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A theoretical approach is presented that allows reproduction of the thermodynamic properties
of anharmonic solids with low quantum coupling, such as solid argon, over the entire temperature
range. The properties of the quantum system are obtained from classical Monte Carlo simulations
by means of an effective potential which is based on a variational method developed recently. This
technique is tested against extensive path-integral Monte Carlo calculations on a Lennard-Jones
model of solid argon, and excellent agreement is found. It is also shown that the Lennard-Jones
potential, with parameters derived from gas-phase data, provides a very good description of argon

in the solid state.

I. INTRODUCTION

The important role played by quantum effects on the
thermodynamics of solids was already recognized very
early in the development of quantum mechanics, and
the basic phenomena could be explained by assuming
that real crystals are arrays of point masses interact-
ing through harmonic forces. Subsequently, most of the
theoretical studies on the thermodynamics of solids were
devoted to including the contributions of nonharmonic
interactions into the quantum mechanical description.
Although considerable progress has been made, this is
still an open problem, however, since most of the theo-
ries adopting a direct quantum mechanical approach not
only require the evaluation of rather complicated inte-
grals in k space, but usually are also limited to a partic-
ular regime such as low-dimensional systems or the high-
or low-temperature limit.}

The general availability of fast computers and the de-
velopment of genuine quantum-mechanical Monte Carlo
algorithms,? in particular the path-integral Monte Carlo
(PIMC) technique,3™® have opened an alternative route
to predicting thermodynamic properties of many-body
systems theoretically, by means of direct numerical sim-
ulation. In practice, however, and when they are applied
to realistic model systems, these methods are rather de-
manding in terms of computer time, especially at low
temperatures where quantum effects become large.

An alternative that seems to suggest itself is the use
of an effective potential, which reduces the quantum-
mechanical problem to a classical simulation. Up to
now, this approach was essentially restricted to gases
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and liquids at not too low temperatures: For example,
the effective potential based on the Wigner expansion®”
is just the leading term in an asymptotic expansion of
the density matrix in terms of either h or 8 = 1/kgT 3
which limits its applicability to almost classical systems.®
On the other hand, the effective potential derived by
Feynman3 through a variational principle, is based on
the quantum behavior of a free particle. Obviously, this
is not an appropriate starting point for the solid. There-
fore, Giachetti and Tognetti'?!2 introduced an improved
variational method for nonharmonic many-body systems,
by taking advantage of the fact that the low-temperature
quantum character of solids is largely due to harmonic ex-
citations, which can be treated exactly. (A similar treat-
ment for the single-particle case has been proposed by
Feynman and Kleinert.!3)

We have recently applied?® !¢ this method to a lin-
ear chain of Lennard-Jones (LJ) particles, i.e., a one-
dimensional model with realistic anharmonic interac-
tions. It was found that the quantum Monte Carlo cal-
culations by McGurn et al.l” on the same model could
be reproduced within just a few seconds on a personal
computer. These results confirmed our feeling that this
method might also be particularly useful in three dimen-
sions, e.g., in simulations of the rare-gas solids whose
interaction potential is reasonably well understood.!® An
application along these lines has in fact been reported
very recently by Liu, Horton, and Cowley,!® who studied
a simple three-dimensional nearest-neighbor LJ model for
solid argon. Although Liu, Horton, and Cowley could
demonstrate the feasibility of three-dimensional calcula-
tions, and plausible results were obtained over the whole
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temperature range, including the correct behavior in
the high- or low-temperature limit, it remained unclear
whether this method actually yields quantitatively useful
results.

Therefore, in the present paper the problem is consid-
ered in greater depth, and several aspects are addressed:
Firstly, although we, too, represent solid argon by an LJ
model cut off beyond the nearest-neighbor distance, the
long-range interactions are taken into account in a static
approximation. This cutoff correction, which is common
practice in condensed-matter simulations,2® allows us to
use the well-established LJ potential parameters for ar-
gon, which were determined from gas-phase data?! and
give a reasonable representation of the true pair poten-
tial. Secondly, in the calculation of the effective potential
the true phonon curves for the fcc lattice, rather than the
isotropic approximation of Ref. 19, are used.

