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Currently available equilibrium thermodynamic data will be used to obtain approximate phase-
boundary pressure values po(T) in the pressure-temperature plane of solid He in its low-pressure and
low-temperature phases. In contrast with the earlier determined spin-ordering molar-entropy change of
about R /3, at the triple point at melting, the changes in pressure, temperature, and molar volume are
quite small. In a constant-volume transformation, near the triple point, the pressure change or width

across the mixed-phase region is about 10 millibars. The temperature width is in the microkelvin range.
In constant-temperature and constant-pressure phase changes the estimated volume width is about 10
cm /mol. Temperature derivatives of pressure and molar volume in the mixed-phase regions are quite
large. As a consequence, the excess constant-volume heat capacities in the mixed phase may reach very

large values. The required experimental resolving powers for accurate measurements of very small

transformation temperatures and molar volumes as well as of very large mixed-phase heat capacities ap-
pear to be barely accessible at the present time.

I. INTRODUCTION

The main object of this paper is the discussion of some
schematic equilibrium thermodynamic phase diagrams of
solid 'He in and around its spin-ordering low-pressure
transformation region. Temperature and pressure ranges
explored here refer to about 0.35-1.05 mK and 35—55
bars. At the present time, data required for construction
of a satisfactory phase diagram in the pressure-
temperature (p, T) plane are incomplete in the relevant
range of interest, i.e., in the region of the spin-ordering
transformation. However, recent data at medium-low
and very low temperatures used with plausible assump-
tions seem to lead to schematic phase diagrams of solid
He over limited state-coordinate ranges.

In this paper, we will be giving schematic pressure-
temperature and molar-volume temperature diagrams
near the transition region. The volume data extend down
to about 0.30 mK from the transition temperature T~~,
at melting, or about 1.0 mK. The data omit the first-
order character of the spin-ordering transformation as a
consequence of the very small transformation molar
volumes. The single-volume approximate phase-
boundary data could nevertheless be used to derive
boundary pressure values via isochoric pressures obtained
at temperatures much higher than the transformation
temperatures. The lengths of various state-coordinate in-
tervals such as pressure, molar volume, and temperature
are very small across the mixed or two-phase transforma-
tion regions. At the present time, only pressure-shift or
pressure-width measurements are accessible experimen-
tally in constant-volume transformations. These data en-
able one to estimate the temperature width of the phase
change with the prior determination of the temperature
derivatives of the pressure-boundary line.

Heat-capacity measurements in the solid phases at
melting and at a molar volume somewhat lower than the
melting volume confirm the expected anomaly over the

mixed-phase region. However, the measured heat-
capacity anomalies are relatively modest. Thermo-
dynamic calculations of the constant-volume heat capaci-
ty over the two-phase region field very high heat-capacity
peaks. The large discrepancy between measured and cal-
culated heat capacities arises in part from the poor exper-
imental temperature resolution available at the present
time.

II. LOW-PRESSURE PHASES
AND BOUNDARY LINES OF SOLID He

In the construction of phase diagrams of solid He, we
will attempt to use some incomplete sets of data available
currently on the transformation of solid He from its
spin-ordered region, the antiferromagnetic or A solid,
into its disordered or paramagnetic phase, the P solid.
Scarcity of data for an initial description of the spin-
ordering transformation suggests the use of data obtained
at higher temperatures, ' i.e., at temperatures large in
comparison with those relevant to the spin-ordering
transformation. In the pressure-temperature (P, T)
plane, the phase-boundary pressure line Po( T), or pb( T),
originates at the melting-pressure line PM(T), at the
triple-point temperature Tz z-where liquid He-8, the A
solid and P solid coexist at equilibrium. The pressure at
the triple point was estimated to be about 34.4 bars, while
Tz~ is somewhat above 1.0 mK provided the A-point
temperature at melting is taken to be 2.75 mK. '

Systematic investigations of the 3-solid —P-solid trans-
formation along a set of solid isochores have been per-
forrned by Shigi et al. , through low-field-strength mag-
netization measurements. Similar magnetization data
have been obtained earlier. These measurements
confirmed the still earlier observations at melting, which
implied the first-order character of the transformation.
Pressure measurements along isochores across the trans-
formation region have been made by Mamiya and co-
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workers. These were interpreted also in terms of a first-
order transformation.

