of individual fractons,
whichever its definition, is a greatly fluctuating function
of u, and only its average value over many fractons obeys
the same dispersion relation.

The question now arises whether there exists any scal-
ing argument for evaluating matrix elements involving
fracton wave functions. In general, the concept of local
strain has been widely used for approaching this problem;
for phonons the local strain behaves as k oc ~, and for
fractons the assumption has been made that it behaves as

lp oc ~z (Ref. 2) [or u& (Ref. 21)]. In view of
the preceding discussion, it would seem more appropriate

to use K& oc u&, however, in our opinion the very con-
cept of local strain loses most of its usefulness. In order
to visualize the situation, let us consider a low-frequency
mode on a percolating cluster such as in Fig. 2(a); the
mode looks rather smooth. In Fig. 2(b) we report the
eigenvector difference of any pair of masses, which are
neighbors along a given direction, e(iIp) —e(i + 1Ip).
In any local strain formulation the eigenvectors e(iIp)
are considered as a continous spatial function, e(iIp) ~
e(r' Ip), and the difference e(iIp) —e(i+1Ip) becomes equal
to ad[e(r'Ip)]/dr oc a~ (r'Ip). Here a is the intermass
distance and cop(rIp) the tensorial strain field associated
with mode p. As it is clearly seen, this quantity is not
smooth: Its fluctuations are of the same order of rnagni-
tude as the quantity itself.

That fluctuations are essential is evident, if we consider
two limiting cases; in fact, for distances r such that A &)

IV. DYNAMICAL STRUCTURE FACTOR

The square of the Fourier transform f(k, p) is related
to the dynamical structure factor:

S(k, cu) oc ) b(~ —~„)If(k)p)I, (9)

which in turn determines the shape of one-fracton scat-
tering spectra such as Brillouin and coherent neutron
scattering. In Fig. 5 we report If(k, p)I2 for some k val-
ues along the z direction and for different concentrations.
The phonon or fracton nature of the modes is reflected
in the width of the features. At percolation threshold a
large distribution of fractons contributes at each reported
k value, while at higher concentrations the sharp, low-k
patterns indicate the phonon character of the involved
modes. In the phonon regime the ~ of the peaks, ~
are proportional to k, as they should be, yielding the
sound velocity as a function of concentration, while in
the fracton regime they obey the scaling relation seen in
the preceding section. Note that at percolation threshold
[Fig. 5(c)] the features have the same form as required by
statistical self-similarity, so that both u and the whole

shape scales as k"i . Thanks to this property, the shapes
in Fig. 5(c) also reproduce the Brillouin spectra of frac-
tals, even though in actual experiments the involved k
values are about two orders of magnitude smaller than
what can be achieved in our limited lattices. The Bril-
louin spectrum is actually given by Eq. (9), which for~ « k~T means multiplying the shapes of Fig. 5 by
I/u~; this does not significantly affect the sharp phonon
peaks, but completely wipes out the maxima of the broad
fracton features, and the spectrum results in a continuous
descent from the Rayleigh line. From Fig. 5(b) we may

may be a good approximation. However, if we take this
average for nearest neighbors (IrI = a) we must obtain
an w& dependence due to energy equipartition, since the
left-hand side of (8) in this case is proportional to the po-
tential energy of mode p. z~ Therefore, we are faced with
two different u behaviors, and one should be careful in
using scaling arguments. For example, for processes that
depend mainly on the displacement difference between
neighboring masses, an ~~ scaling might be the most
suitable; this could be the case of one-fracton-induced
relaxation in paramagnetic ions, where it is local modu-
lations of the crystal field that cause the process. On the
other hand, for one-fracton-induced energy transfer be-
tween "distant" ions the other scaling law might be more
appropriate. As we shall see in the following, in the case
of Raman scattering neither law works.