In order to assess the validity of the present approach,
the results of our Monte Carlo simulations with the effec-
tive potential (EPMC) were compared with a set of very
extensive PIMC calculations for the same model system.
In these calculations, rather high Trotter numbers were
required to perform the extrapolation to the quantum-
mechanical limit. However, bearing in mind that at low
temperatures the system becomes increasingly harmonic,
the simple action of adding the corresponding corrections
from the harmonic model greatly facilitates the extrapo-
lation procedure. This was particularly useful in the case
of the specific heat.

Finally, we also present a comparison of our EPMC re-
sults with experimental data on solid argon. This is not
meant to be another test—the LIJ is not even the cor-
rect pair potential for real argon!8—but it should demon-
strate that realistic simulations of low-temperature solids
have now become economical as well as feasible.

1I. THE EFFECTIVE POTENTIAL

We consider a Bravais lattice of N identical atoms with
mass m, interacting through a spherically symmetric pair
potential u(r). Its Hamiltonian is

m,
H= Xl: —2-x,2 +V(X), 1)
where

V0 =3 8 S ulbeisa, — - 2

Here, atoms are labeled by their equilibrium position I; x;
is the (instantaneous) position of the atom at lattice site
1, and the sum over n = 1,2, ... accounts for the successive
shells of neighbors of atom I, which, in equilibrium, are
at relative positions d,,.

The derivation of an effective potential, which takes the
quantum effects into account, has been the subject of sev-
eral papers.11:14716.22724 We refer principally to Ref. 14,
where the thermodynamics of a linear chain of atoms in-
teracting through a pair potential like (2) was studied.

In order to approximate the partition function

7 = e PfF = / DX(u) e~ SIX(w)] (3)
X(0)=X(Bh)

best, where

Bh m
S[X(u)] = %/0 du< Z 5 xE(u) + V(X(u)))
i
(4)

we introduce the nonlocal trial action
So [X(w)]

Bh _
= % A du( Z %l-xtz(u) + w(X)
1

—[X(U) X" (X)X (u) - ])
(%)

containing as variational parameters the scalar w(X)
and the frequency matrix w?(X), which both depend
on the average point of the path, X = X[X(u)] =
(BR)1 X(u) du.

It is apparent that the trial action (5) is the best (ex-
actly solvable) starting point for our problem, at least
for low quantum coupling, since low-temperature solids
can indeed be described in terms of quantum harmonic
oscillators.

The variational parameters w and w are determined
by minimizing the right-hand-side (rhs) of the Jensen-
Feynman inequality?®

F < Fy+T(S - So)o » (6)

where F' is the “true” free energy of the system, Fy the
free energy associated with the trial action Sp, and (- - -)o
is the functional average calculated over the distribution
of paths given by Sp.

The minimization with respect to w gives (S — Sg)o =
0, so that the best variational approximation to the free
energy F' is Fy itself. The path integral for the trial ac-
tion (5) can be evaluated exactly, leaving only a final in-
tegration over X, so that the calculation of the partition
function is reduced to the classical-like configurational
integral

iN
Z:( - ) /e-f”’e"(x)dx, (7
27h?p

where Veg(X) is the effective potential.

The explicit expressions for the variational parameters
and the effective potential associated with model (2) can
be obtained by generalizing those of Ref. 14 to a three-
dimensional lattice. Basically, one has to replace the site
indices ¢ appearing in Ref. 14 by the pair i, where ¢ now
refers to the Cartesian components, while the indices k
of the normal modes of vibration are replaced by the pair
ky, where p denotes the polarization. The final result is

—w 1 n sinh[ fi, (X))
Ver(X) = w(X) + B %I fn(X) 7 ®)
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with
e~ Miw/ 200 (X)

w(X) = /V(X +QT17) H -—;\/__a—k_—__-(ﬁ d77k,u
k,u H

m
—5 2 k(X)) mu(X) (9)
k,p
where
(%) = g (ot (%)) - 55 )
= ————|co - ,
T 2 (X) K fren(X)
£ oxy o Phoku(X)
SinlX) = ‘T—T
and wfw(X) are the eigenvalues of the frequency matrix
1 v
2 - [ _2Y x T
wlm,z] (X) m 61?1,‘0$mj ( + Q- 77)

H e—ni“/zak#(x) d ( )
x TS i, (11
ks V2moye, (X) g

which is diagonalized by the orthogonal matrix U =
U(X).