It is instructive to follow an isochore p ( T, V =const}
from a state in the A phase at T & Tz( V), Tz( V) being
the mean transformation temperature. The isochore first
reaches the phase-boundary pressure po( Tz ) at the pres-
sure po(T&; V), where the mixed ( A +P) phase starts to
develop. As the system proceeds from T~, toward Tzf,
the two-phase isochore follows the phase-boundary pres-
sure line po(T). The initial all A-phase solid at T~;
changes progressively into the final all P phase at T~f.
Beyond po(T~f V) the isochore penetrates the P phase.
In the transition region Tz f & T~; and po( T~ . V)
&po( T~ f V}. This is a characteristic feature of the
solid- A —solid-P first-order phase change described
through an isochore. Figure 1, to be discussed below, de-
picts an isochoric transformation.

Using the asymptotic high-temperature isochoric pres-
sure data' and the fractional mK low-field strength iso-
choric magnetization results, it became possible to
derive to some degree of approximation boundary-
pressure values po(T) over the temperature range of the
measured mean- or single-volume phase-boundary line
Vo(T}. The approximate po(T)-line data resulted from
the zero-point or temperature-independent components
of the isochoric pressures at higher temperatures, '

T»T~M. It should be recalled that the temperature-
dependent isochoric pressures at T ~ 20 mK had already
been measured by the University of Florida investiga-
tors.

Early formal discussions of the P solid clearly indicat-
ed the dominant (1/T ) asymptotic entropy term as well

as those of its pressure and volume derivatives. On tern-
perature integration the dominant (1/T) term results in
the isochoric pressure or isochoric molar-volume expan-
sions of the nuclear-spin system. The dominance of the
spin system was restricted to that temperature range
where the phonon excitations of the model solid could be
safely neglected in comparison with those of the spin sys-
tern.

At T» Tz( V), the isochoric temperature-dependent
component of the pressure resulted in the form

p (T, V) —po( V) = [a( V)/T]+

T& «T~100 mK,

where po(V) is the temperature-independent part of the
pressure along the isochore V. The coefficient a(V) in
(1), in the single-parameter asymptotic Heisenberg
exchange-coupling formalism' refers to

a ( V) = —', Rd [J ( V) /k ] /d V,

J ( V) being the magnitude of the nearest-neighbor-
pair —exchange energy of the model.

In contrast with earlier isochoric pressure measure-
ments, ' Van Degrift and co-workers' determined the
zero-point-pressure term p(V) along a number of iso-
chores. These investigators also gave a three parameter
formal fit ofp ( V) to which we will return below.

At the present time, data on isochoric pressures in the
A solid at T & T~( V) are very scarce. ' However, melting
pressures have been measured down to about 0.4 mK.
These measurements suggest that at T & TzM the melt-
ing pressure pM( T) is such that

pM(T) pM o 5pM(T}

35.25

where pM o is the melting pressure in the limit T~O and

5pM( T) is a small temperature-dependent term, with

P solid 5pM(T} «pM o T & Tx, M (4)

~ 35.00
O

CL

34.75

,V)

p (T,V = ctj

The melting pressure may approach its limit at the abso-
lute zero from below if one disregards the contribution of
the phonon pressure at the very low temperatures.

It appears reasonable to assume that the pressure
p(T, V) along the isochore V=const, takes on a form
similar to (3), in the A solid or

24.25
P, M

p ( T, V) =po( V) —5p( T, V), T & T~ M,

lim 5p( T, V)~0, 5p(T, V) &&po( V) .
T~O

(S)

(6)

O
E

E
O
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FIG. 1. Schematic linear (p, T) and ( V, T) phase diagrams of
solid He near its triple point at melting.