We believe that scaling arguments involving average
properties characterized by parameters such as d, D, and
d4, (or 0) cannot describe physical properties, which de-
pend on local dynamical conditions in the presence of
important fluctuations.
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4)
Ir(a) = JppV '&' AQ ) nc, mpn~miI p&g(u, k),

aPp6

(b)

where I'—:(n, xn, k;, k, ) represents the scattering con-
figuration as defined by the wave vectors of the incident
(k;) and scattered (k, ) radiation, and k = k; —k, . In
Eq. (11)~; and cu, are the frequency of the incident and
scattered radiation, respectively, ~ = ~; —~„pis the
number density, V is the scattering volume, Jp the inci-
dent photons Aux, and AO the accepted solid angle. The
scattering coefficients are defined as

I p~i(~, k)

ct isn't ) (
-ik [K'(t)-K~(P)] i (t)y (0))

~ ~
~

~

~

0.01 0.1
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FIG. 5. Squared Fourier transform of the vibrational
modes as a function of the mode frequency, for four diR'er-

ent k values in the x direction (k=1, 3, 9, 27 in units of 2tr/L,
where L = 65a is the lattice size). Concentrations are as fol-
lows: (a) c = 0.95; (b) c = 0.8; (c) c = 0.59. Apart from (c),
k=1, the full lines are obtained by averaging the computed
transforms whose actual look is shown in (b), k=9.

V. THEORY OF RAMAN SCATTERING

presume that for concentrations higher than percolation
threshold the spectrum evolves from phononlike to frac-
tonlike by increasing the exchanged k. These predictions
are in general agreement with the experimental results of
Courtens et ttl. in silica aerogels.

(12)

Here tr &(t) is the instantaneous effective polarizability of
the ith scatterer whose instantaneous position is R'(t) =
r'+u'(t). In an isotropic system it is enough to know the
I p p(u, q) coefficients for n = P (polarized scattering)
and cr g P (depolarized scattering).

Equation (12) accounts for both Brillouin and Raman
scattering. Roughly speaking, the former originates from
the exponential factor and the latter from the polariz-
ability factor; as we have seen in the preceding section
(Fig. 5), in our systems there is a contribution of the
exponential factor at all frequencies which in principle
interferes with the Raman contribution. However, due
to the smallness of the light wave vector, it is reasonable
to neglect such effect and just take K = 0 in Eq. (12):

I~p(~) = I~p~i(4, K = 0)

t ~ 0
U

Let us expand the polarizability in power series of the
displacements around the equilibrium positions of the
scatterers

In general, the light-scattering spectrum of a system
consisting of elementary scatterers characterized by a
bare polarizability

tr' p(t) = n'
p +),. u' (t),

cl ttp
(14)

(10)

is given in terms of the scattering coefficients I p~s(~, k)
by

where the quantities tr'
&

and Om' &/Ou& are evaluated at
equilibrium configuration. With the use of Eqs. (1) and
(14), and neglecting the elastic contribution, Eq. (12)
becomes

I p(~) = ) ) ) ) e&(j~p)e&i(j'~p'), Cte' (A»(t)A» (0)).

Using

Cte'"'(A»(t)A» (0)) = b»» ([n(~») + 1]&(~ —~») + n(~»)h(~ + ~»)), (16)



2132 V. MAZZACURATI et al. 45

we obtain for the Stokes part of the spectrum

I n(~) = 2&,M ) " ~(~ —~ ) ) .') . ; e (i lp)
h .n((up) + 1 . ct&'

p

p Oup

If we define C p(p) as

+ «» = ~s ).) . ; e~Ulp) (18)

and C p(~) as

) .& u(p)~(~ —~&)

C ~(~) = "
) b(~ —ur„)

(19)

we obtain the well-known expression for the scattered
intensity,

(ii) The quantities V'& ——Ox' &/Bu'+ can be formally

split into a spatial mean part (V~p&) = 1/N P, V'& and

a fluctuating part bV'& ——V'& —(V p~). As can easily
be seen, because of the conservation of the center of mass
of the entire system [see Eq. (2)j, the mean part (V p~)
does not contribute to the Raman scattering.