As is apparent from the previous formulas, the quan-
tum character of the system enters into the effective po-
tential in two ways: first of all, in the logarithmic term,
which takes the full quantum behavior of the harmonic
excitations into account, and secondly, in the broadening
J

(10)---

of the potential due to the (Gaussian) quantum fluctua-
tions of the particle positions. In fact, ay, is just the pure
quantum contribution to the (quadratic) fluctuations of
the normal mode kpu.

As in previous applications of the improved variational
method to many-body systems,!%1522724 we limit our-
selves, in the following, to the low coupling approxima-
tion (LCA) to the effective potential. Within this ap-
proach, the configuration dependence of U, wy, and ax,
can be neglected, and the quadratic term appearing in
the trial action (5) is simply the second-order expansion
of the potential around the equilibrium configuration, so
that its diagonaiization reduces to the phonon probiem
for the actual lattice. It follows that the orthogonal ma-
trix U is the product of the Fourier transformation matrix
A and the 3 x 3 polarization matrices €,;(k) defined by

Wiubur = Y eui(k) wi i; €;(K) (12)
i.J

where wy, are the phonon frequencies of the lattice,
and, using the subscripts zj to denote the derivatives of

u(]x|),
k-d
mw2'i1=2 E u;i(dn) 2sin? | —2 ) . 13
k,ij — J ( 2 ) ( )

The LCA effective potential at temperature 7" can now
be written as

Verr(X) = % Zl: > ; (U(wadn —xl) + ';" [Uij (IXt+a, —xil) = uij (dn)} Dn,«'j) + % > hn il%h;{k—" , (14)
n n k,u

where

Dn,ij = Z (Ak,l+dn - Akl)z fui(k)fuj(k) ak“
k,p

(15)

is the tensor of the pure quantum fluctuations of the dis-
placement between atom ! and its nth-shell neighbors
in the harmonic approximation. Due to the symmetry
properties of the lattice, the D,’s are independent of 1
and of the direction of d,,, so there is only one tensor D,
for each shell of neighbors.

Keeping in mind that the terms in (14) proportional to
D,, account for the effects of the quantum fluctuations,
we can neglect the fluctuations of the angular dependence
of the vectors connecting each atom with its neighbors
within the LCA. In this way the central character of the
interaction potential is preserved in Veg, which can finally
be written

Ver(X) = 5 3050 Sl (beara, — 1)
l n d,

1 sinh fi,
- In 22—k
+3 ::; N (16)

where

[
ulf(r) = u(r) + %[“”(7') — u"(dn)]1Dy

+% (%T—) - l'fi—‘j‘—)> Dy, (17)

and DE and DT are the longitudinal and transverse pro-
Jections of the tensor D, ;;:

Dy = Z—dn" + Dpij

" i d'zl
(18)
DT = 5 dnidnj D
n - Z L drzl n,tj -
L)

III. MODEL POTENTIAL
AND MONTE CARLO CALCULATIONS

In order to benchmark the effective potential approach,
we have carried out a number of Monte Carlo simulations
for a simple model of solid argon. In all these calcula-
tions, the interaction potential was assumed to be pair-
wise additive and given by the Lennard-Jones form

w) =1 [(7)" - (5)], 1)

with ¢/kp = 119.8 K and o = 3.405 A. The quantum



45 QUANTUM THERMODYNAMICS OF SOLIDS BY MEANS OF AN ... 2091

behavior of the model is characterized by the coupling
parameter A = hQ/e, with Q2 = u”(¥/20)/m, which
turns out to be small (A = 0.224) for argon.!*

It is well known that (19) is not the true pair inter-
action for argon, and more refined potentials have been
proposed in the literature.26 A theoretically based, quan-
titative description of the dense phases even requires the
inclusion of irreducible three-body forces.2” Nevertheless,
the LJ model appears to be a very efficient effective pair
potential, giving virtually quantitative results both in the
low- and high-density range,?® which is sufficient for our
present purposes.