While (S) is well founded in the P solid, in the A phase
the sign of 5p(T, V) has not been fully established yet.
The inequalities (4) and (6) suggest that, in a starting ap-
proximation, one may neglect the component
5p(T & T~, V) in comparison with po( V). The latter was
observed in the P solid to be some three or four orders of
magnitude larger than 5p(T, V). It should, however, be
kept in mind that neglecting 5p(T, V) may be justified in
the present discussion directed toward the determination
of a schematic phase diagram of solid He restricted to a
limited range of the state coordinates around the triple
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point at melting. Clearly, knowledge of the properties in-
cluded in 6p(T, V) is necessary for some level of under-
standing of the A-solid properties. Boundary volumes
are increasing functions of the temperature, or boundary
pressures are decreasing functions of the temperature.
Even though the empirical connection po( V) was derived
with the P-solid isochores, '

p ( V =const, T), po( V) being
the temperature-independent component of the measured
total pressure, we will assume its approximate validity in
the A solid also at T & Tz( V).

The three-parameter fit' is

p, ( V) =q(U/V)",

y=36. 357 bars,

v =24 cm /mol,

n =5.597 .

(7)

« V (T~}

= Vs(Tn ) .

We given in Table I, the calculated phase-boundary pres-
sures po(V) associated with the measured isochores by
Van Degrift and co-workers, ' and the molar volumes of
the isochores investigated by Shigi and co-workers
through their magnetization measurements. Table I is
seen to omit the two-valued character of the function
Tz(V) implied by the first-order character of the P A-
transformation. This omission might be justified in a
starting approximation, since the volume change in the
solid-solid transition at some mean transformation tem-
perature T~ ~ T~ M is expected to be quite small or

The small order of magnitude value of 6 Vgp at T~ M can
be estimated by combining the early experimental tem-
perature T~~ and the approximate transformation or
transition entropy ASzz due to Halperin et a1., with the
earlier solid bcc-hcp extrapolated transformation pres-
sure in the limit of very low temperatures due to Grilly
and Mills. " This leads to a rough estimate of
~b, V&p(T&~)~ of the order of 10 —10 cm /mol, a
very small molar-volume change.

Table I with its direct and indirect data may lead to a
better estimate of AVgp(TOM�). At the present time,
derivation of hV~~ values is still restricted to the triple
point at melting, where a determination of the individual
solid entropies Sz ( Tz ~ ) and S~ ( Tz ~ ) became accessi-
ble to a satisfactory degree of approximation. The
po(T~) values of Table I lead through a graphical ap-
proach to the approximate temperature slope

dpo(T&M)/dT= lim dpo(TN)/dT,
N N, M

by extrapolating the graph of the derivatives (dpo/dT)
values resulting approximately from the smoothed
po(T&) pressures in Table II and included in Table III.

It should be remembered that the empirical zero-point
pressures defined by the fit (7) are assumed to refer also to
the boundary-pressure line po(T&) or p&(T&). As dis-

cussed briefly above in connection with the formal equa-
tion of state of the A solid, Eqs. (5) and (6), the boundary
pressure po(T+) is assumed to be close to the pressure
axis in the (p, T) plane. This is justified roughly because
of the teinperature-dependent component 5p( T, V} of the
total pressure along isochores is very much smaller than
the zero-point pressure as stated in (6).

In order to exploit the data collected in Table I, it is

V
(cm'/mol)

22.43'
22 52b

22.67'
23.01'
23.13"
23.38'
23.63'
23.81'
23.83"
23.85'
24.14'
24.16b

24.22b

24.24

p, ( v)
(bars)

53.05
51.87
50.02
46.02
44.67
42.09
39.66
38.01
37.80
37.65
35.19
35.00
34.53
34.40

T~( V)

(mK)

0.29
0.32'
0.37
0.44
0.48'
0.58
0.67
0.78
0.80'
0.81
1.00

1.03

'Reference 2.
Reference 1.

'Read off a large T&( V) graph, Ref. 2.
Melting condition.

TABLE I. Molar volume V of the experimentally investigat-
ed solid 'He isochores: their approximate phase-boundary pres-
sures po( V) and phase-boundary temperatures TN( V).