(iii) An ensemble average of Eq. (22) (hereafter indi-

cated with an overline) is introduced in order to handle

the fluctuating quantities 6V'&

(iv) Following Jackie~a one neglects any correlation be-

tween the polarizability derivative and the eigenvectors

(i.e. , independent mechanical and electrical disorders)

and assumes that the polarizability fluctuations in dif-

ferent sites are uncorrelated:

I p(~) = p(~)C p(~).
h n(~)+ 1

(20)
(23)

Expression (18) determines the coupling coefficient as
a function of the variation of the effective polarizability
tensor of the ith scatterer induced by a unitary displace-
ment of the jth mass, and of the eigenvector of the pth
mode.

We will now discuss the u dependence of C(u) proposed
so far in the literature, and the hypotheses under which
these dependences can be obtained by Eqs. (18) and (19).

In order to establish a comparison with previous works,
we note that since a rigid displacement of the whole sys-
tem does not aA'ect the polarizability, we have

With the preceding assumption the expression for the
configurationally averaged C p(p) becomes

C.&(p) = ~, ) I|V.„l')le, (i+lip)-e, (alp)l'

2

, ).I~V p, l') l~*&(r'lp)l' (24)

~ ).Ic u(~'lp)l'~ 4'"

The average squared strain is then evaluated by scaling
arguments from Eq. (8), thus obtaining

OP =0
2

Oup

so that (18) can be rewritten as

(21)
so that

Ready

C p(~) oc ~j, (26)

~ ~(p) = ~, ) ). ; [e~(&lp) —e~(alp)l

(22)

which shows that the coefficient C p(p), which measures
the coupling of the radiation with the pth normal mode
of the system, depends on the relative shift of scatter-
ers i and j when subject to that mode, weighed by the
function cIir' &/Ou, which depends on the equilibrium
position of particles i and j. In an ordered system the
quantities Bs' &/Ou~ depend only on the relative distance
between particles i and j, but this is not true in a disor-
dered system.

The u dependence of C p(u) found in Refs. '2 and 3
can be obtained from the general form (22) as follows.

(i) Polarizability modulation takes place only among
nearest neighbors, i.e. , say only j = i + 1 contributes to
the sum in Eq. (22).

In their derivation of the ~ dependence of C p(~) Tsu-
jimi et a/. followed the procedure of Boukenter et at.

up to Eq. (24). They also used the scaling law (8) for the
strain, but they assumed that the scattering amplitudes
from all the l scatterers involved in mode p add up with
constructive interference, i.e. , they rewrote Eq. (24) as

2d cty

C p(cu) oc ~p

We cannot find any justification for such assumption.
This term, which is certainly present, adds coherently,
and its only effect is to renormalize the Brillouin inten-

sity because it represents the contribution to the polar-
izability modulation of a given atom produced by atoms
placed at a distance comparable with the wavelength of
the radiation; it does not contain any fluctuating compo-
nent and does not produce disorder-induced Raman scat-
tering. The main contribution to the scattering comes
from the fluctuations of polarizability related to the mi-
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croscopic disorder of the structure (i.e. , electrical disor-

der) and to the way such fluctuations are correlated to
the local displacement fluctuations due to the pth mode
(mechanical disorder) .

In our calculation we will use as a starting point Eq.
(18) without introducing any further assumption. We
will consider masses with identical bare spherical polariz-
ability, o. , thereby neglecting the cases in which scattering
originates from the anisotropic part of the polarizability
(P) modulated by the normal modes through rotational-
translational coupling. The effective polarizability z p(t)
will therefore be written~

7r' p(t) = nb p+ Az'p((R'(t)), , ~), (28)

where the second (induced) term depends, in principle,
on the position of all masses of the system and is the main
source of Raman scattering in solid systems. To go fur-
ther, one must know the function Sir' p((R&(t))& i ~)
explicitly. There are two limiting cases where this is pos-
sible.