The € and o values quoted above are those determined
from high-temperature gas phase data,?! but also the
phonon dispersion curves deduced from them are in excel-
lent agreement with experiment.2?® Therefore, we prefer
to retain these “natural” values also in the solid phase,
and in Sec. IV it will be shown that the gas-phase param-
eters in fact permit a consistently accurate description of
argon all the way down into the solid phase.

With this model potential a number of Monte Carlo
calculations, including classical Monte Carlo (MC) simu-
lations, classical simulations with the effective quantum-
mechanical potential (EPMC), and path-integral Monte
Carlo (PIMC) simulations, were performed for a selec-
tion of thermodynamic states. In all these calculations,
the sample consisted of a fcc lattice of N = 108 atoms
enclosed in a cubical box to which periodic boundary
conditions were applied. Only nearest-neighbor interac-
tions were dynamically taken into account; the contribu-
tions from more distant neighbors were approximated by
the values appropriate for an infinite static fcc lattice.
The corresponding correction terms to the potential en-
ergy and pressure are of the order of —2.5 kJ/mol and
—2000 atm, respectively. With this simple procedure,
excellent agreement with the experimental equation of
state of solid argon is obtained, and the use of unphysical
parameter values is avoided.!® Sample calculations allow-
ing for dynamical interactions up to the second-neighbor
shell were performed but showed no significant differences

TABLE L.

in the numerical results.

All Monte Carlo simulations were based on the
Metropolis algorithm and single-particle moves.? The
maximum displacement was chosen such as to lead to an
acceptance ratio of 10-50 % of the trial moves. Each run
was started from a perfect fcc lattice at the appropriate
density and equilibrated for at least 5000 passes (trial
moves per particle). Depending on the specific Monte
Carlo technique, averages were then accumulated every
fifth configuration for another 50 000-500 000 passes.

In the classical Monte Carlo simulations each run con-
sisted of 50000 passes and was analyzed in the usual
manner.2? In the simulations with the effective poten-
tial (EPMC), which consisted of 75000 passes each, the
time required to calculate the effective potential is en-
tirely negligible compared to the total simulation time.
Since the effective potential depends on temperature as
well as on density (and has to be recalculated for each
thermodynamic state), it is not possible to use the stan-
dard expressions?® for the calculation of thermodynamic
quantities such as total energy E, pressure p, and specific
heat Cy. Rather, one has to re-derive the microscopic ex-
pressions to be averaged, by starting from the thermody-
namic relationships £ = §(BF)/0B, p = —dF/JV, and
Cv = —kpB20%(BF)/85? and taking the dependence of
the renormalization parameters DX7 and the logarith-
mic term in Vg on B and the equilibrium lattice spacing
explicitly into account.

In the PIMC simulations, the primitive algorithm was
used.®2% A trial move consisted of a random displace-
ment of the “center of mass” of the classical ring polymer
which, in the limit P — oo, is equivalent to the quantum-
mechanical particle, combined with a set of “intramolec-
ular coordinates” sampled from the free-particle density
matrix. The Trotter number P—the number of beads
on the ring polymers—was varied between 4 and 64, and
each run consisted of 500000 passes after equilibration.
The “crude” energy estimator?°3%:3! was used, and the
specific heat was calculated through a fluctuation formula
derived in the manner outlined for EPMC above.

Thermodynamic properties of solid LJ argon at 7=0.08347 (10 K), p=1.0533. Here and in the following tables,

all quantities are given in reduced units. p is the number density, K the kinetic energy, U the potential energy, E the total
energy, p the pressure, and Cv the specific heat. The columns labeled “+HC” were obtained by adding the harmonic correction
to the raw PIMC data in the preceding column. The extrapolated values are listed as “P = 00.” (See the text.)