TABLE II. Smoothed state coordinates of the phase-
boundary lines.

TN

(mK)

0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.03

po( T~ )'
(bars)

52.8
50.1

47.8
45.9
44.3
43.0
41.7
40.6
39.7
38.8
37.9
37.1

36.3
35.5
34.8
34.4

Vo(T& )'
(cm /mol)

22.4
22.7
22.9
23.0
23.2
23.3
23.4
23.5
23.6
23.7
23.8
23.9
24.0
24. 1

24. 19
24.24

'Pressure read off a large graph of the transition pressures of
Table I.
Calculated with the second column with the fit (7) of the text.
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TABLE III. Estimated total derivative properties of the A-P phase-boundary lines.

(mK)

( —
)dpo /d T'

(bar/mK)
Sp —S„

d Vo/dT'

(cm'/molrnK)

( )dVo/dpo
( Vo/npo)

(cm /molbars)

Xo= 1/np0
( )( 1 /Vo )d Vp/dpp

(10 ' bars)

0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.03

50.0
41 ~ 5

35.0
29.5
25.5
23.5
20.5
18.5
17.5
17.0
16.5
16.0
15.0
14.5'
14.44

4.04
3.54
3.13
2.76
2.47
2.35
2.12
1.97
1.91
1.906
1.90
1.89
1.82
1.80
1.81

0.081
0.085
0.089
0.093
0.097
0.100
0.138
0.106
0.109
0.112
0.115
0.118
0.121
0.124
0.126

3.34
3.71
3.87
4.09
4.16
4.28
4.38
4.49
4.60
4.71
4.81
4.92
5.02
5.13
5.19

'Calculated with Table II.
Calculated using the fit (7) of the text; n =5.597.

'Calculated with the fourth column and Table II.
Graphical extrapolation.

useful to obtain smoothed values of the boundary pres-
sure and boundary volume. As indicated above, so far,
we have neglected the two-valued character of the
boundary-volume function Tz(V„) and T~(Vp). Large
graphs of the measured Vo(T~) values and their associ-
ated po(T~) values, resulting from the fit (7), yielded
smoothed mean volumes Vo and pressures po at even
temperature intervals LTD'. These are given in Table II.
These smooth, if approximate, boundary coordinates
then gave estimates of the temperature slopes (dpo/dT&)
and (dVO/dT~). The derivatives (dpo/dVO) resulted
from the fit (7), together with the compressibilities yo
along the boundary. The various derivatives are included
in Table III. Their estimative character should be kept in
mind.

proximate temperature derivatives are

(
—)50 +

dpo /dT & ( —)14bars/rnid,

1.8 8 d Vo ( T) /d T 5 4.0 cm /mol m K,
0.35 ~ T ~ 1.0 mK .

(10)

These temperature slopes are very large. The empirical
value of

6Vgp(TNM )=DSgp(T~~)/[dpp(T~T~~/dTj . (11)

dpo/dT at T~Tz~, or ( —)14.4 bars/mk

approximately, leads through the Clausius-Clapeyron re-
lation to the volume difference at T~ M, or

III. VARIOUS ASPECTS
OF THE SPIN-ORDERING TRANSFORMATION

Tables I and II represent, over a limited range of
several state variables, the approximate partial phase dia-
grams of solid He in its A phase. Several derivative
properties of these variables are included in Table III.
Limitations of validity in the numerical values of proper-
ties indicated in the preceding section should be rernem-
bered in the discussions to follow. These will refer to the
transformation region of the two solid phases.

The temperature range of the A solid explored so far is
about 0.35—1.00 mK, on the currently accepted tempera-
ture scale. The A-P phase-boundary pressure line result-
ing from the measured single molar-volume boundary-
line data extends from about 34 to 53 bars, over the
volume range of 22. 4—24. 2 cm /mol. The respective ap-

The transformation entropy ' bS„~(T~I ) is a fair frac-
tion of the asymptotic spin entropy R 1n2.