A. Bond polarizability (BP)

In this model one assumes that the incremental po-
larizability tensor depends only on the relative distance
of nearest-neighbor atoms, that it is pairwise additive,
and that it has cylindrical symmetry around the vector
R'~ (t) = R'(t) —R~(t), i.e. ,

b, n' p(t)

E' = ) ) T(pl(R" (t)) . . P'p,

P

(30)

which is the sum of the fields produced by all other ef-
fective dipoles, so that

(31)

The self-consistent relationship for the effective polariz-
ability is obtained from its definition

(32)

to be

At first order (i.e. , by taking x~
p

—nb~p on the right-

hand side), we obtain the closed form

m'p(t) = nb~p+n ) T(pl(R"(t)) (34)

and finally

7I' p(t) rxb p + Q ) ) T (R (t))
i ( )is& p(t)'

7 j
(33)

): [T".p'(R" (t))h(IR" (t) I) + g(IR" (t) l)~ pl

' b, n'~p(t) = n') T(p(R" (t))
~ ( )~3. (35)

(29)

where T( pl(R) = 3R Rp —6 p, NN(i) indicate the set of
atoms which are nearest neighbors of the atom i and the
functions g()R() and h()R() determine the dependence
of the isotropic and anisotropic parts of the induced po-
larizability, respectively, on the instantaneous distance
between nearest neighbors. This model is generally em-

ployed in describing the Raman scattering in covalent
solids.

B. Dipole induced dipole (DID)

Strictly speaking the DID is not a model but rather de-
scribes phenomena that are always present in condensed
matter. Indeed it is DID that is responsible for the
renormalization of the bare polarizability, which yields
the Lorentz-Lorenz relation. Moreover it has been recog-
nized as the major source of Raman scattering in dense
systems.

The derivation of oi+Ex' p(t) is straightforward, and
we will briefly describe it Let p' =. n(Z + E') be the
n component of the effective dipole moment of the ith
mass in the presence of the electric field 8 of the incident
laser beam and of the electric field

By differentiating Eq. (34) and calculating the result
at equilibrium we also obtain

Bz'
D ID P .-".(3) (36)

where

VI. NUMERICAL RESULTS

In Fig. 6 we report in log-log scale the DID and BP
computed Raman scattering coefficients C (a) for three-
dimensional lattices of linear dimensions 29, 19, and 15
at concentrations of 0.312, 0.5, and 0.6, respectively.
In order to reduce statistical fluctuations, at percola-

T p~(R) = 15R~RpK„—3(b~pK„+b~pR +b ~Rp).

(37)

Note that if one considers the DID expression for
Az' p, and limits the sum in Eq. (35) to nearest neigh-
bors alone, one formally turns to the BP model if in the
latter we put h(R) = n /R and g(R) = 0. In our nu-
merical calculation we have computed Eq. (35) both by
summing the contributions of all masses (full DID), and
in the limiting case of interaction to nearest neighbors
alone (NN DID) in order to simulate the BP model.
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FIG. 6. Polarized Raman coupling coeflicient C (u) for
three-dimensional lattices. (a) full DID averaged over three
29x29x29 clusters, c = 0.312; (b) as (a) but NN DID; (c) full

DID averaged over three 19x19x19clusters, c = 0.5; (d) full
DID of one 15x15x15 cluster, c = 0.7. All traces give abso-
lute Raman coupling coefficient normalized to the number of
masses in the cluster assuming isotropic polarizability e = 1.
Trace (d) is shifted down by a decade. A dashed line of slope

1 is reported as a guide to the eye.

tion threshold we averaged over diff'erent realizations of
our sample and over all the modes having their eigen-
frequency within a A~ =0.022 interval around any fre-
quency value reported. In fact, the computed C (~)
is an extremely fluctuating function of the mode; most
modes give a negligible contribution, so that it is neces-
sary to average over a large number in order to obtain
a reasonably smooth function. At percolation thresh-

old [Fig. 6(a)] and in the range u ) 0.2, DID gives

C (~) oc ~ and BP [Fig. 7(b)] parallels it; at lower fre-
quencies, where the DID result becomes less frequency
dependent, the two curves become appreciably different.
It seems that for neither mechanism does a single slope
exist in the whole calculated frequency range.