K/N U/N E/N p Cv/N
MC
0.1252 —8.3200 —1.577 2.96 +0.02
PIMC
+HC +HC +HC
P=4 0.3045 —8.2770 ~7.9726 —7.8033 —0.5059 0.0362 3.22 £0.01 0.52
8 0.3700 -8.2192 —7.8491 ~7.7913 —0.1391 0.0467 1.78 £0.03 0.57
16 0.3982 —8.1958 —7.7976 —7.7816 0.0101 0.0617 0.89 £0.12 0.52
32 0.4063 —8.1886 —7.7823 ~7.7782 0.0558 0.0691 0.66 £0.13 0.53
64 0.4087 —8.1868 —7.7781 —7.7771 0.0676 0.0709 0.19 £0.42 0.17
oo 0.410 ~8.185 —7.774 —-7.775 0.077 0.076 0.56 0.54
EPMC
~17.7995 0.052 0.50 £0.02
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IV. RESULTS AND DISCUSSION

The results of our calculations are reported in Tables
I-V and Figs. 1-6. Unless stated otherwise, all quan-
tities are given in the usual dimensionless form, by re-
ducing them with respect to the parameters of the LJ
potental. Thus, energies are measured in units of ¢, pres-
sures in units of €/03, etc. On an absolute scale these
energy and pressure units correspond to 0.9961 kJ/mol
and 413.5 atm, respectively.

A. Consistency with PIMC calculations

Since our primary goal was to establish the validity of
the EPMC approach by comparing the results to accurate
quantum-mechanical calculations, we have carried out an
extensive set of parallel MC, EPMC, and PIMC simula-
tions at four selected thermodynamic states of the zero-
pressure solid. The temperatures selected correspond
to 10, 20, 40, and 60 K, and the densities were taken
from the experimental work of Peterson, Batchelder, and
Simmons3? (see also Ref. 33). The results of these simula-
tions are presented in Tables I-IV. With the exception of
the specific heat, the statistical uncertainty is indicated
by the number of decimal places given. The unlabeled
columns in the PIMC sections contain the raw data from
the simulations at finite Trotter number P; those marked
“+HC” include the simple ad hoc correction decribed be-
low.

Since the PIMC results had to be extrapolated to P —
oo, generally separate runs were done with P=4, §, 16,
and 32. When plotted as a function of 1/P, the finite-
P values usually fall on a smooth curve, which tends to
a rather well-defined limit as 1/P — 0. This is shown
for the kinetic energy K, total energy FE, pressure p, and
specific heat Cy, all at 10 K, in Figs. 1-4. (Error bars:
These error bars were obtained by breaking each run into
five segments of 100000 passes each and calculating the
standard error of the mean.) In this way the energies
and pressures may be extrapolated by fitting a parabola
through the points with P > 4. (At 60 K all points were

0.42 L L L 1 I I T L L L L L i i
1 L
0.38 F
4 L
=
. B F
hd
0.34 | -
J L
0.30 T T T T T T T T T T T T

0.0 0.1 0.2 0.3

1/P

FIG. 1. Kinetic energy K of solid LJ argon at 7=0.083 47
(10 K), p=1.0533 (reduced units). Error bars: PIMC calcu-
lations at Trotter number P=4, 8, 16, 32, and 64; solid line:
quadratic fit through points with P > 8.

included in the fit.) These extrapolated values are also
included in Tables I-IV (“P = 0”).