At the present time, there is only one unique state on
the boundary pressure line po(T) where data became ac-
cessible enabling the derivation of the individual solid-A
and solid-P entropies This state is the triple point with
coordinates po(T~M), Vq~(T~M), Vp~(T~~), and

Vi~( Tz M ) where the superfluid B, the solid A, and solid
P coexist at equilibrium. Accurate melting-pressure mea-
surernents p~(T), from below up to somewhat above

T&I yielded temperature derivatives of the melting line

IdIM(T)/dT) across T~M. Assuming that the melting-
volume differences b, VM(T) between the normal liquid
He and the solid P remained nearly constant below

about 20 mK, and accepting an earlier extrapolated value

from quite high temperatures' and a later experimental
value, ' the approximate individual solid entropies
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S„(TN M ) and S (TN M ) result via the Clausius-Clapeyron
relation.

Melting-pressure data lead directly to the temperature
slopes of the melting lire (dPM IdT) and (dPM+ IdT) at
T~ ~ and T~ ~+. By the Clausius-Clapeyron relation

dp()(T)ldT &0;dVO(T)/dT &0;T~ TNM .

In addition, Table III implies

d po(T)ldT &0, d Vo(T)ldT &0 .

(20)

(21)

dpM IdT=ESAM( TN M IEVAM(TN M ),
dpM + Id T=ESPM ( TN M ) /6 VpM ( TN M ),

(12)

with the melting-entropy and melting-volume differences
at the triple point

hS(~ M)(TN M)=SL(TN M )
—S(„)(TNM ),

PM P

~V(AM)( NM } VL( NM) V(A)( NM }
PM P

(13)

In a starting approximation the melting volume
differences b V„M(TNM) and b, VPM(TNM) are taken to
be equal,

pA(T) &pp(T» (22)

along the isotherm T~. Isothermal crossing of the
volume-boundary line from the A solid into the P solid is
accompanied by a volume decrease, or

The pressure-boundary line po(T} is thus a decreasing
function of the temperature and is concave upward, to-
ward increasing pressures. The approximate single- or
mean-volume boundary line is concave downward, to-
ward decreasing volumes.

Isothermal crossing of the pressure-boundary line from
the A solid into the P solid is thus accompanied by pres-
sure increase, or, except along the phase-boundary pres-
sure line pa{TN ),

~VAM(TN, M } ~VPM( TN, M } & (14)
VO A ( TN ) & Vop ( TN ) . (23)

and their common value is the much higher-temperature
melting-volume difference' '

b, VPM ( T—20 mK ) = l. 31 cm /mol . (15)

The empirically derived melting-pressure temperature
slopes (12) thus define the individual solid-A and solid-P
entropies at the triple point T&~ to within the small
corrective entropy SL(TN M ), or

S„(TN M) —SL(TN M ) =(—)1.31(dpM IdT),

Sp( TN M ) —SL ( TN M ) = ( —}1.31(dpM+ Id T), (16)

SA ( TN, M }»SL ( TN, M )& SP ( TN, M }& SA ( N, M }

Numerically, the molar entropies are

Smoothed po( T) values of Table II yielded rough temper-
ature slopes [dpo(T)/dT]. On graphical extrapolation of
the derivative function to T~T~ M, one obtains the esti-
mate mentioned already,

lim dpo(T)/dT = 14.4 bars/mK,

a rather larger temperature slope. As mentioned above,
in connection with (10), this large limiting value at TN M
is implied by the large transformation entropy of about
—,'R and a small transformation volume b, VAP(TNM).
One has indeed, with the Clausius-Clapeyron relation,

6VAP ( TN M ) = Vp ( TN M ) VA ( TN M )

S„(TN M ) —SL ( TN M ) =0. 175R In2,

S ( TN M )—SL ( TN M ) =0.618R ln2 .
(17)

=ASAp ( TN M )/(dpo( T~ TN M )/dT)

= ( —) 1.8 X 10 cm /mol, (25)

The molar-entropy change in the A-P transformation is
thus

ASAP(TN M ) —Sp(TN M ) —SA(TN M )

=0.31R

=(1/3)R, (18)

of the expected order of magnitude in this spin-
disordering process. The associated molar latent heat is
thus

L A p( TN M ) = TNM hS A p( TN M }

=(1/3)RTNM . (19)

The entropy difFerence b,SAP(TN M ) is seen to be free of
the small corrective superfluid entropy SL ( TN M ).