The different behaviors of DID and BP, whose ratio
is shown for the three concentrations in Fig. 7, can be
understood as follows. In the BP case the modulation
of polarizability takes place only if nearest neighbors are
connected, so that there exists a close phase relationship
between their displacements caused by a normal mode.
On the other hand, the DID effect has a purely electro-
magnetic nature; this implies that there is polarizability
modulation between masses, which are not directly dy-
namically connected, but which, due to the fractal struc-
ture, may be rather close in space. For the displacements
of these masses under the action of mode p, there will

be, in general, no such close phase relationship as exists
for connected nearest neighbors. This is evident from a
visual inspection of Fig. 2, where there are pairs of spa-
tially close masses on opposite sides of fjords with very
different phases. The effect is not very important for
high-frequency modes with short A [see Figs. 1(a) and

FIG. 7. Ratio of full DID to NN DID in a log-log scale. (a)
29x29x29, c = 0.312; (b) 19x19x19, c = 0.5; (c) 15x15x15,
c = 0.7; (d) 65x65, c = 0.59. Traces (b), (c), and (d) have
been shifted down by factors 2, 4, and 8, respectively; the
dashed lines indicate the respective unit ratios.

1(b)], because phase shifts are also big for dynamically
connected neighboring masses, but becomes important at
lower frequencies, and this produces the observed differ-
ence between DID and BP result;s.

When concentration is increased, Figs. 6(c) and 6(d),
the Raman coupling coefBcient is strongly reduced be-
cause disorder is decreased. However, apart from this
intensity change, in the high-energy region above the
phonon-fracton crossover the DID result for C (u) does
not appreciably differ from what is obtained at percola-
tion concentration. At low frequency, where the phonon-
like behavior C~ (u) oc u2 is expected, the slope does in-

crease, but a clearcut fracton-phonon crossover does not
seem to be present, even though statistical noise does
not allow a definite conclusion to be drawn. As regards
the comparison between DID and BP, Fig. 7 shows that
by increasing concentration the two results tends to con-
verge. This can be understood by considering that there
are fewer spatially neighboring pairs joined by long con-
nected paths in the fractal because the system is more
compact.

In Fig. 8 we report the computed depolarization ra-
tios 7Z(u) = C z(u)/C (~), for the three-dimensional
lattices; at high frequency all samples approach the 1j3
value, which is predicted for the NN DID (or BP) in-

dependent of the mode pattern as it results from Eqs.
(36) and (37); at low frequencies, and especially for
the percolating cluster, 7Z(u) increases. This is due to
the increasing contribution of non-nearest-neighbor pairs,
which also produce the low-frequency gap between DID
and BP discussed above [Fig. 6(a) and 6(b)].

C (~) calculated in two dimensions for different con-

centrations is shown in Fig. 9 in a log-log scale. At
percolation threshold, the slope is about 1 over a wide

range of frequencies. At higher concentrations, as in the
three-dimensional case, a higher slope is observed in the
low-frequency range, but again no sharp fracton-phonon
crossover is evident. The phononlike ~2 dependence is
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reproduced in the low-energy region of Fig. 9(a), corre-
sponding to the computed Raman coupling coeKcient for
a perfect lattice with three vacancies included in order to
make Raman scattering allowed.