For the specific heat, however, the uncertainties are so
large that no useful results could be obtained at a higher
Trotter number. For instance, the values for P = 16 at 20
and 60 K are clearly outlying, given the measured error
bars. This is due to our use of a fluctuation formula for
Cv, which generally converges rather slowly. By hind-
sight, it might have been more economical to calculate
Cy by numerically differentiating the total energy £, for
which very accurate results may be obtained. We have
verified this by performing two additional calculations,
at 19 and 21 K, with P = 16. When calculated from the
difference in total energy, Cyv /N = 1.52 £+ 0.01, which

TABLE II. Thermodynamic properties of solid LJ argon at 7=0.1669 (20 K), p=1.0499. Symbols as in Table 1.
K/N U/N E/N P Cv/N
MC
0.2504 —8.0690 —0.997 2.91 +0.02
PIMC
+HC +HC +HC
P=4 0.4076 —8.1781 —7.7705 —7.7144 —0.1152 0.0650 2.12 +£0.02 1.55
8 0.4349 —8.1552 —7.7204 —7.7048 0.0302 0.0802 1.66 £0.03 1.48
16 0.4439 —8.1484 —7.7045 —7.7011 0.0739 0.0868 1.35 £0.08 * 1.30
32 0.4456 —8.1466 —7.7011 —7.7001 0.0852 0.0884 1.60 +0.19 1.59
o] 0.446 —8.146 —7.700 —7.699 0.089 0.093 1.52 1.54
EPMC
—7.7136 0.088 1.53 £0.02

>A more accurate value, obtained from the total energy difference between separate runs at 19 and 21 K, is 1.52 £ 0.01 (see

the text).
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TABLE III. Thermodynamic properties of solid LJ argon at 7=0.3339 (40 K), p=1.0325. Symbols as in Table I.
K/N U/N E/N P Cv/N
MC
0.5008 —-7.5430 —0.425 2.82 £0.02
PIMC
+HC +HC +HC
P=4 0.5988 —7.9627 —7.3639 —17.3481 0.0520 0.1023 2.47 £0.02 2.40
6 0.6059 —7.9575 —7.3516 —7.3445 0.0846 0.1174 2.46 £0.05 2.43
8 0.6083 —7.9557 —7.3474 —7.3434 0.0960 0.1089 2.37 £0.03 2.35
12 0.6091 —7.9545 —7.3454 —7.3436 0.1034 0.1092 2.43 £0.08 2.42
16 0.6098 —7.9539 —7.3441 —7.3431 0.1067 0.1099 2.34 £0.08 2.33
32 0.6108 —17.9535 —7.3427 —7.3424 0.1097 0.1105 2.26 +£0.36 2.26
oo 0.611 —-7.953 —~7.342 —7.343 0.111 0.110 2.33 2.36
EPMC
—7.3471 0.109 2.37 £0.02

appears to be “correct.” The extrapolated PIMC values
quoted for Cv in Tables I-IV were finally obtained by ex-
cluding obviously outlying values and fitting a low-order
polynomial to be compatible with the general trend and
scatter of the points (cf. Fig. 4). Clearly, these values
are rather imprecise.

As can be seen from Tables I-IV and Figs. 1-4, quite
large Trotter numbers are required to approach the
quantum-mechanical limit. Since this is mainly due to
the inability of the PIMC simulations to cope with the
full quantum behavior of the harmonic excitations (the
“primitive algorithm” used here is based on the free-
particle density matrix), the following procedure was de-
vised: The thermodynamic properties of the harmonic
oscillator may be calculated analytically not only in the
quantum-mechanical limit, but also for finite Trotter
number P.30:3% Thus, it is not difficult to evaluate these
properties also for the harmonic approximation to the
model under consideration (including its finite size and
number of particles). Assuming that the nonharmonic
part of the interactions is adequately sampled in PIMC
simulations with finite P, we may then correct the simu-
lation results by putting

A = Ap + (AH,oo - AH,P) ) (20)

where Ap is the value of any property A obtained in a
PIMC simulation with Trotter number P, and Ay p is
the exact result for the harmonic model.

The efficacy of this simple trick may be appreciated
from Figs. 2-4 (triangles). Even for low Trotter num-
bers the corrected PIMC results are now quite close to
the quantum-mechanical limit, and the extrapolated val-
ues (using the same data points but lower-order poly-
nomials) are in good agreement with the extrapolation
of the bare PIMC results. This proved to be especially
helpful in the case of the specific heat where, within the
statistical limits, the corrected Cy values appear to be
almost independent of P. The numerical values are listed
in column “+HC” (harmonic correction) of Tables I-IV.