Tables I, II, and III display various features of the A
and P solids along their phase-boundary lines. They
clearly indicate that over the temperature range of the
data

a rather small molar-volume change. The strictly estima-
tive character of this transformation volume should be
kept in mind.

It is instructive to construct a schematic phase dia-
gram of solid He in the neighborhood of the triple point
at melting. Such a diagram is given in Fig. 1. This is a
combined (P, T) and ( V, T) diagram used previously at
high temperature. ' The temperature range of the graph
refers to 0.95—1.09 mK, the pressure range is
34.40—35.45 bars, and the molar-volume interval is
24.05 —24.40 cm /mol. For graphical and visual conveni-
ence the scales of the ordinates are such as to overesti-
mate the actual changes occurring in the state variables
p, V, T, in the transformation process.

In the A-P phase transformation along an isochore of
molar volume V, the anomalous negative temperature
coefficient of the pressure ((}P/dT) ~ in the P phase has
been recognized in early work on the model formalism of
this phase. In Fig. 1 the A phase is assumed to be
thermally anomalous at the outset. Satisfactory
justi6cation of this assumption is lacking at the present
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time. It does not affect the discussion to follow referring
mostly to the two-phase or mixed-phase region of the
first-order spin-ordering transformation.

The combined (p, T) and ( V, T) diagrams have a com-
mon abscissa scale. The melting-pressure segments p~M
and pz~ are drawn with vanishing temperature slopes,
since over the temperature interval of the graph these
slopes are much too small to be visible with the scale of
the pressure ordinate. The molar volumes at melting
V~M and V~M are also drawn with vanishing temperature
slopes. The molar-volume scale is quite large and, in the
absence of data, the boundary-volume lines Vo„and Vop
are drawn linearly with a constant separation AVz~
much larger than the difference b, V~~(T~M) estimated
through (25). The schematic volume diagram displays
the double-valued character of the boundary single
volume or mean volume used above.

The upper part of Fig. 1 is seen to refer to the local
(p, T) diagram, with the phase-boundary pressure po(T)
drawn schematically as a straight line over the tempera-
ture interval of about 80 pK. The graph depicts qualita-
tively an isochore p (T, V) starting in the A solid and
crossing into the P solid. The isochore V on warming
reaches the phase-boundary po(T) at temperature T, .
Here the initial all-A solid enters the two-phase ( A +P)
system along the phase-boundary pressure to recall the
all-P solid phase at po(T&) p((oT; ), and TI ) T;. In the
mixed phase, with the mixture index x, at T, & T ( TI, in
the isochoric transformation

V=const

=xVo„(T)+(1—x) Vop( T),
provided one neglects all surface effects. Hence,

x:[V Vop(T)]/[VD„(T) Vop(T)]

and

x =1, at V= Vo„(T),

x =0, at V= Vop(T) .

(26)

(27)

ET(po;,po /) = TI(po) —T, (po) . (29)

The present discussion postulates the regular character of
the state-coordinate functions. Hence, by the mean-value
theorem over the explored ranges of the state coordinates

&po(TI, T ) dpp(T)

~T(pp;, po / } dT
(30)

T,. (T(TI .