The difference between BP and DID results is much
less important in two dimensions than in three. CDrD(~)

FIG. 8. Depolarization ratio 7Z(ur) = C „(u)/C»(u) for
the three-dimensional lattices of Fig. 6. (a) 29x29x29, c =
0.312; (b) 19x19x19, c = 0.5; (c) 15x15x15, c = 0.7. The
dashed lines at R(u) = 1/3 correspond to the theoretical
prediction for NN DID.

is appreciably greater than CB (u) only at percolation
threshold and in the lowest-energy region [Fig. 7(d)].
However, the slope of C (~) still remains 1 in the
whole range. It seems that the effect of non-NN pairs
across fjords plays a minor role in two dimensions be-
cause in this case there are fewer topological possibilities
of realizing such pairs. The effect could possibly become
more important at lower frequencies, which are not reach-
able for us due to computational limits.

In all of our calculations, the Raman coeKcient is ob-
served to drop as the Debye frequency is approached.
This is not connected to the similar behavior of the den-
sity of states; the decrease in C (cu) is a general property
of disordered systems and will be the subject of a detailed
further study.

A relevant question is whether the finite size of our
lattices, together with cyclic boundary conditions, might
prejudice our low-frequency results. Actually, visual in-
spection of several modes of the 65x65 percolating lattice
shows that fractons are well localized only for ~ & 0.3;
however, from Fig. 4 we see that the scaling relation-

ship u oc k"l, which is typical of fractons, holds also at
lower frequencies, indicating that cyclic conditions, which
affect the localization length, are ineffective on the short-
range fluctuations, which produce Raman scattering. We
have verified that in passing from 20x 20 to 100x 100 (sin-
gle diagonalization) lattices no relevant slope change in
C (u) occurs within the statistical noise.

VII. DISCUSSION

1p

p 3

3

Our numerical results indicate that the scaling laws
proposed so far (see Sec. V) do not work; in fact we
have shown that in three dimensions the BP and DID
calculations yield different results for the coupling coefB-
cient and that a single slope is not appropriate for either
mechanism in the whole energy range (Figs. 6 and 7).
Let us consider the simplest possible case, i.e. , NN DID
(or BP), where the coupling coefficient for polarized Ra-
man scattering relative to the pth mode is given by

p-6
~"(&) ) . [ ( + II&) — ( lp)) (38)

0.01 0. 1

FREQUENCY

FIG. 9. Polarized Raman coupling coefficient C (ur) for
two-dimensional 65x65 lattices, full DID. (a) perfect lattice
with three vacancies; (b) c = 0.9; (c) c = 0.7; (d) c = 0.59,
averaged over eight clusters. All traces give absolute Raman
coupling coefticient normalized to the number of masses in the
cluster assuming isotropic polarizability o = 1. Trace (b) is
shifted down by a factor of 5. Straight lines of slopes 1 and 2

are reported as guides to the eye. (e) C (ur) calculated in the
approximation of independent Buctuations from different k

components (see text); the slope of the superimposed straight
line is 0.07 = 2d/D —d.

Here the prime indicates that the summation is limited to
the masses, which have a neighboring mass in the positive
z direction.

Equation (38) was used to produce Fig. 6(b), where
a slope continuously changing from about 1.4 to about
1.1 is observed in three-dimensional lattices. In two di-
mensions Eq. (38) gives a nearly linear dependence on a
long-frequency range very much like Fig. 9(d) (full DID).
This equation looks simple, and it would seem surprising
that a simple scaling law for it is not found. However,
its simpleness is only apparent: Eq. (38) exhibits the
space-fluctuation origin of the Raman scattering.