Taking the difficulties in obtaining “exact” PIMC re-
sults into account, the performance of the EPMC ap-
proach is impressive indeed. From Tables I-1V it is obvi-
ous that the EPMC simulations are generally in excellent
agreement with the exact results. For the specific heat
the EPMC results even appear to be more reliable than
the PIMC values. This is particularly gratifying in the
intermediate temperature range (0.2 < T < 0.5), where
no other approximate theories are available. The EPMC
approach is also much more efficient than PIMC: Since
P loosely coupled copies of the system are being simu-

TABLE IV. Thermodynamic properties of solid LJ argon at 7=0.5008 (60 K), p=1.0070. Symbols as in Table I.

K/N U/N E/N P Cv/N
MC
0.7513 —6.9788 ~0.209 2.80 £0.02
PIMC
+HC +HC +HC
P=4 0.8178 —7.6818 —6.8640 —6.8565 0.0861 0.1100 2.63 £0.03 2.61
8 0.8223 —7.6788 —6.8565 —6.8559 0.1046 0.1106 2.60 £0.08 2.59
16 0.8235 —7.6783 —6.8548 —6.8533 0.1081 0.1096 2.84 £0.05 2.84
32 0.8247 —7.6780 —6.8533 —6.8532 0.1105 0.1109 2.82 £0.22 2.82
oo 0.825 —T7.678 —6.853 —6.853 0.111 0.110 2.6 2.61
EPMC
—6.8567 0.109 2.59 £0.02
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FIG. 2. Total energy F of solid LJ argon at 7=0.083 47
(10 K), p=1.0533 vs inverse Trotter number P. Error bars:
raw PIMC data; triangles: HC-corrected PIMC data (see the
text); solid and dashed lines: quadratic (linear) fit through
points with P > 8.
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lated, a single PIMC calculation at Trotter number P
is about P times slower than the corresponding EPMC
simulation, and if a series of PIMC runs is required to
extrapolate to P — oo, EPMC may be by one or two
orders of magnitude more efficient than PIMC.

B. Comparison with experimental results

Having established the superior performance of the ef-
fective potential approach—at least for a system like solid
argon whose quantum coupling parameter is small—the
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FIG. 3. Pressure p of solid LJ argon at 7=0.083 47 (10 K),

p=1.0533. Symbols as in Fig. 2.
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FIG. 4. Specific heat Cy of solid LJ argon at 7'=0.083 47
(10 K), p=1.0533. Symbols as in Fig. 2, except that also
P=64 was excluded from the fit.

path is now open to apply the new technique to more
realistic simulations, in order to enable a quantitative
comparison with experimental results. This might in-
clude the use of “true” two- and three-body potentials,
extension of interactions to more distant neighbors, etc.,
but is beyond the scope of the present paper.

In fact, it is surprising how well the equation of state of
solid argon is reproduced even by the simple LJ model.
When converted to absolute units, the pressures listed
in Tables I-IV are of the order of 20-50 atm, which is
normally considered by simulationists to be zero pres-
sure. Thus, the L] parameters obtained from the gas
phase seem to yield excellent results not only in the dense
liquid?® but also in the low-pressure solid.

Bearing in mind that the particular way in which non-
nearest-neighbor interactions were taken into account
(static approximation) probably affects the calculated
pressures by a larger amount than the net values quoted
above, the agreement of the present results with the ex-
perimental equation of state must already be considered
perfect. Nevertheless, and in order to demonstrate the
facility with which EPMC calculations may be carried
out, we have performed another series of MC-EPMC
simulations to determine the zero-pressure (with a tol-
erance of £2 atm) densities of the model. The results for
the density as well as for the specific heat are compared
with the experimental data of Peterson, Batchelder, and
Simmons3? in Table V and Figs. 5 and 6.