Figure 1 is seen to define the pressure shift or pressure
width of the mixed-phase region in the A-P transforma-
tion, through

happ(TI T )=po(T ) po(TI},
as well as the temperature width

At the present time there are some data on the pres-
sure variation in the A-P isochoric transformation. In
the case of the isochore V=24. 19 cm /mol, the mean
transformation temperature is about 1.01 mK. The pres-
sure shift in this phase change, read off a small graph, is
estimated to be

bpo(T~=1. 01 mK, V=24. 19 cm /mol)

=(—)(7—8) mbars . (31)

With the boundary-pressure temperature slope of about
( —)14.4 bars/mK, by Table III, (30) yields the rough es-
timate

AT(po;, pp f)=0.5 pK, (32)

S(x, T, V)= Sx(oT, V„)+(1— )xS o(pT, Vp)

Sx(oT, V)+(1— )Sx(opT, V), (33)

since by (25), V„=V~= V, the molar volumes of the
components are very close in the present case. Hence,
the constant-volume heat capacity of the mixed phase is,
approximately, with the pure-phase heat capacities Co~
and Cop

or a width in the pK range. At the present time such a
small temperature width may escape direct experimental
control, in contrast with the measurement of the
transformation-pressure shift bpo( TI, T, ). Both the
graphically derived value of (dpo/dT) and the experi-
mental isochoric pressure shift bpo(TI, T;) may be ex-
pected to be of moderate precision. Hence, the width AT
is expected to be of largely estimative character.

We turn now to an experimentally more accessible
property of the A-P mixed phase, subject, however, to
limitations, at the present time. This is the heat capacity
at constant volume of the A-P two-phase system. Accu-
rate measurements in the transition region raise
diSculties, partly from lack of the necessary temperature
resolution, at the present time. The expected large excess
mixed-phase heat capacity arises from the temperature
rate of the energy supplied to the system, subject to the
partial conversion of the A phase into the P phase, i.e.,
the temperature rate of the latent heat supplied to the A

phase for its partial conversion to the P phase. This heat
capacity of conversion is additive to the normal pure-
phase heat capacities arising from the differential temper-
ature increase of the mixture from T to T +dT, in pro-
portion of their mixture indices x and (1—x) of the A

and P solids, respectively. In the case of the A-P trans-
formation, however inaccurate, observation of the large
excess heat capacity may be helpful to locate the approxi-
mate mean transformation temperature as we11 as a point
on the mean boundary-volume line Vo( T).

In the mixed phase with the fraction x of the A solid,
and the fraction (1—x) of the P solid, the entropy is,
neglecting surface or capillary effects,

If the derivative [dpo(T)/dT) is known at T, measure-
ment of Apo over the interval ( TI —T; ) yields the temper-
ature width b T of the i ~f transformation.

C, (x, TV) =xCo~ + (1—x)Cop+ b C, ( T, V),
with

bC, (T, V)=( —)L (T, V)(dx /dT),

(34)

(35)
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the excess conversion heat capacity, and

L(T V}=T(Sop Soq)

a large but finite heat capacity. A more complete form of
b, C, results at once by calculating (dxldT) at constant
volume. Using (26) one obtains

the latent heat in the isothermal A-P transformation. As
noted above, the heat-capacity anomaly is determined by
( &C„).

Before considering the explicit form of (dxldT), at
constant volume, it is instructive to obtain an estimate of
some mean value of b, C„replacing (

—)(dx/dT) in (35)
by the ratio (b,x lb, T) over the width of the transforma-
tion region. With hX taken to be about 0.5 at T~ M, one
has with (19) and (32),

b C, =L ( T~ M )/2b T

d V/dT=0
= [ Vo~(T) V—op(T)](d xldT)

+ (d VopldT)+x (d ldT)( Vo„—Vop),

or

( —)dx IdT

d Voq d Vop
=[I/(Voq —Vop)] x +(1—x)

dT

(37)

=300R, (36)

and by (35), using again the Clausius-Clapeyron relations,
the excess constant-volume heat capacity in the mixed-
phase region is

bC„( xT, V)=( —)T(dp /dT)f(dV /dT)+x(dldT)(V „—V )] .

We saw above in, Eq. (23), that, while Vo, ( Tz M ) is larger
than Vo (TN M ), the volume difference is very small and
may not be accessible to measurements. Empirically, ac-
cording to the indirect data of Table III, taking approxi-
mately

d Vop /d T d Vo /d T (39)

the first term inside the brackets on the right-hand side of
(38) is expected to be considerably larger than the second
term proportional to the temperature slope of the
boundary-volume difference (d ldT)( Vo„—Vo~ ). Hence,
with (39), it is reasonable to expect that the reduced
heat-capacity form,

bC„(x, T, V)=( —)T(dpo/dT)(dVoldT), (40)

should represent an acceptable approximation to the
form (38).