This point deserves to be stressed: We will show that
only in particular cases can a scaling law for a fluctuating
quantity, such as Eq. (38), be obtained in terms of aver-
age quantities. If we insert the inverse Fourier transform
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of Eq. (6) into Eq. (38) we obtain

(p) oc ) f(k, p)) e'""'(e'" ' —1) (39)

This expression gives a simple result if the pth mode is

phononlike with a well-defined k vector )C&, i.e. , when the
function f(k, p) is sharply peaked around A".z. A single
term in the summation over k contributes appreciably,
and in the low-frequency limit (ikia (( 1) we get

oc ) e'"" cc S(k) oc k (43)

This quantity, which was computed for each mode of a
65x65 square lattice at percolation threshold, is reported
in Fig. 9(e) and has a smooth flat dependence on fre-
quency. It is also possible to find an analytical form for
this quantity, by using scaling arguments. By taking for
the structure factor of bonds the same scaling law as for
the structure factor of masses, S(k),

(4o)
and assuming that dynamical structure factor S(k, ~z) oc

i f(k, p)i scales as a whole as does its maximum (Fig. 5),
we obtain for ka && 1

As mentioned, this would be zero for a perfect crystal,
i.e. ,

C (p) oc ) S(k, ~p)S(k)k oc K„ lc„
k

(44)

~l II II

(41)

where the double primed sum is on the missing bonds
and measures the structure factor of disorder.

For a homogeneous distribution of defects the latter
quantity is constant on average: No k dependence is ex-
pected, though it is not a smooth quantity because of
its intrinsic fluctuating nature. Therefore, for phonons
in a disordered system we obtain C (p) oc iK&i
C (w) oc cu„as an average over many nearly degenerate
modes. The same result is obtained in real space from
Eq. (38) by assuming that the fluctuations of the relative
displacements (i.e. , of local strain) are proportional to the
quantity itself, and that the scattering contributions add
incoherently. In any case, one assumes that the modes
are well characterized by a single-k component, so that
both the local strain and its fluctuations are proportional
to k.

The impossibility of extending such an argument to
fractons is evident also from the mentioned di%culty of
defining an average local strain [see Fig. 2(b)]. In any
case, both scaling laws overestimate the slope in two
dimensions; the hypothesis that the fluctuations are pro-
portional to the quantity and that scattering contribu-
tions add incoherently fails. It may be interesting to
study the problem in the Fourier space starting from Eq.
(39). For phonons in a disordered structure, but in par-
ticular for fractons, f(k, p) is extended over large inter-
vals of k space, as has been shown in Fig. 3, and Eq. (39)
becomes intractable. However, let us see what happens if
one wrongly treats the fluctuations in bond lengths due
to different k components as independent, obtaining

or

CBP ( )
2d/D d- (45)

Taking d = 4/3 and D = 1.89 we have an ao 0" depen-
dence, i.e. the straight line in Fig. 9(e), which fits well
the low energy part of Eq. (42). The same results would
be evidently obtained by assuming a single k component
for the fracton and again the scaling relation ~ oc it;"l'

The scaling law (45), apart from the absence of d (or
o) factor, is the same as proposed by Tsujimi el al. and
Alexander. It is not a good approximation for the eval-
uation of Eq. (38), which actually yields a slope of about
1 in the two-dimensional lattice.

For the calculation of Raman scattering it is not ap-
propriate to consider the different k components of the
relative displacements as independent, or to consider a
single effective k value. This is why we are not able to
produce a scaling relation for C(u) even in its simplest
form (38), let alone the case of full DID, where the in-
duced polarization fluctuations are a complicated func-
tion of the mutual distances between masses, as discussed
in Secs. V and VI.

In conclusion, our arguments indicate that the formu-
las so far proposed for the Raman coupling coeScient,
which were derived from scaling arguments in t, erms of
the macroscopic parameters d, D, and dd, (or cr) are unre-

liable. The essential disorder of statistical fractals, where

there are defects at all length scales, makes it impossi-
ble to sum incoherently effects of fluctuations at different
points within the fracton wavelength, as well as to find

a scaling relation for the fluctuations in terms of average
quantities such as local strain. The microscopic struc-
ture of the system and the actual scattering mechanism
seem to determine the shape of the scattering spectrum
at least to the same extent as do the macroscopic prop-
erties described by the fractal parameters.

& '(p) ~ ) .If(k, p)l'l(e*'" —1)i' )
(42)
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