In Fig. 5, the difference between the classical and
quantum-mechanical results is seen to be predicted cor-
rectly, and the experimental densities are reproduced
within a few tenths of a percent. Finally, in Fig. 6,
the ability of EPMC calculations to predict the cor-
rect quantum-mechanical behavior of the specific heat
is demonstrated convincingly, and the actual values are
again in good agreement with the data on real argon.
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FIG. 5. Temperature dependence of the number density p
for solid argon at zero pressure (reduced units). Squares and
triangles: MC and EPMC calculations with the LJ model;
dashed line: experimental data from Ref. 32.

V. CONCLUSION

The concept of describing a quantum-mechanical sys-
tem by means of a classical system interacting through an
effective potential may be traced back to the early work
of Wigner.® When it can be effected, the complexity of
the problem may be greatly reduced. This is true for
theoretical work as well as for numerical simulations. In
the latter case, substantial savings in terms of computer
time may be achieved.

Whereas previous approaches were limited to almost
classical, high-temperature systems, the effective poten-
tial derived via the improved variational method of Gia-
chetti and Tognettil® seems to be ideally suited for theo-
retical calculations on anharmonic solids with low quan-
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FIG. 6. Temperature dependence of the specific heat Cy

for solid argon at zero pressure. Symbols as in Fig. 5.

tum coupling, since it is exact for the harmonic (i.e., low-
temperature) model as well as in the high-temperature
limit.

In the present paper we have shown that the present
method is also quantitatively correct in the intermediate
temperature range. This conclusion is based on a detailed
comparison with path-integral Monte Carlo calculations
on a Lennard-Jones model of solid argon. The EPMC
results were found to be in excellent agreement with, or
(in the case of the specific heat) even superior to, the
PIMC simulations. We have also shown how low-Trotter-
number PIMC data may be corrected by using a simple
procedure based on the harmonic model. The corrected
values are much closer (and easier to extrapolate) to the
quantum mechanical limit.

On the experimental side, the simple L] model, us-
ing the gas phase parameters, was found to give a very
accurate description not only of the typical quantum be-

TABLE V. Density and specific heat of solid argon at zero pressure. Symbols as in Table I.
In the simulations with the L] model, the density was adjusted so that p = 0 + 2 atm. The

experimental data were taken from Ref. 32.

P Cv/N

T MC EPMC Expt. MC EPMC Expt.
0.0334 (4 K) 1.0869 1.0523 1.0540 2.95 0.05 0.021
0.0835 (10 K) 1.0801 1.0522 1.0537 2.94 0.49 0.396
0.1252 (15 K) 1.0739 1.0509 1.0525 2.94 1.05 0.963
0.1669 (20 K) 1.0678 1.0487 1.0499 2.92 1.53 1.462
0.2087 (25 K) 1.0615 1.0449 1.0467 2.91 1.85 1.840
0.2504 (30 K) 1.0552 1.0408 1.0426 2.88 2.14 2.104
0.3339 (40 K) 1.0416 1.0304 1.0325 2.84 2.41 2.436
0.4174 (50 K) 1.0276 1.0181 1.0206 2.82 2.54 2.591
0.5008 (60 K) 1.0120 1.0045 1.0070 2.80 2.58 2.669
0.6260 (75 K) 0.9871 0.9804 0.9826 2.77 2.62 2.759
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havior of the specific heat, but also of the equation of
state. This confirms once more its usefulness as an effec-
tive pair potential for argon over a wide density range,
which is well known in the liquid state.?8

In particular, the use of unphysical LJ parameter
values!® was avoided by accounting for long-range inter-
actions in the static approximation, since only nearest-
neighbor interactions were explicitly taken into account
in the simulations. This was merely done for convenience
and is not an inherent limitation of the EPMC method.
The inclusion of non-nearest-neighbor interactions—test
runs with second neighbors were performed, but did not
show substantial modifications—as well as of more realis-
tic potentials, is straightforward. Using the effective po-
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tential approach, such more detailed investigations have
now become highly economical.
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