At or near T& M, using the derivatives given in Table
III, one verifies that b, C„given by (40) is very close to the
estimate (36). The heat-capacity estimates over the tem-
perature about 300R to interval of Table III are found to
range from about 300R to 850R at 0.35 mK, using the
single-volume temperature slopes of this table.

At the present time, we are aware of two independent
sets of heat-capacity measurements across the transfor-
mation region of the A-P spin-ordering process. The ex-
pected anomalous major heat-capacity peaks observed in
these experiments near or at melting referred to about 4R
and 10R in the earlier and more recent work, ' ' respec-
tively. The pure-phase constant-volume heat capacities
at or near the boundaries of the two-phase region reached
about (R /5) in both sets of measurements. The order of
magnitude differences between the extreme hC, values at
or near T& M estimated here and the experimental values
arise, in large part, from the temperature resolution

y(x, T, V) =xg„(T,V)+(1—x)y~(T, V), (41)

y& and y denoting the pure-phase susceptibilities on the
mixed-phase boundaries. The temperature derivative of
y(x, T, V) is seen at once to lead to an excess susceptibili-
ty derivative through the term in (dxldT), as was the
case with the entropy of the two-phase system in (32}
above. The temperature derivative is seen to be in the
A-P transition region

dg ld T=x (d Id T)(y „—y~ ) + (dy~ Id T)

+(dxldT)(y„—yp) . (42}

The last term on the right-hand side is the excess suscep-
tibility temperature slope in this isochoric transforma-
tion. This excess is thus with (dx/dT) given by (37)

achieved in the experiments. Improved experimental
temperature resolution is expected to yield increasingly
large excess constant-volume heat-capacity values on
crossing the very narrow temperature width of the two-
phase region. To the approximation of the treatment of
the two-phase heat-capacity problem any other property
involving the temperature rate of variation of the mixing
index should exhibit an anomaly similar to that of the
heat capacity. These anomalies arise from the tempera-
ture rate of exhaustion of the initial pure starting phase
of the system at the beginning of its transformation into
the final phase.

The temperature derivative of the paramagnetic sus-
ceptibility is expected to exhibit a large anomaly on
crossing the two-phase region. To the approximation of
the above treatment of the two-phase system, the
paramagnetic susceptibility may be written in the two-
phase system at the total volume V of the mixed phase,
Eq. (26),
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b(dyldT) = [(yp —
yA )/( VoA

—Vop)](dVp/dT)+x (d ldT)( V„—V )]

~(+p gA )/( VoA Vop ) ](d Vo IdT), (43)

neglecting the term in x on the right-hand side of the first
Eq. (43). At T~ st, the volume difference ( Vo„—Vop ) Eq.
(24), was seen to be about 10 cm /mol, and (d Vo ldT)
from Table III is of the order of 2 cm /mol mK. The sus-
ceptibility difference was measured to be quite large, or

Xp Xg=Xp=XA . (44)

A verification of (43), however, may not be easily accessi-
ble. Indeed, the susceptibility derivatives must be ob-
tained indirectly, since the measured property is the sus-
ceptibility itself and not its temperature slope.

In concluding, the entropy change in the transforma-
tion at TzM is a fair fraction of the asymptotic high-
temperature spin entropy or R ln2, as was to be expected.
In contrast, the state coordinates p, V, and T undergo
only very small changes across the two-phase region. Of

these, only the pressure change, in a constant-volume
transformation, is accessible to measurements. Acquisi-
tion of data across the transformation region at pressure
above the melting pressure and below the triple-point
temperature may encounter technical difficulties as a
consequence of insufficient volume and temperature reso-
lution. In particular, constant-volume heat-capacity
measurements across the two-phase or transformation re-
gion seem to have only qualitative significance, at the
present time.
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